arXiv:2010.04806v1 [cs.CL] 9 Oct 2020

AutoQA: From Databases To QA Semantic Parsers
With Only Synthetic Training Data

Silei Xu* Sina J. Semnani*

Giovanni Campagna

Monica S. Lam

Computer Science Department
Stanford University

Stanford, CA, USA
{silei, sinaj, gcampagn, lam}@cs.stanford.edu

Abstract

We propose AutoQA, a methodology and
toolkit to generate semantic parsers that an-
swer questions on databases, with no manual
effort. Given a database schema and its data,
AutoQA automatically generates a large set
of high-quality questions for training that cov-
ers different database operations. It uses au-
tomatic paraphrasing combined with template-
based parsing to find alternative expressions of
an attribute in different parts of speech. It also
uses a novel filtered auto-paraphraser to gener-
ate correct paraphrases of entire sentences.

We apply AutoQA to the Schema2QA dataset
and obtain an average logical form accu-
racy of 62.9% when tested on natural ques-
tions, which is only 6.4% lower than a model
trained with expert natural language anno-
tations and paraphrase data collected from
crowdworkers. To demonstrate the generality
of AutoQA, we also apply it to the Overnight
dataset. AutoQA achieves 69.8% answer ac-
curacy, 16.4% higher than the state-of-the-art
zero-shot models and only 5.2% lower than the
same model trained with human data.

1 Introduction

Semantic parsing is the task of mapping natural
language sentences to executable logical forms. It
has received significant attention in question an-
swering systems for structured data (Wang et al.,
2015; Zhong et al., 2017; Yu et al., 2018b; Xu et al.,
2020). However, training a semantic parser with
good accuracy requires a large amount of annotated
data, which is expensive to acquire. The complex-
ity of logical forms means annotating the data has
to be done by an expert. This adds to the cost
and hinders extending question answering to new
databases and domains.

* Equal contribution

Database schema and values

1

Auto-Annotator

[Paraphraser]

POS-Based
Annotation Extraction

l attribute annotations

Template-based Data Synthesizer]

Auto-Paraphraser

es| Semantic | forms
Parser, Paraphrase

o
o
=
Q)
el
>
=
Q
wn
@
=
s
'
' =1
IE]
Im
o
=
&0
2,
z,
1
o 1
Sa 1
ag
- 1
1
1
1
1
1
1
1
1
1
|
1

Filter

__________________ >
paraphrases + original logical forms

Figure 1: The architecture of the AutoQA toolkit.
(a) The auto-annotator extracts annotations from para-
phrases. (b) A template-based data synthesizer (Xu
et al.,, 2020) generates data from the annotations to
train a semantic parser. (c) An auto-paraphraser uses
self-training to iteratively introduce more paraphrases
to train the next version of the semantic parser. The
red dotted lines show that generated paraphrases are fil-
tered out unless the current semantic parser can trans-
late them to the logical forms of the original sentences.

To eliminate the need for annotating data with
logical forms, SEMPRE (Wang et al., 2015) pro-
posed the new methodology of first synthesizing
questions on the database, then manually paraphras-
ing them. Recently, the Schema2QA toolkit (Xu
et al., 2020) demonstrated that it is possible to
achieve high accuracy on realistic user inputs us-
ing this methodology with a comprehensive set of
generic, domain-independent question templates.
However, this approach requires a significant man-
ual effort for each domain: the developers must
supply how each attribute can be referred to using
different parts of speech, and crowdworkers are
needed to paraphrase the queries.

Our objective is to eliminate the need for manual
effort in building semantic parsers, while achiev-
ing comparable accuracy. We hypothesize that, for
common domains, the knowledge of how each at-
tribute would be referred to in natural language is
implicitly presented in large text corpora and can
be captured by general-purpose paraphrasing mod-
els. With that insight, we developed AutoQA, a
toolkit that (1) automatically annotates the database
attributes using paraphrasing models, (2) uses
generic templates to synthesize a large set of com-
plex queries, and (3) uses a novel filtered auto-
paraphraser to further increase the variety of the
synthesized data. The resulting dataset is then used
to train a BERT-LSTM model (Xu et al., 2020).
The architecture of AutoQA is shown in Fig. 1.

The contributions of this paper are:

* AutoQA, a toolkit that automatically creates a
semantic parser that answers questions about
a given database. As the parser is trained only
with automatically generated data, its cost is
significantly lower than current approaches.

* A novel algorithm for annotating database
attributes with phrases in different parts of
speech. The algorithm is based on automatic
paraphrasing combined with template-based
parsing (Section 4).

* A new automatic paraphrasing model, based
on BART (Lewis et al., 2019), that can gen-
erate natural paraphrases of sentences, with
a filter trained with synthetic data to ensure
the preservation of the original meaning ex-
pressed in a formal language (Section 5).

* The methodology has been tested on the
Overnight dataset (Wang et al., 2015) and
Schema.org web data (Xu et al., 2020) (Sec-
tion 6). On Overnight, AutoQA achieves
an average of 55.6% logical form accuracy
and 69.8% denotation (answer) accuracy with-
out using the human paraphrases for training,
which are 18.6% and 16.4% higher than the
state-of-the-art zero-shot models, respectively.
On Schema.org, AutoQA achieves an average
logical form accuracy of 62.9%, within 6.4%
of models trained with manual annotations
and human paraphrases.’

!The data and code can be downloaded from https: //
oval.cs.stanford.edu/releases/

2 Related Work

Bootstrapping Semantic Parsers. Neural se-
mantic parsing for question answering is a well-
known research topic (Pasupat and Liang, 2015;
Wang et al., 2015; Dong and Lapata, 2016; Jia and
Liang, 2016; Krishnamurthy et al., 2017; Zhong
et al., 2017; Yu et al., 2018b). State of the art meth-
ods use a sequence-to-sequence architecture with
attention and copying mechanism (Dong and Lap-
ata, 2016; Jia and Liang, 2016) and rely on large
datasets. Acquiring such datasets is expensive, and
the work must be replicated in every new domain.

Prior work proposed bootstrapping semantic
parsers using paraphrasing (Wang et al., 2015),
where a dataset is synthesized using a grammar of
natural language, and then paraphrased by crowd-
workers to form the training set. Paraphrasing
has been applied to datasets for SQL (Zhong
et al., 2017), as well as multi-turn dialogue
datasets (Shaw et al., 2018; Rastogi et al., 2019).

Our previous work with Genie (Campagna et al.,
2019) proposed training with large amounts of syn-
thesized and smaller amounts of paraphrased data.
Later, we developed Schema2QA (Xu et al., 2020),
a synthesis tool based on a general grammar of
English. Schema2QA was found to be effective
for the question answering task on the Web. Both
works rely on manual paraphrases and hand-tuned
annotations on each database attribute. Training
with synthetic data has also been explored to com-
plement existed dataset (Weir et al., 2020) and in
the few-shot setting (Campagna et al., 2020; Morad-
shahi et al., 2020).

A different line of work proposed training with
a large multi-domain dataset, and then using trans-
fer learning to generalize to new datasets, in a
completely zero-shot fashion (Herzig and Berant,
2018a; Chang et al., 2019). Yet, such scenario
requires acquiring the multi-domain dataset in the
first place, and there is a significant gap between the
accuracy of training with and without in-domain
data (Yu et al., 2018b). Our approach instead is
able to synthesize data for the new domain, so the
model is exposed to in-domain data while retaining
the zero-shot property of no human-annotated data.

Pre-trained Models for Data Augmentation.
Previous work showed that pre-trained models
are very effective at generalizing natural language
knowledge in a zero- and few-shot fashion (Rad-
ford et al., 2019; Brown et al., 2020). These models

https://oval.cs.stanford.edu/releases/
https://oval.cs.stanford.edu/releases/

Question: Show me 5-star restaurants with more than 100 reviews?
ThingTalk: Restaurant, aggregateRating.ratingValue == 5 && aggregateRating.reviewCount >= 100

Question: What’s the phone number of the McDonald’s on Parker Road?
ThingTalk: [telephone] of (Restaurant, id = “McDonald’s” && geo == new Location(“Parker Road”)

Question: Which is the best Chinese restaurants around here?
ThingTalk: sort aggregateRating.ratingValue desc of (Restaurant, geo == HERE && servesCuisine =~ “Chinese”)

Table 1: Example questions in the restaurant domain with their ThingTalk representations.

have been used to expand training data for various
NLP classification tasks, by fine-tuning the model
on a small seed dataset, then using conditioning on
the class label to generate more data (Anaby-Tavor
et al., 2020; Kumar et al., 2020). Kobayashi (2018)
proposed using a bidirectional LSTM-based lan-
guage model to substitute words that fit the context,
conditioning on the class label to prevent augmen-
tation from changing the class label. Wu et al.
(2019) used BERT (Devlin et al., 2019) in a similar
way, and Hu et al. (2019b) improved upon it by
jointly fine-tuning BERT and the classifier. Sem-
nani et al. (2019) explored data augmentation for
domain transfer using BERT.

These approaches rely on an initial dataset with
many examples in each class, and therefore are not
suitable for semantic parsing, where each logical
form has only a few or even just one example.

Neural Paraphrasing for Data Augmentation.
The performance of many NLP tasks can be im-
proved by adding automatically generated para-
phrases to their training set. The general approach
is to build a paraphrase generation model, usually
a neural model (Prakash et al., 2016, lyyer et al.,
2018, Gupta et al., 2017), using general-purpose
datasets of paraphrase sentence pairs.

Data augmentation through neural paraphrasing
models has been applied to various tasks such as
sentiment analysis (Iyyer et al., 2018), intent classi-
fication (Roy and Grangier, 2019), and span-based
question answering (Yu et al., 2018a). Paraphras-
ing models may generate training examples that do
not match the original label. Noisy heuristics, such
as those employed by Yu et al. (2018a), are not
enough for semantic parsing, where paraphrases
need to be semantically equivalent in a very strict
and domain-dependent sense. We propose a novel
filtering approach, and show its effectiveness in
reducing the noise of neural paraphrasing.

3 Schema2QA Data Synthesis Pipeline

AutoQA is based on Schema2QA (Xu et al.,
2020), the state-of-the-art pipeline to generate high-
quality training data for database QA at a low cost.
Schema2QA first synthesizes utterance and formal
representation pairs with a template-based algo-
rithm, and then paraphrases utterances via crowd-
sourcing. The semantic parser is trained with
both synthetic and paraphrased data, and tested on
crowdsourced, manually annotated real questions.

Instead of relying on crowdworkers to para-
phrase and create variety from the synthesized
canonical questions, Schema2QA uses a compre-
hensive set of 800 domain-independent templates,
along with a few manual annotations for each at-
tribute in each domain, to synthesize high-quality
data. About 2% of the synthesized data are manu-
ally paraphrased.

Our previous work (Xu et al., 2020) shows that
a parser trained on such dataset achieves 70% accu-
racy on natural complex questions. Table 1 shows a
few questions that Schema2QA can parse and their
representation in ThingTalk, which is a query lan-
guage designed to support translation from natural
language.

Schema2QA answers long-tail questions well
because its synthesized data have good coverage
of possible questions asked, while showing great
linguistic variety. It synthesizes questions us-
ing generic question templates, which have place-
holders to be substituted with domain-specific an-
notations that match the expected part-of-speech
(POS) type. Table 2 shows how annotations of the
6 POS categories for the “AlumniOf” attribute are
used in the example templates to synthesize exam-
ple utterances. In total, six POS categories are iden-
tified: active verb phrase, passive verb phrase, ad-
Jective phrase, prepositional phrase, and two noun
phrases: is-a noun phrase which describes what
the subject is, has-a noun phrase which describes
what the subject has. There is a wide variety in
annotations for an attribute, and often only a sub-

POS Annotation Example template

Example utterance

alumni of value
a value degree

is-a noun
has-a noun
active verb
passive verb educated at value
adjective value
prepositional from value

value table

table [prepositional phrase] value

table that|which|who is|are [noun phrase] value people who are alumni of Stanford
table with (a|an|the) value [noun phrase]
graduated from value table that|which|who [verb phrase] value
table [passive verb phrase] value

people with a Stanford degree
people who graduated from Stanford
people educated at Stanford
Stanford people

people from Stanford

Table 2: Annotations for “alumniOf™ attribute with example templates and utterances in six POS categories, where
table and value denote the placeholders for table canonical annotations and values, respectively.

set of POS types is relevant to an attribute. It is
thus challenging, often requiring multiple rounds
of error analysis, to come up with these different
annotations manually.

4 Automatic Annotation

Our AutoQA toolkit automatically provides unam-
biguous attribute annotations for all parts of speech,
with the help of a neural paraphrasing model.

4.1 Canonical Annotation

AutoQA first derives a canonical annotation for
each table and its attributes. Where necessary, it
splits the attribute name into multiple words (e.g.
“alumniOf” turns into “alumni of). It then uses a
POS tagger to identify the category of the canonical
annotation.

The canonical annotation is used both for train-
ing and as the starting point to identify alternative
phrases for each attribute, hence it must be mean-
ingful and unambiguous. When applying AutoQA
to an existing ontology, developers can override the
table or attribute names if they are not meaningful
or they are ambiguous.

4.2 POS-based Annotation Extraction

As shown in Table 2, an attribute can be described
in various ways in different parts of speech. It is
not enough to retrieve synonyms of the canonical
annotation, as all synonyms will have the same
POS. Some synonyms may also be inappropriate
for the domain, if generated without context.

Our goal is to automatically derive all the other
POS annotations given a canonical annotation. For
example, the canonical annotation for the “alum-
niOf” attribute is “alumni of value” of POS “is-a-
noun”, as shown in the first row of Table 2. We
wish to derive other “is-a-noun’ annotations, as
well as those in other POS categories in the table.

Our solution is to synthesize questions using the
templates for the POS of the canonical annotation,

get paraphrases from a neural model, parse the
paraphrases using the templates as grammar rules,
and turn successful parses into annotations.

AutoQA first generates short example sentences
for each attribute using its canonical annotation.
We generate questions that ask for objects with
a given value of the attribute, using the grammar
templates for the POS of the canonical annotation
for the attribute. We generate up to 10 sentences
for each alternative in the grammar template, using
a different value for each one.

Second, AutoQA obtains paraphrases for the
generated sentences using a neural paraphraser
based on the BART sequence-to-sequence model
(Section 6.1). To get more diverse paraphrases, we
run 3 rounds of paraphrasing, where in each round
we paraphrase the output of the previous round. All
the words are tagged with their POS. For example,
with “people who are alumni of Stanford” as an
input, we can get paraphrases such as “people with
a Stanford degree”, as shown in the last column of
Table 2.

Third, AutoQA parses the paraphrases using the
templates (third column in Table 2) as grammar
rules. A phrase is considered a successful parse
only if the “table” and the “value” match exactly
and the POS of all placeholders match that of the
corresponding words. Correctly parsed phrases are
then turned into annotations.

Note that we generate only sentences that map to
selection operations, such as “show me people who
are alumni of Stanford”. Selection questions in-
clude a sample value, “Stanford”, for the attribute,
which is useful to provide a better context for the
paraphraser. The paraphraser can generate phrases
like “find people from Stanford”, which is trivial to
parse correctly. In contrast, values are missing in
projection questions, such as “what institution are
the people alumni of”’, which makes paraphrasing
and subsequent parsing harder. While we only para-
phrase selection questions, the annotations identi-

fied will be used for all types of questions.

4.3 Resolving Conflicts

Neural paraphrasing is imperfect and can generate
incorrect annotations. Our priority is to eliminate
ambiguity: we do not worry as much about in-
cluding nonsensical sentences in the training, as
such sentences are unlikely to appear at test time.
Consider a movie domain with both “director” and
“creator” attributes. The paraphrasing model might
generate the annotation ““creator” for “director”.
To avoid generating such conflicted annotations
within the domain, we detect annotations that ap-
pear in two or more attributes of the same type in
the database. If such an annotation shares the same
stem as one attribute name, it is assigned uniquely
to that attribute. Otherwise, it is dropped entirely.
As we train with data that is synthesized composi-
tionally, we would rather lose a bit of variety than
risk introducing ambiguity.

S Automatic Paraphrasing

Synthetic training data is good for providing cov-
erage with a large number of perfectly annotated
sentences, and to teach the neural semantic parser
compositionality. However, grammar-based syn-
thesis often results in clunky sentences and gram-
matical errors. In addition, even with 800 generic
templates, the synthesized sentences still lack natu-
ralness and variety. In particular, people often com-
press multiple concepts into simpler constructions
(sublexical compositionality (Wang et al., 2015)),
e.g. “books with at least 1 award” can be simplified
to “award-winning books”.

Capturing these linguistic phenomena in the
training data is not possible with a finite set of tem-
plates. This is why paraphrasing is critical when
training semantic parsers. Here we describe how
we approximate manual paraphrases with a neural
paraphrasing model.

5.1 Noise in Neural Paraphrasing

Using automatically generated paraphrases for
training is challenging. First, paraphrasing models
output noisy sentences, partially due to the noise
in the existing paraphrasing datasets?. We cannot

“Most large-scale paraphrasing datasets are built using
bilingual text (Ganitkevitch et al., 2013) and machine trans-
lation (Mallinson et al., 2017) or obtained with noisy heuris-
tics (Prakash et al., 2016). Based on human judgement, even
some of the better paraphrasing datasets score only 68%-84%
on semantic similarity (Hu et al., 2019a, Yang et al., 2019).

accept paraphrases that change the meaning of the
original sentence, which is represented by the log-
ical form annotation. This noise problem exists
even in human paraphrasing; Wang et al. (2015)
reports that 17% of the human paraphrases they
collected changed the logical form. Second, there
is an inherent diversity-noise trade-off when using
automatic generation. The more diverse we want
to make the outputs, the noisier the model’s output
will be. Third, the auto-paraphraser is fed with syn-
thetic sentences, which have a different distribution
compared to the paraphrase training set.

We have empirically found the following ways
in which noise is manifested:

* The output is ungrammatical or meaningless.

* The output changes in meaning to a differ-
ent but valid logical form, or rare words like
numbers and proper nouns are changed.

* The model is “distracted” by the input sen-
tence due to limited world knowledge. “I’'m
looking for the book the dark forest”, is very
different from “I’m looking for the book in
the dark forest”.

* The model outputs sentence pairs that can be
used interchangeably in general, but not in
the specific application. For example, “restau-
rants close to my home” and “restaurants near
me” have different target logical forms.

* Automatically-generated annotations are not
reviewed by a human to ensure their correct-
ness. An example is the word “grade” instead
of “stars” in the hotels domain. Further para-
phrasing these noisy sentences amplifies the
noise.

5.2 Paraphrase Filtering

How do we produce semantically correct para-
phrases and yet obtain enough variety to boost the
accuracy of the parser? Our approach is to gener-
ate high variety, and then filter out noisy sentences.
More specifically, we feed auto-paraphrased sen-
tences to a parser trained on only synthetic sen-
tences. We accept the sentences as correct para-
phrases only if this parser outputs a logical form
equal to the original logical form.

Correct paraphrases are then used to train an-
other parser from scratch, which will have a higher
accuracy on the natural validation and test sets.
The first parser can correctly parse the examples

present in the synthetic set, e.g. “I am looking for
the movies which have Tom Hanks in their actors
with the largest count of actors.”. It also general-
izes to paraphrased sentences like “I’m looking for
Tom Hanks movies with the most actors in them.”.
Paraphrased sentences like this are added to the
training set to generate a second parser. This sec-
ond parser can generalize to an even more natural
sentence like “What is the Tom Hanks movie with
the biggest cast?” This iterative process, as shown
in Fig. 1, can be repeated multiple times.

This idea is borrowed from self-training (Mc-
Closky et al., 2006; He et al., 2019), where a model
is used to label additional unlabeled data. Self-
training requires an initial good-enough model to
label data with, and optionally a filtering mecha-
nism that is more likely to remove incorrect labels
than correct labels (Yarowsky, 1995). We use a
parser trained on a synthetic dataset as our initial
good-enough model. The following two observa-
tions are the intuition behind this decision:

1. Paraphrases of a synthetic dataset are still rela-
tively similar to that set. Thus, a parser trained
on synthetic data, which delivers near perfect
accuracy for the synthetic data, has a very high
accuracy on the paraphrased data as well.

2. Unlike classification tasks, the set of valid log-
ical forms in semantic parsing is so large that
outputting the right logical form by chance is
very unlikely.

Note that this filtering scheme might throw away
a portion of correct paraphrases as well, but fil-
tering out noisy examples is more important. The
second observation ensures that the number of false
positives is low.

5.3 Coupling Auto-Annotator with
Auto-Paraphraser

Since both auto-annotation and auto-paraphrasing
use a neural paraphraser, here we contrast them and
show how they complement each other.

Auto-annotation provides alternative expres-
sions with different POS for a single attribute at
a time. The input sentences are simpler, so para-
phrases are more likely to be correct, and they are
filtered if they cannot be parsed correctly with the
grammar rules. This makes it easier to coax more
diverse expressions on the attribute from the para-
phraser without having to worry about noisy out-
puts.

Annotations extracted by the auto-annotator are
amplified as the synthesizer uses them to compose
many full sentences, which are used to train the first
parser with sufficient accuracy for self-training.

The auto-paraphraser, on the other hand, is ap-
plied on all synthesized data. It not only pro-
duces more natural alternative phrases for complex
sentences, but also generates domain-specific and
value-specific terminology and constructs. These
two tasks complement each other, as supported by
the empirical results in Section 6.2.2.

6 Experiments

In this section, we evaluate the effectiveness of
our methodology: can a semantic parser created
with AutoQA approach the performance of human-
written annotations and paraphrases? We eval-
uate on two different benchmark datasets: the
Schema2QA dataset (Xu et al., 2020) and the
Overnight dataset (Wang et al., 2015).

6.1 AutoQA Implementation

Paraphrasing Model. We formulate paraphras-
ing as a sequence-to-sequence problem and use
the pre-trained BART large model (Lewis et al.,
2019). BART is a Transformer (Vaswani et al.,
2017) neural network trained on a large unlabeled
corpus with a sentence reconstruction loss. We
fine-tune it for 4 epochs on sentence pairs from
PARABANK 2 (Hu et al., 2019a), which is a para-
phrase dataset constructed by back-translating the
Czech portion of an English-Czech parallel corpus.
We use a subset of 5 million sentence pairs with
the highest dual conditional cross-entropy score
(Junczys-Dowmunt, 2018), and use only one of
the five paraphrases provided for each sentence.
We experimented with larger subsets of the dataset
and found no significant difference. We use token-
level cross-entropy loss calculated using the gold
paraphrase sentence. To ensure the output of the
model is grammatical, during training, we use the
back-translated Czech sentence as the input and the
human-written English phrase as the output. Train-
ing is done with mini-batches of 1280 examples
where each mini-batch consists of sentences with
similar lengths?.

We use nucleus sampling (Holtzman et al., 2019)
with top-p=0.9 and generate 5 paraphrases per sen-
tence in each round of paraphrasing. We use greedy

3This reduces the number of pad tokens needed, and makes
training faster.

Restaurants People Movies Books Music Hotels Average

Attributes 25 13 16 15 19 18 17.7
of Annotations 122 95 111 96 103 83 101.7

Schema2QA Synthesized Data 270,081 270,081 270,081 270,081 270,081 270,081 270,081

Train Human Paraphrase 6,419 7,108 3,774 3,941 3,626 3,311 4,697
of Annotations 151 121 157 150 144 160 147.2

AutoQA Synthesized Data 270,081 270,081 270,081 270,081 270,081 270,081 270,081

Auto Paraphrase 280,542 299,327 331,155 212,274 340,721 285,324 291,557

Dev 528 499 389 362 326 443 424.5
Test 524 500 413 410 288 528 443.8

Table 3: Size of Schema2QA and AutoQA datasets

decoding and 4 temperatures (Ficler and Goldberg,
2017) of 0.3, 0.5, 0.7 and 1.0 to generate these
paraphrases. Note that the input dataset to each
paraphrasing round is the output of the previous
round, and we have one round for Schema2QA and
three rounds for Overnight experiments.

Semantic Parsing Model. We adopt our previ-
ously proposed BERT-LSTM model (Xu et al.,
2020) as the semantic parsing model. The model
is a sequence-to-sequence neural network that
uses a BERT pre-trained encoder (Devlin et al.,
2019), coupled with an LSTM decoder (Hochreiter
and Schmidhuber, 1997) with attention (Bahdanau
et al., 2014). The model uses a pointer-generator
decoder (See et al., 2017) to better generalize to
entities not seen during training. The model was
implemented using the Huggingface Transformers
library (Wolf et al., 2019). We use the same hyper-
parameters as Xu et al. (2020) for all experiments.
The model has approximately 128M parameters.

6.2 Applying AutoQA to Schema2QA

We first apply AutoQA to the Schema2QA
dataset, a semantic parsing dataset that targets the
ThingTalk query language, and uses Schema.org
as the database schema. Queries are performed
against structured data crawled from websites in 6
domains: restaurants (using data from Yelp), peo-
ple (from LinkedIn), hotels (from the Hyatt ho-
tel chain), books (from Goodreads), movies (from
IMDDb), and music (from Last.fm).

The Schema2QA training data set was created
using synthesis based on manual field annotations
and human paraphrasing, while its evaluation data
was crowdsourced by showing the list of attributes
to workers and asking them for natural questions.
The evaluation data contains complex questions
referring up to 6 attributes, with comparisons and
relational algebra operators: join, selection, projec-

tion, sort, and aggregates.

In our experiments, we use the Schema2QA
validation and test sets, but not the training data.
We synthesize our own training data using the
same 800 templates, and replace the manual an-
notations with our auto-annotation and the manual
paraphrases with auto-paraphrases.

For auto-annotation to work, the table and at-
tribute names must be meaningful and unambigu-
ous as discussed in Section 4. We found it neces-
sary to override the original names in only three
cases. In the restaurants domain, “starRating” is
renamed to “michelinStar” to avoid ambiguity with
“aggregateRating”. In the people domain, “address-
Locality” is renamed to “homeLocation” to avoid
confusion with “workLocation”. In the music do-
main, “musicRecording” is renamed to “song” to
better match natural language.

When applying auto-paraphrasing, we prepro-
cess the questions to replace entity placeholders
(e.g. TIME_O) with an equivalent token in natural
language (e.g. 2pm), then postprocess the outputs
to restore them. This way, the neural network does
not have to deal with these tokens which it has not
seen during its pre-training.

As shown in Table 3, AutoQA generates about
45% more attribute annotations, and produces
60 times larger paraphrase sets, compared with
the original Schema2QA training set. Although
AutoQA’s training set is larger than Schema2QA’’s,
we note that in our experiments, adding more syn-
thetic data to Schema2QA did not improve its
accuracy any further. We compare the diversity
of the two datasets using distinct-1 and distinct-2
metrics (Li et al., 2016) which measure the ratio
of distinct unigram and bigrams in the datasets.
AutoQA’s training sets have about 35% higher
distinct-1 and 60% higher distinct-2.

Model

Restaurants People Movies Books Music Hotels Average

Schema2QA (Xu et al., 2020) 69.7
Schema2QA w/o manual annotation & paraphrase 30.0
AutoQA 65.3

75.2 70.0 700 639 67.0 69.3
304 36.6 349 337 59.7 37.6
64.6 66.1 54.1 57.3 70.1 62.9

Table 4: Test accuracy of AutoQA on the Schema2QA dataset. For the hotel domain, Xu et al. (2020) only report
transfer learning accuracy, so we rerun the training with manual annotations and human paraphrases to obtain the

accuracy for hotel questions.

Restaurants People Movies Books Music Hotels Average
Schema2QA (Xu et al., 2020) 70.8 74.9 75.3 80.7 71.8 69.3 73.8
Schema2QA (w/o manual annotation & paraphrase) 33.9 32.7 35.7 39.9 37.1 61.6 40.2
AutoQA 69.5 66.1 68.0 67.6 66.9 66.6 67.4
— Auto-annotation 432 50.1 514 59.6 49.7 67.3 53.5
— Auto-paraphrase 62.1 50.5 62.7 61.5 58.6 59.1 59.1
— Paraphrase filtering 50.4 48.0 55.0 441 53.5 44.7 49.3

Table 5: Ablation study on Schema2QA development sets.

6.2.1 Evaluation

Our evaluation metric is logical form accuracy:
the logical form produced by our parser must ex-
actly match the one in the test set. As shown in
Table 4, AutoQA achieves an average accuracy of
62.9% in six domains, only 6.4% lower compared
to the models trained with manual attribute anno-
tations and human paraphrases. The difference is
mainly because paraphraser fails to generate a few
common phrases in some cases. For example, it
fails derive “employee” or “employed by” from the
canonical annotation “works for”, which is quite
common in the evaluation set. Compared with
the baseline models trained with data generated by
Schema2QA but without manual annotation and hu-
man paraphrase, AutoQA improves the accuracy by
25.3%. This result is obtained on naturally sourced
test data, as opposed to paraphrases. This shows
that AutoQA is effective for bootstrapping question
answering systems for new domains, without any
manual effort in creating or collecting training data.

6.2.2 Ablation Study

We conduct an ablation study on the development
set to evaluate how each part of our methodology
contributes to the accuracy. We subtract different
components from AutoQA, generate the training
data, and run the experiment with the same hyper-
parameters. When paraphrase filtering is removed,
we still use simple string matching to remove erro-
neous paraphrases where entities and numbers in
the utterance do not match the logical form.

As shown in Table 5, AutoQA reaches an overall
accuracy of 67.4%, 6.4% lower than models trained

Each “~” line removes only that feature from AutoQA.

with human annotations and human paraphrases.
AutoQA outperforms the baseline trained on syn-
thetic data generated from the canonical annotation
by 27.2%. This indicates that AutoQA is an ef-
ficient and cost-effective replacement for manual
annotation and paraphrasing.

On average, applying only auto-paraphrase on
synthetic data based on canonical annotations
without auto-annotation achieves 53.5%, which
is 13.9% lower than the full AutoQA. Applying
only auto-annotation without auto-paraphrase ob-
tains 59.1%, and is 8.3% lower than AutoQA. This
shows that the two components of AutoQA comple-
ment each other to achieve the best performance.

If auto-paraphrase is used without filtering, not
only does it not improve the accuracy, but also the
average accuracy drops by 18%. This shows that
without filtering, even a paraphraser with a large
pre-trained neural model like BART cannot be used
for semantic parsing due to noisy outputs.

6.3 Applying AutoQA to Overnight

To evaluate if the AutoQA methodology general-
izes to different types of databases, logical forms,
and templates, we apply AutoQA on the well-
known Overnight benchmark. Overnight is a se-
mantic parsing dataset with questions over a knowl-
edge base with very few entities across 8 domains.
The dataset was constructed using paraphrasing;
both training and test sets are paraphrased from the
same set of synthetic sentences.

We train the BERT-LSTM model on data syn-
thesized from Overnight templates with both auto-
annotation and auto-paraphrase. Auto-annotation

Model Basketball Blocks Calendar Housing Publications Recipes Restaurants Social — Average
Only in-domain human data

Cao et al. (2019) - 880 - 652 - 80.7| - 76.7| - 80.7 - 824| - 840 | - 838 - 802
Chen et al. (2018) - 882 - 614 - 815 - 741| - 807 - 829 - 807 | - 821| - 790
Damonte et al. (2019) 69.6 - (251 - |435 - |296 - [329 - 583 - [373 - |512 - |434 -
BERT-LSTM 84.1 87.5|42.6 62.4(58.3 79.8(48.7 70.4|64.6 76.4 |68.5 75.9(55.4 82.8 [70.4 81.9|61.6 75.0
Only out-of-domain human data

Herzig and Berant (2018b) - - - 283| - 536| - 524| - 553 - 602 - 6L7| - 624]| - 534
No human data

Marzoev et al. (2020) 47 - |27 - |32 - |36 - |34 - 49 - |43 - 28 - |37 -
BERT-LSTM (Synthetic only) 29.7 31.5(27.6 37.8|28.0 34.5|18.0 32.8(28.0 37.3 [40.7 48.6|34.9 47.0 |16.1 24.2(27.9 494
BERT-LSTM w/ AutoQA (ours) |70.1 73.9|38.4 54.9158.9 72.6/51.9 70.9|56.5 74.5 |64.4 68.1|57.5 78.6 |47.2 61.5|55.6 69.8

Table 6: Logical form accuracy (left) and answer accuracy (right) percentage on the Overnight test set. Numbers are
copied from the cited papers. We report the numbers for the BL-Att model of Damonte et al. (2019), Att+Dual+LF
of Cao et al. (2019), ZEROSHOT model of Herzig and Berant (2018b), and the Projection model of Marzoev et al.
(2020). Herzig and Berant (2018b) do not evaluate on the Basketball domain.

is limited to two parts of speech, since Overnight
uses a very simple template set to synthesize train-
ing examples, with only placeholders for active
verb phrase and noun phrase. We use the standard
train/test split and following previous work, use
20% of the human paraphrases from the original
training set for validation, so that validation and
test sets are from the same distribution.

We evaluate both logical form accuracy and an-
swer accuracy, which checks whether the answer
retrieved from the knowledge base matches the
gold answer. The model outputs a ranked list of
logical forms for each input question using beam
search with 25 beams, and chooses the first output
that is syntactically valid. Other than this, all mod-
els and hyperparameters are the same as Section 6.

In Table 6, we compare our technique to other
approaches that do not use in-domain human data.
They are either synthetic-only (Marzoev et al.,
2020) or use human data from other Overnight do-
mains (Herzig and Berant, 2018b). For reference,
we also include two of the best-performing models
that use in-domain human data (Cao et al., 2019;
Chen et al., 2018)*.

Whereas Schema2QA dataset has naturally
sourced evaluation and test data, Overnight eval-
uates on human paraphrase data. Evaluating with
paraphrase data is not as meaningful, and makes the
benchmark easier for models trained with human
paraphrase data (Campagna et al., 2019). Nonethe-
less, AutoQA achieves an average logical form
accuracy of 55.6% and answer accuracy of 69.8%,
which is only 5.2% lower than the same parser

“These are the best-performing models among those that
use training data from a single domain, and do not do transfer-
learning from other domains or datasets.

trained with human paraphrases, and matches its
performance in the housing domain. Compared to
other zero-shot models trained with no in-domain
data, AutoQA outperforms the state of the art by
18.6% and 16.4% on logical form accuracy and
answer accuracy, respectively. This shows that
by generating diverse and natural paraphrases in
domain, AutoQA can reach comparable perfor-
mance with models with human training data, and
is much more accurate compared to other zero-shot
approaches.

7 Discussion

In this work, we propose AutoQA, a methodology
and a toolkit to automatically create a semantic
parser given a database. We test AutoQA on two
different datasets with different target logical forms
and data synthesis templates. On both datasets,
AutoQA achieves comparable accuracy to state-of-
the-art QA systems trained with manual attribute
annotation and human paraphrases.

AutoQA relies on a neural paraphraser trained
with an out-of-domain dataset to generate training
data. We suspect the methodology to be less effec-
tive for domains full of jargon. Even for common
domains, AutoQA sometimes failed to generate
some common phrases. Further improvement on
neural paraphraser is needed to generate more di-
verse outputs. Future work is also needed to han-
dle attributes containing long free-form text, as
AutoQA currently only supports database opera-
tions without reading comprehension.

Acknowledgements

This work is supported in part by the National Sci-
ence Foundation under Grant No. 1900638 and the

Alfred P. Sloan Foundation under Grant No. G-
2020-13938.

References

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI, pages 7383-7390. AAAI Press.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Giovanni Campagna, Agata Foryciarz, Mehrad Morad-
shahi, and Monica S Lam. 2020. Zero-shot
transfer learning with synthesized data for multi-
domain dialogue state tracking. arXiv preprint
arXiv:2005.00891.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S. Lam. 2019. Genie:
A generator of natural language semantic parsers for
virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019,
pages 394-410, New York, NY, USA. ACM.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai
Yu. 2019. Semantic parsing with dual learning. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 51-64.

Shuaichen Chang, Pengfei Liu, Yun Tang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2019. Zero-shot
text-to-SQL learning with auxiliary task. arXiv
preprint arXiv:1908.11052.

Bo Chen, Le Sun, and Xianpei Han. 2018. Sequence-
to-action: End-to-end semantic graph generation for
semantic parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 766—
777, Melbourne, Australia. Association for Compu-
tational Linguistics.

Marco Damonte, Rahul Goel, and Tagyoung Chung.
2019. Practical semantic parsing for spoken lan-
guage understanding. Proceedings of the 2019 Con-
ference of the North.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

10

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. Proceedings of the Workshop on Stylistic Vari-
ation.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL-HLT, pages
758764, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2017. A deep generative frame-
work for paraphrase generation. arXiv preprint
arXiv:1709.05074.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio
Ranzato. 2019. Revisiting self-training for
neural sequence generation. arXiv preprint
arXiv:1909.13788.

Jonathan Herzig and Jonathan Berant. 2018a. Decou-
pling structure and lexicon for zero-shot semantic
parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1619-1629.

Jonathan Herzig and Jonathan Berant. 2018b. Decou-
pling structure and lexicon for zero-shot semantic
parsing. Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv: 1904.09751.

J. Edward Hu, Abhinav Singh, Nils Holzenberger, Matt
Post, and Benjamin Van Durme. 2019a. Large-
scale, diverse, paraphrastic bitexts via sampling and
clustering. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 44-54, Hong Kong, China. Associ-
ation for Computational Linguistics.

Zhiting Hu, Bowen Tan, Russ R Salakhutdinov, Tom M
Mitchell, and Eric P Xing. 2019b. Learning data
manipulation for augmentation and weighting. In

Advances in Neural Information Processing Systems,
pages 15738-15749.

https://aaai.org/ojs/index.php/AAAI/article/view/6233
https://aaai.org/ojs/index.php/AAAI/article/view/6233
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/n19-2003
https://doi.org/10.18653/v1/n19-2003
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/w17-4912
https://doi.org/10.18653/v1/w17-4912
https://doi.org/10.18653/v1/w17-4912
http://cs.jhu.edu/~ccb/publications/ppdb.pdf
http://cs.jhu.edu/~ccb/publications/ppdb.pdf
http://arxiv.org/abs/1709.05074
http://arxiv.org/abs/1709.05074
http://arxiv.org/abs/1909.13788
http://arxiv.org/abs/1909.13788
https://doi.org/10.18653/v1/d18-1190
https://doi.org/10.18653/v1/d18-1190
https://doi.org/10.18653/v1/d18-1190
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.18653/v1/K19-1005
https://doi.org/10.18653/v1/K19-1005
https://doi.org/10.18653/v1/K19-1005

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers).

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics.

Marcin Junczys-Dowmunt. 2018. Dual conditional
cross-entropy filtering of noisy parallel corpora. In
Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, pages 888895,
Belgium, Brussels. Association for Computational
Linguistics.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452-457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516-1526.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. arXiv preprint arXiv:2003.02245.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objec-
tive function for neural conversation models. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
110-119.

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 881-893, Valencia, Spain. Association
for Computational Linguistics.

Alana Marzoev, Samuel Madden, M. Frans Kaashoek,
Michael Cafarella, and Jacob Andreas. 2020. Unnat-
ural language processing: Bridging the gap between

11

synthetic and natural language data. arXiv preprint
arXiv:2004.13645.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 152—
159, New York City, USA. Association for Compu-
tational Linguistics.

Mehrad Moradshahi, Giovanni Campagna, Sina J. Sem-
nani, Silei Xu, and Monica S. Lam. 2020. Localiz-
ing open-ontology QA semantic parsers in a day us-
ing machine translation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association
for Computational Linguistics.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2923-2934, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. arXiv preprint
arXiv:1909.05855.

Aurko Roy and David Grangier. 2019. Unsupervised
paraphrasing without translation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6033-6039, Florence,
Italy. Association for Computational Linguistics.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083.

Sina J. Semnani, Madhulima Pandey, and Manish
Pandey. 2019. Domain-specific question answering
at scale for conversational systems. 3rd NeurlPS
Conversational AI Workshop.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155.

https://doi.org/10.18653/v1/n18-1170
https://doi.org/10.18653/v1/n18-1170
https://doi.org/10.18653/v1/p16-1002
https://doi.org/10.18653/v1/p16-1002
https://doi.org/10.18653/v1/W18-6478
https://doi.org/10.18653/v1/W18-6478
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
http://arxiv.org/abs/2003.02245
http://arxiv.org/abs/2003.02245
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://www.aclweb.org/anthology/E17-1083
https://www.aclweb.org/anthology/E17-1083
http://arxiv.org/abs/2004.13645
http://arxiv.org/abs/2004.13645
http://arxiv.org/abs/2004.13645
https://www.aclweb.org/anthology/N06-1020
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.3115/v1/p15-1142
https://www.aclweb.org/anthology/C16-1275
https://www.aclweb.org/anthology/C16-1275
https://doi.org/10.18653/v1/P19-1605
https://doi.org/10.18653/v1/P19-1605
http://alborz-geramifard.com/workshops/neurips19-Conversational-AI/Papers/54.pdf
http://alborz-geramifard.com/workshops/neurips19-Conversational-AI/Papers/54.pdf

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332—1342.
Association for Computational Linguistics.

Nathaniel Weir, Prasetya Utama, Alex Galakatos, An-
drew Crotty, Amir Ilkhechi, Shekar Ramaswamy,
Rohin Bhushan, Nadja Geisler, Benjamin Hittasch,
Steffen Eger, Ugur Cetintemel, and Carsten Binnig.
2020. DBPal: A fully pluggable nl2sql training
pipeline. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD °20, page 2347-2361, New York,
NY, USA. Association for Computing Machinery.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019. Conditional BERT contex-
tual augmentation. Computational Science — ICCS
2019, page 84-95.

Silei Xu, Giovanni Campagna, Jian Li, and Monica S
Lam. 2020. Schema2QA: High-quality and low-
cost Q& A agents for the structured web. In Proceed-
ings of the 29th ACM International Conference on
Information and Knowledge Management.

Qian Yang, Zhouyuan Huo, Dinghan Shen, Yong
Cheng, Wenlin Wang, Guoyin Wang, and Lawrence
Carin. 2019. An end-to-end generative architec-
ture for paraphrase generation. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3132-3142, Hong Kong,
China. Association for Computational Linguistics.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189—196, Cambridge, Mas-
sachusetts, USA. Association for Computational
Linguistics.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V.
Le. 2018a. QANet: Combining local convolution
with global self-attention for reading comprehen-
sion. ArXiv, abs/1804.09541.

12

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018b. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911-3921.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

A The Cost of AutoQA

The only form of cost in AutoQA’s methodology is
compute cost. Here we mention more details with
regards to that. To use AutoQA for a new domain,
the following steps will have to be executed to
generate the final training set. Numbers are for
the Schema2QA dataset, and batch sizes are set to
maximize GPU utilization.

* Automatic annotation: This step runs infer-
ence using the BART paraphraser model as
introduced in Section 6.1, it takes less than 10
minutes for each domain.

Template-based data synthesizer: This step
synthesize data with annotation generated by
auto-annotator. Depending on the domain,
it takes between 3 to 5 hours on an AWS
m5.4xlarge machine (16 vCPU and 64 GiB of
memory).

Training a parser with the synthetic dataset to
use as filter: We train the BERT-LSTM model
for 4000 iterations only, as we empirically
observed that training more than that does not
improve the quality of the filter. This takes
less than half an hour on an AWS p3.2xlarge
machine (16GB V100 GPU, 8vCPUs, 61 GiB
of memory).

Automatic paraphrasing and filtering: This
step uses the fine-tuned BART large model,
which has about 400M parameters, to generate
5 paraphrases per input, and then the BERT-
LSTM parser, which has 128M parameters, to
filter those paraphrases. Note that no training
is done in this step. In our experiments, this
step takes less than 4 GPU-hours.

Training of the semantic parser: Similar to
training the filter, but we train for 60000 itera-
tions, and it takes less than 6 GPU-hours.

https://doi.org/10.3115/v1/p15-1129
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1007/978-3-030-22747-0_7
https://doi.org/10.1007/978-3-030-22747-0_7
https://doi.org/https://doi.org/10.1145/3340531.3411974
https://doi.org/https://doi.org/10.1145/3340531.3411974
https://doi.org/10.18653/v1/D19-1309
https://doi.org/10.18653/v1/D19-1309
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684

The approximate total per-domain cost of
Schema2QA experiments using Amazon Web Ser-
vices is $36.

13

