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bulk-scale nanostructured materials and an understanding and 
improvement of their microstructural stability. In this context, the pre
sent fundamental research provides information on the significance of 
grain refinement in the development of the Pb–Sn alloy for a wide range 
of applications. 

This study was initiated specifically to investigate the microstruc
tural evolution occurring in a Pb-62% Sn (wt. %) eutectic alloy during 
HPT processing and subsequent self-annealing through storage at room 
temperature (RT). This alloy is used extensively for soldering in elec
tronic packaging and in the assembly of printed circuit boards [16,17] 
but it has a low absolute melting temperature, Tm, of only 456 K so that 
RT corresponds to ~0.65Tm. Nevertheless, the dual phase structure 
tends to inhibit grain growth and this provides a potential for achieving 
good superplastic elongations in tensile testing at room temperature 
[18–20] and exceptionally high elongations at 413 K of 3060% [21] and 
4850% [22]. 

The Pb-62% Sn alloy consists of a β-Sn phase having a body-centered 
tetragonal (BCT) crystal structure and a Pb-rich phase that is normally 
either spheroidal or lamellar in shape depending on the cooling rate 
during solidification and the heat treatment history. Numerous in
vestigations of the solidification of Pb–Sn solder balls have shown that 
the Sn-rich phase grows by a dendritic mechanism and the individual Sn 
dendrites may grow to lengths of up to hundreds of micrometers [23, 
24]. This is due to undercooling which produces rapid dendritic growth 
so that only a few Sn grains are formed. In practice, the Sn grains 
commonly form solidification twins with twinning planes of {101} and 
{301} having a common direction of <100> and at twin angles of 57.2◦

and 62.8◦, respectively [25,26]. Other special grain boundaries having 
high fractions were also reported for the deformed microstructures in 
Sn-based alloys [27]. It should be noted that these observations are 
based primarily on solder balls which generally have sizes below 1 mm 
but there is no significant information on the microstructures of bulk Sn 
alloys and the evolution of microstructures and the formation of special 
boundaries after processing by HPT. A recent report described elemental 
and spinodal decompositions in a similar type of two-phase alloy, Al-30 
mol% Zn with a low absolute melting temperature, where a nano-sized 
lamellar structure occurred in the solution-treated sample but this was 
fragmented by HPT processing leading to a significant loss of strength 
[28]. 

It is anticipated that processing by HPT will have a significant effect 
on the Pb–Sn alloy since RT is above 0.5Tm so that dynamic recrystal
lization (DRX) should be activated. Earlier investigations demonstrated 
the influence of hydrostatic pressure on grain boundary mobility where 
the pressure was introduced by atmospheric pressure in a fluid chamber 
using a pressure control device instead of through the hydrostatic 
pressure from massive anvils as in HPT and the samples were annealed 
at elevated temperatures to activate boundary migration in bicrystals of 
Sn [29] and Al [30]. Evidence was presented earlier that the 
self-annealing behavior in the Pb–Sn alloy occurs immediately after HPT 
processing [31] and there are also extensive recent results showing the 
effect of self-annealing at room temperature on the microstructural 
characteristics and the mechanical properties of a Bi-42% Sn eutectic 
alloy processed by HPT [32]. Accordingly, the present investigation 
provides a comprehensive evaluation of microstructural evolution in the 
Pb–Sn alloy after HPT processing followed by self-annealing for periods 
of up to 24 days. 

2. Experimental material and procedures 

The experiments were performed using a Pb-62% Sn (wt.%) eutectic 
alloy which was received as an as-cast billet having dimensions of 34 ×
20 × 15 mm3. The initial material contained a binary microstructure 
with Pb-rich and Sn-rich phases and the mean linear intercept grain size 
was determined as ~2.5 μm by measuring both phases. Further details of 
the alloy were given earlier [33]. 

The alloy was initially machined into discs having thicknesses of 

~1.2–1.5 mm and both sides of each disc were then carefully polished to 
give HPT disc samples having initial thicknesses of ~0.80 mm. The 
processing by HPT was conducted at RT under quasi-constrained con
ditions in which there is a small outflow of material around the pe
riphery of the disc during processing [34,35]. Each disc was processed 
for a total number of revolutions, N, of 1 turn under an applied load of 
~24 ton corresponding to an applied compressive pressure of P = 3.0 
GPa. After HPT processing, the discs were removed from the HPT facility 
and stored at RT for various periods up to a maximum of 24 days in order 
to examine the evolution during self-annealing. 

The microstructures of the as-cast and the HPT-processed samples 
were recorded by electron backscatter diffraction (EBSD) using a 
JSM6500F thermal field emission scanning electron microscope (SEM) 
equipped with a charge-coupled device (CCD) camera for acquiring 
electron diffraction patterns. For sample preparation, the discs were 
subjected to careful grinding and polishing with abrasive papers and 
diamond paste. All polished discs were etched for ~5 s in a solution of 
25 ml H2O, 5 ml HCl with a concentration of 37% and 5 g of NH4NO3 to 
remove any residual stresses introduced during polishing. Orientation 
imaging microscopy (OIM) maps and SEM images of the same regions 
having sizes of 27 × 15 μm2 located near the edge of the disc were 
recorded both immediately after the HPT processing and after 2, 7 and 
24 days of storage at RT. In order to easily find the same location on the 
disc for each separate observation, the position was carefully defined by 
using an embedded dust particle as a reference point. The EBSD patterns 
were collected using step sizes for the as-cast and HPT-processed sam
ples of 0.3 and 0.15 μm, respectively, and this was followed by a clean- 
up procedure removing less than 10% of the total points measured. In
formation on the grain boundary misorientation angles were obtained 
from OIM maps covering larger scan areas of 45 × 35 μm2. 

Detailed microstructural observations of the as-cast and the HPT 
specimens stored at RT were obtained by transmission electron micro
scopy (TEM) using a Cs-corrected JEOL JEM-2100F with an accelerating 
voltage of 200 kV. All TEM specimens were prepared by an in situ lift-out 
technique using a Klocke Nanotechnik micro-manipulator in a Tescan 
LYRA 1 focused ion beam (FIB) facility. Since the Pb–Sn alloy is 
exceptionally soft and has a low melting temperature, it was necessary to 
perform the FIB milling with extreme care to avoid any extraneous 
damage such as the falling of the Pb phase from the specimens. An initial 
rough milling was conducted at 30 kV and 5 nA and this was followed by 
a final thinning at 5 kV and 50 pA. The chemical compositions of both 
the Sn-rich and the Pb-rich phases were examined using an Oxford In
struments silicon drift detector (SDD) in energy-dispersive X-ray spec
troscopy (EDS) operating in the scanning TEM (STEM) mode. EDS maps 
were developed with the Pb and Sn assigned different colours. 

3. Experimental results 

3.1. Microstructure of the as-cast alloy 

A typical SEM image of the Pb–Sn alloy in the as-cast condition is 
shown in Fig. 1(a) where the primary colours of light grey and dark grey 
correspond to the Pb-rich and the Sn-rich phases, respectively. Most 
investigations of this alloy generally simplify the microstructure as a 
mixture of the two phases [18–20] but in practice the microstructure is 
more complex. Thus, in Fig. 1(a) this inherent complexity becomes 
apparent by marking additional boundaries by red dashed lines which 
thereby divide the microstructure into several large domains each 
having many Sn-rich grains and with the Pb-phase having both equiaxed 
and lamellar shapes. The existence of these domains was confirmed by 
performing EBSD to identify the dominant orientation components 
within each domain, as shown in Fig. 1(b) where the phase map of the 
same area as in Fig. 1(a) depicts the Pb-rich phase in red and the Sn-rich 
phase in blue and there is a clear confirmation of the two-phase 
microstructure. 

Fig. 1(c) shows the OIM image of the Sn grains in Fig. 1(a and b) and 
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higher than RT (331 K, 58 ◦C) of ~120 nm which is very much below the 
measured length. This demonstrates that it is more likely that the large- 
sized Pb-rich phase is deformed and stretched by the plastic deformation 
introduced by HPT and the surface area is therefore significantly 
increased. During storage, and in order to reduce the surface energy, the 
Pb-rich phase forms a more spheroidal shape in stage I and then re-joins 
a nearby Pb-phase as shown in stage II of Fig. 8. Thus, the Pb phase 
probably goes along the region boundaries where there is poor adhesion 
and sufficient space but nevertheless the exact mechanism requires a 
more detailed investigation. 

5. Summary and conclusions 

1. Measurements by EBSD on an as-cast Pb-62% Sn eutectic alloy 
suggest that the microstructure is divided into large domains with each 
representing a nucleus during solidification. Within each domain, there 
are three major orientations with a twin relationship of 62.8◦<100>
which is termed a sixfold cyclic twin. A large fraction of LAGBs is formed 
during solidification to accommodate the misfits of the sixfold cyclic 
twins. 

2. Discs of the Pb–Sn alloy were processed by HPT for 1 turn at RT. It 
is demonstrated that the imposition of a high pressure has a significant 
effect on grain boundary migration. Specifically, there is very little 
mobility of LAGBs, the mobility of random HAGBs is not affected but the 
mobility of special grain boundaries of Ʃ21 at 71◦ is greatly favoured 
during processing by HPT. This is associated with a migration mecha
nism with fewer atoms transited each time and therefore a requirement 
for a lower activation volume in the presence of high pressure compared 
with other types of boundaries. 

3. The migration of dislocation-twin boundaries near 62.8◦<100>
was observed to be favourable during self-annealing after the high 
pressure was removed. The stress state on the dislocation-twin bound
aries was conducive to their migration and this explains the fast rate of 
grain growth for grains having these boundaries. 

4. The solubility of Sn in the Pb-rich phase was significantly 
improved due to large numbers of mobile vacancies produced by the 
HPT processing so that a supersaturated state was formed immediately 
after HPT processing. Nevertheless, this supersaturated state was not 
stable at RT and decomposition occurred to separate Sn and Pb in the Pb- 
rich phase through the occurrence of lattice diffusion. The subsequent 
rejoining of Pb-rich phases during self-annealing appears to be associ
ated with a reduction in surface energy rather than by lattice diffusion. 
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