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ABSTRACT
We study the stationary points of the hierarchical three body problem in the planetary limit (m1, m2 � m0) at both the
quadrupole and octupole orders. We demonstrate that the extension to octupole order preserves the principal stationary points
of the quadrupole solution in the limit of small outer eccentricity e2 but that new families of stable fixed points occur in both
prograde and retrograde cases. The most important new equilibria are those that branch off from the quadrupolar solutions and
extend to large e2. The apsidal alignment of these families is a function of mass and inner planet eccentricity, and is determined
by the relative directions of precession of ω1 and ω2 at the quadrupole level. These new equilibria are also the most resilient to
the destabilizing effects of relativistic precession. We find additional equilibria that enable libration of the inner planet argument
of pericentre in the limit of radial orbits and recover the non-linear analogue of the Laplace–Lagrange solutions in the coplanar
limit. Finally, we show that the chaotic diffusion and orbital flips identified with the eccentric Kozai–Lidov mechanism and its
variants can be understood in terms of the stationary points discussed here.

Key words: methods: analytical – celestial mechanics – planets and satellites: dynamical evolution and stability.

1 IN T RO D U C T I O N

The application of the hierarchical three-body problem to planetary
systems has received significant attention over the last decade,
motivated by the possibility that planets discovered in short-period
orbits (Mayor & Queloz 1995; Dawson & Johnson 2018) may be the
result of high eccentricities generated by special classes of solutions
of the hierarchical problem (Innanen et al. 1997; Wu & Murray 2003;
Fabrycky & Tremaine 2007; Wu, Murray & Ramsahai 2007; Veras &
Ford 2010; Naoz et al. 2011; Naoz, Farr & Rasio 2012; Naoz et al.
2013a; Naoz 2016).

A related question is the source of the high eccentricities observed
in exoplanet systems in general (Marcy et al. 1999, 2005; Udry &
Santos 2007). Whatever the original mechanism for eccentricity
excitation is, only a subset of planetary systems are expected to
undergo the extreme eccentricity growth that would enable the tidal
dragdown of planets to short periods. The remainder of the population
is expected to remain in a configuration set in place by the original
eccentricity excitation. In some cases, this may be reflected in mean-
motion resonances, but many systems will exhibit oscillations in
eccentricity and inclination modulated by the secular interactions
between the planetary orbits.

The exoplanetary systems are complex dynamical systems that can
exhibit a range of phenomena, including apsidal and nodal circulation
and libration and resonances between various periodicities in the sys-
tem. One way to organize this information is to study the stationary
points of the dynamical system and to classify the resulting equilibria
in terms of their stability. Several studies have sought to understand
how observed planetary systems fall within the range of available
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equilibria (Libert & Henrard 2006, 2007; Michtchenko, Ferraz-
Mello & Beaugé 2006; Libert & Tsiganis 2009; Volpi, Roisin &
Libert 2019). We wish to examine the full range of stationary points
relevant to the hierarchical secular problem, over the full range of
mass ratio and mutual inclinations, extending extant results such as
those by Migaszewski & Goździewski (2009) (limited to mass ratios
of order unity) and Migaszewski & Goździewski (2011) (limited to
prograde mutual inclinations). Our goal is to better understand the
relationship between observed systems and the dynamical pathways
by which systems can evolve.

In Section 2, we will review prior work on the stationary points of
the hierarchical problem at quadrupolar order, and in Section 3, we
will extend this to the octopolar order. We will examine the effect of
corrections due to relativistic precession in Section 4 and classify the
stability of the identified stationary points in Section 5. In Section 6,
we will frame several well-known features of the dynamics in terms
of the identified stationary points and summarize the conclusions in
Section 7.

2 QUA D RU P O L A R F I X E D PO I N T S

In order to establish our framework, we review here the stationary
points of the hierarchical three body problem as described by the
Hamiltonian expanded to quadrupole order in α12 = a1/a2, the
ratio of the semimajor axes of the inner and outer planets (Kozai
1962; Harrington 1968; Lidov & Ziglin 1976; Ferrer & Osacar
1994). Adopting the formulation from Naoz (2016), the equations of
motion for the inner planet eccentricity, e1, and the inner argument
of perihelion, ω1, are

ė1 = 30C

√
1 − e2

1

(
1 − θ2

)
e1 sin 2ω1, (1)
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Table 1. Classification of the quadrupolar stationary points.

Name Orbit μ12α
1/2
12 /

√
1 − e2

2 Comments

Q1 Retrograde >2 Saddle point
Q+

2 Prograde All Fixed point
Q−

2 Retrograde All Fixed point
QC Both All Saddle point
QR Polar All Saddle point
Q|| Retrograde >1.8 Saddle point

ω̇1 = 6C√
1 − e2

1

[
4θ2 + (

1 − θ2 − e2
1

)
(5 cos 2ω1 − 1)

+μ12α
1/2
12

√
1 − e2

1√
1 − e2

2

θ
(
2 + 3e2

1 − 5e2
1 cos 2ω1

)]
, (2)

where C is a constant that depends on the masses and semimajor
axes and θ = cos itot, where itot is the relative inclination of the inner
and outer orbital planes. The constant μ12 = m1/m2 is the mass ratio
between the inner and outer planet. This is the limiting expression in
the planetary case, where m1 and m2 are much less massive than the
central body m0. In the more general case, μ12 contains a prefactor
m0(m0 + m1 + m2)1/2/(m0 + m1)3/2.

The stationary points of the problem are found by solving for
ė1 = 0 and ω̇1 = 0 simultaneously. The fact that the argument of
periastron of the outer planet – ω2 – does not appear here (the ‘happy
coincidence’ of Lidov & Ziglin (1976)) means that these two criteria
are sufficient. A finite value of e2 will not affect the dynamics but
can parametrize the solutions.

Examination of equation (1) establishes several possible branches
of solution. The most obvious are for ω1 = 0 (we will call this case
Q1) and ω1 = π /2 (we will call this case Q2). However, there are
also a set of limiting cases that may also apply. This equation is also
satisfied in the case of circular (e1 = 0 – case QC), radial (e1 = 1 –
case QR), or coplanar (θ = ±1 – case Q||). Let us discuss each in
turn (Table 1 presents a summary).

2.1 Case Q1: ω1 = 0

By setting ω1 = 0 in equation (2), the condition for a stationary point
is

θ = − 2

μ12α
1/2
12

√
1 − e2

2√
1 − e2

1

. (3)

We see that this family of stationary points only applies for retrograde
orbits (θ < 0 always) and only for large enough mass ratios, since θ

> −1 implies μ12α
1/2
12 > 2 for e1 = e2 = 0, which is when the family

of stationary points first manifests itself.

2.2 Case Q2: ω1 = π /2

In this case, setting ω̇1 = 0 yields a quadratic solution for θ in terms
of e1:

θ = μ12α
1/2
12

10

(
1 + 4e2

1

) √
1 − e2

1√
1 − e2

2

×
⎡
⎣−1 ∓

(
1 + 60

(
1 − e2

2

)
μ2

12α12

(
1 + 4e2

1

)2

)1/2
⎤
⎦ . (4)

This condition defines the stationary point corresponding to the well-
known Kozai–Lidov librations (Kozai 1962; Lidov 1962). The low-
mass (μ12 → 0) limit asymptotes to the solution from the original
(inner test particle) formulation by Kozai and Lidov:

θ = ±
√

3

5

(
1 − e2

1

)1/2
. (5)

In the opposite limit of large μ12, this family of stationary points
becomes asymmetric and the prograde and retrograde branches have
different asymptotes, namely

θ ∼ 3

μ12α
1/2
12

√
1 − e2

1

1 + 4e2
1

(
1 − e2

2

)
(prograde), (6)

which tends to polar orbits (regardless of e1) in the limit of an outer
test particle (Ziglin 1975), and

θ ∼ −1

5
μ12α

1/2
12 l

(
1 + 4e2

1

) √
1 − e2

1√
1 − e2

2

(retrograde), (7)

which becomes unphysical (because μ12 is large) unless e1 is close
enough to radial. Thus, the retrograde stationary points only exist for
almost radial orbits in the large mass ratio limit.

Given this asymmetry at high mass ratios, we will adopt separate
labels for the prograde (Q+

2 ) and retrograde (Q−
2 ) parts of the

stationary point family.

2.3 Case QC: e1 = 0

An alternative path to satisfy ė1 = 0 is to set e1 = 0 in equation (1).
In this case, it does not impose a condition on ω1, as in the previous
two sections. Instead, we must constrain ω1 by setting equation (2)
to zero, which yields

cos 2ω1 = 1

5

[
1 − 2θ

1 − θ2

(
2θ + μ12α

1/2
12√

1 − e2
2

)]
. (8)

We will discuss the meaning of this equation in Section 2.7, but it is
worth noting here that setting cos 2ω1 = 1 yields the same equation
as the circular limit of equation (3), and setting cos 2ω1 = −1 yields
the same equation as the circular limit of equation (4).

2.4 Case QR: e1 = 1

To satisfy ω̇1 = 0 for e1 = 1, we require both θ = 0 and ω1 = 0 or π .
This case is therefore a very localized stationary point – in the limit
of polar, radial orbits.

2.5 Case Q||: θ = ±1

Setting ė1 = 0 and ω̇1 = 0 in equations (1) and (2), in the prograde,
coplanar (θ = 1) case, we do not find any any physical solutions. For
the case θ = −1, these equations yield the condition

cos 2ω1 = 1

5e2
1

4 + e2
1 − μ12α

1/2
12

√
1 − e2

1

(
2 + 3e2

1

)
/
√

1 − e2
2

1 − μ12α
1/2
12

√
1 − e2

1/
√

1 − e2
2

.

(9)

This equation yields physically realistic solutions (|cos 2ω1| < 1) for
μ12α

1/2
12 > 1.8 and has the same e1 → 0 limit as case Q1, suggesting

a common link between these cases.
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1684 B. M. S. Hansen and S. Naoz

Figure 1. The solid curves show the stationary point solutions Q1, Q+
2 , and

Q−
2 for the case μ12α

1/2
12 = 2.2. The two dashed lines are the special case

solutions QC and Q||, while the large solid point at (e1, θ ) = (1, 0) is the

special case QR. The dotted lines indicate trajectories of constant θ

√
1 − e2

1
– the horizontal co-ordinate in fig. B1. Each point in fig. B1 is therefore
labelled with any stationary points intersected by the corresponding dotted
trajectory.

2.6 Precession of the outer body

Although the evolution of the system, to quadrupolar order, does not
depend on ω2, this variable will come into play when we extend
our analysis to octupole order. Therefore, the condition ω̇2 = 0, at
quadrupolar order, will become relevant. In the case of ω1 = π /2,
this leads to the condition

2θ
(
1 + 4e2

1

) + μ12α
1/2
12

√
1 − e2

1

1 − e2
2

× [
2 + 3e2

1 + (
5θ2 − 3

) (
1 + 4e2

1

)] = 0, (10)

which has the solution

θ = 1

5μ12α
1/2
12

√
1 − e2

2

1 − e2
1

×
[
−1 ±

(
1 + 5μ2

12α12
1 − e2

1

1 − e2
2

1 + 9e2
1

1 + 4e2
1

)1/2
]

. (11)

This condition becomes relevant in the limit of large μ12, so the
asymptotic solution is

θ2 = 1

5

(
1 + 9e2

1

1 + 4e2
1

)
. (12)

The equivalent solution in the ω1 = 0 case is

θ = 1

5μ12α
1/2
12

√
1 − e2

2

1 − e2
1

[
−1 ±

(
1 + 25

μ2
12α12

1 − e2
2

)1/2
]

. (13)

2.7 Nature of the stationary points

Fig. 1 shows how these different fixed point families are related to
one another, for the case μ12α

1/2
12 = 2.2. Stationary point families

associated with a fixed ω1 (Q1, Q+
2 and Q−

2 ) are shown as solid

Figure 2. The main panel shows curves of constant energy, subject to the
constraint that the total angular momentum take a particular value. The blue
curve has the initial conditions given by e1 = e0 and itot = i0. This shows a
large libration about the fixed point at ω1 = π /2. The panel to the upper right-
hand side shows how e1 and θ evolve along this trajectory (blue curve). The
green curve in this diagram shows the Q2 fixed point family (similarly, the
green curve in the main panel shows the location of the fixed point). The panel
in the upper left-hand side shows the result of an orbital integration (using
the code of Naoz et al. 2013a) for these parameters. The dotted lines indicate
the ω1 obtained from equation (8), and demonstrate that the stationary points
QC represent a family of unstable saddle points. The red circle in the main
panel indicates the maximum eccentricity that it is possible to achieve with
this initial condition.

curves while the families with a range of ω1 (QC and Q||) are shown
as dashed curves. The special case family QR is shown as a solid
point. The stationary point family QC connects the prograde family
Q+

2 and the retrograde family Q1. The stationary point family Q||
connects the retrograde families Q1 and Q−

2 .
The stationary point family QC connects the prograde family Q+

2

and the retrograde family Q1. The stationary point family Q|| connects
the retrograde families Q1 and Q−

2 . The various families shift as a
function of mass and separation, and fig. B1 of the online appendix
shows a general overview of these relationships, as a function of
μ12α

1/2
12 and x = θ

√
1 − e2

1.
To understand the dynamics of the system near each of these

points, we plot curves of constant energy, subject to the constraint of
angular momentum conservation. This latter condition establishes a
relationship between θ and e1, such that

G2
0 = μ2

12α12

(
1 − e2

1

) + 2μ12α
1/2
12

√
1 − e2

1

√
1 − e2

2 θ. (14)

Fig. 2 shows the curves of e1(ω1) in the case of α12 = 0.05 and
μ12 = 1. In the panel in the upper right-hand panel, the green curve
shows the stationary point family Q2 for these parameters. The blue
curve in the same diagram represents a curve of constant G2

0, chosen
such that θ = 0.559 for e0 = 0. The main panel then shows curves of
constant energy, subject to the constraint that the angular momentum
has the above value. The blue contour is the one that corresponds
to our chosen initial conditions, and the green contour illustrates
the libration about the Q+

2 family. This is the standard Kozai–Lidov
family and therefore the Q+

2 family is a stable equilibrium – a ‘fixed
point’ family. This case represents the point (0.559,0.224) in fig. B1.
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Figure 3. The main panel shows curves of constant energy, subject to the
constraint that the total angular momentum take a particular value. The blue
contour shows the particular trajectory given by the initial conditions e1 = e0

and itot = i0. The variation in e1 and θ is shown by the blue curve in the panel
to the upper right-hand side. In this upper panel, there are now three green
curves, which represent the relationships between θ and e1 that corresponds to
the fixed point family Q2 and the stationary points family Q1. The blue curve
in the main panel again shows a large libration about the fixed point at ω1 =
π /2 as well as an avoidance of the saddle point at ω1 = 0 (the Q1 family). The
two red circles indicate the minimum and maximum eccentricities achievable
with the given initial conditions. The panel in the upper left-hand side shows
the result of an orbital integration – using the OCTUPOLE code (Naoz et al.
2013a) – for these parameters. The dotted lines indicate the ω1 = 0 and π ,
representing the location of Q1. Note that this does not coincide with the
minimum of e1.

The panel in the upper left of Fig. 2 also illustrates the nature
of the QC family. The vertical dotted lines illustrate the value we
get from equation (8) for this case. Thus, the libration about the Q+

2

point approaches e1 ∼ 0 along this value and then sweeps through ω1

until it emerges at the other corresponding solution to the equation.
This represents the change in angle of the blue contour as it sweeps
around the origin. Thus, family QC is an unstable equilibrium – the
saddle point at e1 = 0.

To understand the nature of the Q1 family, we need to move to
large μ12. Fig. 3 shows the case for α12 = 0.05 and μ12 = 15. We
have chosen initial conditions here to provide a very large amplitude
libration about the Q+

2 fixed point, which actually approaches ω1 =
0. We see that this point (the location of the Q1 family of stationary
points) is a saddle point. Thus, Q1 represents a family of unstable
stationary points. This also results in a qualitative change in the
nature of the dynamics. At lower mass ratios (such as in Fig. 2),
the choice of initial conditions implies either libration or circulation.
For larger masses, the presence of the Q1 family now divides the
space into three parts – the libration region encloses a region of inner
circulation, with an outer circulation region at large e1.

This figure shows two red circles. The outer corresponds to the
maximum eccentricity and the interior red circle in Fig. 3 represents
the minimum e1 achievable with this angular momentum constraint,
and occurs at θ = −1. These two limits can also be read off the blue
curve in the upper right-hand panel. The argument of periastron ω1

circulates in this case, so the minimum is not part of the Q|| stationary
point family.

To understand the special family Q|| we need to go to larger initial
e1. This is illustrated in fig. B2 of the online appendix, which shows
the case for α12 = 0.05, μ12 = 10, θ = −1, and e1 = 0.6. There
we demonstrate that the family Q|| plays the same role as QC, in
the high-mass-ratio limit where the orbits never get circular, but do
approach the retrograde, coplanar limit.

So, we infer that the family Q|| plays the same role as QC, in
the high-mass-ratio limit where the orbits never get circular, but do
approach the retrograde, coplanar limit.

The only special case left is the point QR. Integrations that start
close to e1 = 1 and θ = 0 avoid the limit, oscillating to e1 ∼ 1
but θ ∼ ±1, so OR is a saddle point. This is despite the fact that
the stationary point intersects the continuation of the prograde and
retrograde branches of the Q2 family. This saddle point is therefore
the ultimate cause for why one does not get flips of the orbital plane
at the quadrupolar level of approximation.

The classification of the stability of the various quadrupolar
stationary points (whether solutions librate about the equilibrium
– a fixed point – or avoid the equilibrium location – a saddle point)
are summarized in Table 1.

3 STAT I O NA RY P O I N T S AT T H E O C TO P O L A R
LEVEL

The neatness of the quadrupolar analysis relies, in part, on the fact
that ω2 does not appear in the Hamiltonian, and so we need only
satisfy ė1 = 0 and ω̇1 = 0. This is no longer true when the expansion
is taken to octupole order, and so we must now consider, in addition,
ė2 = 0 and ω̇2 = 0. However, as noted by several authors (e.g. Naoz
et al. 2013a; Li et al. 2014a; Antognini 2015; Naoz 2016), the time-
scale for changes in e2 and ω2 are usually much longer than for e1 and
ω1, so that the short-term dynamics is often regulated by a stationary
point of only ė1 = 0 and ω̇1 = 0. This has the consequence that
the stationary point families of the octupolar problem are intimately
related to those of the quadrupolar problem.

Thus, we are searching for stationary points of the system given
by equations (73), (74), (77), and (78) of Naoz (2016), reprinted in
Appendix A, in the planetary limit. As in Section 2, the stationary
points can be classified in terms of particular values of ω1 and,
now also, ω2. We must also consider the quantity ε = α12e2/(1 −
e2

2) when classifying these equilibria. This parameter quantifies the
strength of the octupole term, and we will adopt ε < 0.1 as the
criterion for restricting our analysis to the octupole level. A larger
value of ε would require extending the expansion to higher orders to
achieve accuracy (e.g. Hamers & Portegies Zwart 2016; Will 2017).

We will also require a naming convention to conveniently identify
particular stationary point families. Those families associated with
ω1 = 0 and ω2 = 0 will be designated as A – because ω1 and �1 are
aligned. The apsidally antialigned case (ω2 = π ) will be called A.
Those families with ω1 = π /2 will be designed as P (ω2 = π /2) and
P (ω2 = 3π /2), respectively (because ω1 and �1 are perpendicular
in this case).

3.1 Case A: ω1 = ω2 = 0

If we set ω2 = 0, then ė1 = 0 and ė2 = 0 if ω1 = 0. The same
conditions apply if ω2 = ω1 = π . In this instance, the conditions
ω̇1 = 0 and ω̇2 = 0 amount to

2 + βθ = ±25

8

α12θe1e2

1 − e2
2

[
1 − 24e2

1 − 5
(
1 − 3e2

1

)
θ2

10θe2
1

− θ − β

]
,

(15)
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1686 B. M. S. Hansen and S. Naoz

and

2θ + β

[
5θ2 + 6e2

1 − 1

1 − e2
1

]
= ∓5

8

α12e1

1 − e2
2

[
10e2θ (1 + βθ )

− (
1 + 4e2

2

) β

e2

(
1 − 8e2

1(
1 − e2

1

) − 5θ2

)]
,

(16)

where β = μ12α
1/2
12

√
(1 − e2

1)/(1 − e2
2). The upper sign on the right-

hand side of these two equations applies for this case (and the
corresponding case where both angles are π ). The lower sign in
these two equations applies for the case where ω1 = 0 and ω2 =
π (or vice versa). This is the apsidally antialigned case and will be
treated in the next section.

The numerical solution of equations (15) and (16) yields two
families of solution, which are illustrated in fig. B3 of the on-
line appendix. The first is family A1, which tends towards polar
orbits (θ → 0) for small μ12 but moves to larger θ as μ12

increases, asymptoting to θ = 1/
√

5. The e1–e2 relation is pretty
steep and so this satisfies ε < 0.1 for only a limited range
of e1.

A second family of solutions emerges at large μ12, designated as
A2 and also shown in fig. B3. In the limit of large μ12, this again
trends towards θ → 0. In the high μ12 limit, we find that this family
is restricted to a finite range of e1. This stationary point is clearly
related to the dynamics identified by Naoz et al. (2017) and de Elı́a
et al. (2019) in the context of the outer test particle case. We will
discuss this more in Section 6.1.

3.2 Case A: ω1 = 0, ω2 = π

This case represents the lower sign choice in equations (15) and
(16). In physical terms, it means that the arguments of periastron of
the two planets are apsidally misaligned by 180◦. Examples of the
resulting stationary point families are shown in fig. B4 of the online
appendix. Unlike for case A, viable solutions only start to appear
for mass ratios μ12 > 1.5 (for α12 = 0.05). Formally, we can find
stationary points at smaller mass ratios, but they all occur for ε >

0.1. This implies that such points may exist but a full description
may require higher order terms. For large enough μ12, the solution
extends to low e1 and e2 and represents the complementary case for
the A2 solutions.

The first stationary point family to appear (as we increase μ12)
is family A1, which manifests in fig. B4 as a family of retrograde
orbits and large e2, and is restricted to approximately circular orbits
(e1 � 1). As μ12 increases, this family moves towards more inclined
(but still retrograde) configurations, and with larger e1. For large
enough mass ratios, a second family appears, which we term AQ.
This is because the properties of these stationary points bear a strong
similarity to the quadrupole family Q1 discussed in Section 2.1. The
e1–θ relation for AQ tracks almost exactly the equation (3) for Q1,
for the relevant masses. The value of e2, in this case, is small but not
exactly zero.

As μ12 continues to increase, the two branches merge into a single
continuous family, bounded from below by a minimum e1. For μ12 =
50, the A1 part of the curve is restricted to a narrow range of e1, in
a similar fashion to family A2 of Section 3.1. The AQ curve also
extends to lower e1, but there appears to be a gap. We will discuss
this further in Section 6.1.

Figure 4. This figure shows the stationary point families in the case ω1 =
ω2 = π /2. The lower panel shows the relationship between e1 and θ for
different values of the mass ratio. Families with μ12 = 0.5 are shown in red,
μ12 = 3 are shown in blue, and μ12 = 10 are shown in black. The upper panel
then shows the corresponding e1–e2 relationship. The right-hand panels show
a zoom in on the e1 ∼ 1 region. The dotted curves indicate the corresponding
quadrupolar Kozai–Lidov family at each μ12.

3.3 Case P: ω1 = ω2 = π /2

The third case occurs when both arguments of periastron are at right
angles with respect to the line of nodes. Once again, this choice
of parameters automatically satisfies ė1 = 0 and ė2 = 0, leaving the
following conditions to locate the stationary points

5θ2 − 3
(
1 − e2

1

) + β
(
1 + 4e2

1

)
θ = ∓ 5α12e2

16
(
1 − e2

2

)
×

[
e1 (θ + β)

(
15

(
3 + 4e2

1

)
θ2 − 11 − 17e2

1

)

−
(
1 − e2

1

)
e1

θ
(
11 + 51e2

1 − 15
(
1 + 4e2

1

)
θ2
)]

, (17)

and

2θ + β

(
5θ2 − 3 + 2 + 3e2

1

1 + 4e2
1

)
= ±5

8

α12e1(
1 − e2

2

) (
1 + 4e2

1

)
×

[(
1 + 4e2

2

)
e2

βθ
(
11 + 17e2

1 − 5
(
3 + 4e2

1

)
θ2
)

+ e2 (1 + βθ )
(
11 + 17e2

1 − 15
(
3 + 4e2

1

)
θ2
)]

. (18)

As in the previous sections, the upper sign in equations (17) and
(18) refers to the case of apsidal alignment, while the lower sign
represents the antialigned case (ω1 = 3π /2, ω2 = π /2).

Fig. 4 shows the different solutions in case P , as a function of
mass. Once again, all solutions are shown for α12 = 0.05. In red, we
show the solutions for μ12 = 0.5 (lower mass ratios are qualitatively
similar). Most obvious is a family of solutions that corresponds
closely to the quadrupolar family Q2 – the Kozai–Lidov family. As in
the quadrupolar case, this family becomes increasingly asymmetric
with increasing μ12 and so we refer separately to P+

Q (prograde case)
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Hierarchical stationary points 1687

Figure 5. This figure shows the stationary point families for the case ω1 =
3π /2 and ω2 = π /2. The lower panel shows the relationship between e1 and θ

for different values of the mass ratio μ12 – μ12 = 0.7 is shown in red, μ12 =
3 is shown in blue, and μ12 = 10 is shown in black. The upper panel then
shows the corresponding e1–e2 relationship. The right-hand panels show a
zoom in on the e1 ∼ 1 region. The dotted curves indicate the corresponding
quadrupolar Kozai–Lidov family at each μ12.

and P−
Q (retrograde case). As in the case of AQ, this family is found

with small, but finite, e2.
As the mass ratio increases, we also see the appearance of a second

family, which we term P1. Examining the blue curves in Fig. 4, we
see that the P1 family appears to track P+

Q quite closely in terms
of e1–θ , but deviates strongly in the upper panel, where it shows
solutions with a much larger e2. We see also that the P+

Q family has
a maximum e1, which is also the point at which this low e2 family
merges into the higher e2 family P1. We see also that the maximum
value decreases as μ12 increases.

The retrograde family, P−
Q , also exhibits a higher e2 counterpart

that we term family P2, as can be seen in Fig. 4. This forms initially
for small e1 and moves to larger e1 as μ12 increases. Once again,
we see that the quadrupolar analogue solution P−

Q merges smoothly
with the higher eccentricity P2 family.

Finally, we also find a fourth family, a retrograde family we call
P3. Both P2 and P3 emerge as the e1 lower limit of family P−

Q moves
away from the circular orbits.

3.4 Case P: ω1 = 3π /2, ω2 = π /2

Case P refers to the same equations (17) and (18), but with the
lower sign on the right-hand side of each (positive and negative,
respectfully). The stationary point families are shown in Fig. 5. As
one might expect, there is a fair amount of symmetry between the
solutions in Fig. 5 and those in Fig. 4.

Perhaps, the first point to note is the complementarity between
these solutions and the corresponding apsidally aligned ones in Fig. 4.
Family PQ

+ appears to be the complement of PQ
+ – occurring for

those values of e1 and θ where the solution is not found in case
P . Together, they appear to comprise the full analogue of the Q+

2

solution. There does not seem to be an equivalent PQ
−, but that

is not surprising, given that P−
Q appears to cover the full range of

eccentricities. In Section 6.1, we will show that the PQ
− family does

exist, but covers only a very limited range of parameters.
We also find analogues of the high e2 extensions of the quadrupolar

analogue families in P1 and P2 – the equivalents of P1 and P2. In
addition, there exists a family P3, an analogue to P3, but this time it
occurs for prograde, rather than retrograde, configurations. For large
enough masses (μ12 > 10), the families PQ

+, P1, and P3 form a
continuous curve.

Finally, the right-hand panels of Fig. 5 show a family,P4 of almost
radial orbits. Superficially, these look like the mirror image of P1 at
low masses. However, as μ12 increases, P4 does not extend along
P−

Q , but eventually retreats towards the radial limit again. Mass ratios
of μ12 ∼ 3–5 (for α = 0.05) mark the maximum extension of this
family to smaller e1 (which remains well above 0.9 at all times). This
family is also distinct from the PR family in the limit of e1 → 1
because it is found with e1 demonstrably less than unity (although
still large). This family is characterized by large values in both the
quadrupolar and octupolar terms in ω̇2, which offset each other. The
limited range of applicability in μ12 is a consequence of the ε < 0.1
cutoff – this family extends over a much larger range of masses if we
relax this criterion.

3.5 Special cases: octupole limit

In the quadrupole limit, we also found that we could satisfy ė1 = 0
and ω̇1 = 0 in special limiting cases, where ω1 was not restricted
to the same values as in other stationary point families. With the
introduction of the octupole term, these families become even more
restrictive because the vanishing of this term imposes conditions
beyond those imposed by the quadrupole term. We will denote the
special case octupolar families with O.

3.5.1 Circular limit: OC

In the case of the circular limit e1 = 0 (see Section 2.3), the octupole
level introduces a term ω̇1 ∝ 1/e1, so this will only be zeroed if the
coefficient of this term goes to zero simultaneously. This imposes a
relationship between ω1, ω2, and θ , as a function of μ12, α12 and e2.
The condition ω̇2 = 0 reduces to the quadrupolar limit in this case.

In the low-mass-ratio limit, this leads to θ = 0, ω2 = π /2, and
cos 2ω1 = 1/5 (i.e. ω1 = 39.◦23). In the high-mass limit, this requires
θ = ±1/

√
5 and one of ω2 = 0, ω1 = 0, or ω1 = π /2. These are

the critical inclinations Icrit identified by (Jefferys & Moser 1966;
Krasinsky 1972).

3.5.2 Coplanar limit: OLL and O||

In the quadrupolar limit, we also found family Q|| (see Section 2.5)
in the limit of coplanar, retrograde orbits. So, let us now examine
the case of θ = ±1. In this case, we find that ė1 = 0 and ė2 = 0 are
satisfied by the condition ω1 = ω2. In the prograde case (θ = +1),
this relation can be maintained by ω̇1 = ω̇2 because the equation
derived from this condition is

2
(
1 − e2

1

) − (
2 + 3e2

1

)
β = 5

8

α12

1 − e2
2

cos (ω1 − ω2)

×
[ (

1 − e2
1

) (
4 + 9e2

1

) e2

e1

−β
(
1 + 4e2

2

) (
4 + 3e2

1

) e1

e2

]
, (19)
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1688 B. M. S. Hansen and S. Naoz

Figure 6. The red curve shows the apsidally aligned, prograde coplanar fixed
point solution, while the blue curve shows the apsidally antialigned case. The
two dotted lines indicate the expected low-eccentricity asymptotes for this
case from the Laplace–Lagrange approximation. In this limit, equation (19)
reduces to a quadratic equation in e2/e1. In both apsidally aligned and
antialigned cases, one of these roots is positive and these yield the solutions
plotted here.

which depends only on the angle ω1 − ω2. This is the extension
of the traditional Laplace–Lagrange treatment (e.g. Murray &
Dermott (1999)) to the hierarchical case (e.g. Lee & Peale 2003;
Michtchenko & Malhotra 2004). As in the traditional case, this yields
two solutions corresponding to ω1 − ω2 = 0 or π , although the non-
linearity of the system means that these no longer form a basis set
for describing more general behaviour. Fig. 6 shows an example
solution. Both curves asymptote to a fixed value of e2/e1 at small
eccentricities, which matches the expectations from the traditional
expansion. We will refer to this family as ‘OLL’, since it represents the
extension of the Laplace–Lagrange family. Note that this analogue
of the classical family appears first at octupole order, since it depends
on the difference between ω1 and ω2.

In the retrograde case, the equation for ω̇1 − ω̇2 depends on ω1,
and so it is only a stationary point if ω̇1 = 0 as well. This implies
ω̇2 = 0 also, i.e. the same fixed point condition as in the other cases.
From this, we derive a relationship between ω1 and e1 that is an
extended version of equation (9), which yields a qualitatively similar
solution – we find sensible solutions only in the retrograde case and
for sufficiently large μ12. In the online appendix, fig. B10 shows an
example of the solution for the case μ12 = 10 and α12 = 0.05. The
shape of the solution closely tracks the quadrupolar version, but there
is a change of apsidal alignment along the curve. Comparison with
the other solutions shows that this family forms the same kind of
link between AQ and P−

Q as the corresponding quadrupolar solution
does. We will call this family O||.

3.5.3 Radial limit: OR

Finally, we have the radial limit e1 → 1. In this limit, ė1 = 0
automatically, and ω̇1 = 0 imposes additional constraints, given by

Figure 7. Each curve represents the solution to equation (20) for the case
θ = 1. The vertical lines at ω1 = 0, π and 2π represent the fact that the
equation is satisfied for all ω2 at these values. For other values of ω1, the
equation implies a relationship between ω2 and e2 for fixed α12. We see that
this more general solution is narrowly confined to near the special values of
ω1 as long as e2 is below a threshold value. However, as e2 increases above
this value (which has the value e2 = 0.361 for this case), we see that the
topology of the solution changes dramatically.

the condition

θ2 (1 − cos 2ω1) = −105

12
α12θ

e2

1 − e2
2

×
[

sin ω1 sin ω2.

(
1 + 5

2
(1 − cos 2ω1)(3θ2 − 1)

)

+ 5θ(1 − cos 2ω1) cos ω1 cos ω2

]
. (20)

This is automatically satisfied if θ = 0 or ω1 = 0 but more general
combinations of ω1, ω2, and θ also satisfy this criterion. The addition
of the constraint that ω̇2 = 0 as well does not restrict the solutions
because ω̇1 = ω̇2 in this limit. This leads to a rather broad family of
possible solutions, which we term OR.

An important potential application of this family is in the case of
coplanar orbits (θ → ±1). In that instance, the more general class
of solutions are clustered near ω1 = 0 or π , unless e2 is above some
threshold value. We can estimate the critical e2 by setting ω1 = π /2
and deriving the resulting ω2 from

sin ω2 = ∓ 24

1155

(
1 − e2

2

)
e2α12

. (21)

The requirement that |sin ω2| < 1 imposes a condition on e2. For
α12 = 0.05, this is e2 > 0.361. Fig. 7 shows the nature of the solution
near this critical value. We see that the shift is quite dramatic, over
only 
e2 = 0.02. Note that the form of equation (21) is the same as
the expansion parameter ε = α12e2/(1 − e2

2), so that the critical value
can also be expressed as a critical εcrit = 0.021. This becomes relevant
in the case of coplanar orbital flips, as discussed in Section 6.3.

MNRAS 499, 1682–1700 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/1682/5900990 by U
C

LA Biom
edical Library Serials user on 29 January 2021



Hierarchical stationary points 1689

4 EF F ECT OF RELATIVITY

For planets in short-period orbits, the effect of relativistic precession
must be included. The addition of a component of ω̇1 from relativity
can shift the location of these stationary points. Indeed, relativistic
effects can give rise to qualitatively new features in the case of
massive outer perturbers or comparable mass inner binaries (e.g.
Naoz et al. 2013b, 2017, 2020; Will 2014, 2017; Liu, Muñoz & Lai
2015; Liu, Lai & Wang 2019; Lim & Rodriguez 2020), but, with
our focus on the planetary case, we will limit our attention to the
post-Newtonian correction to the inner orbit precession.

Relativistic precession is usually discussed in the context of the
suppression or excitation of orbital eccentricity, but it can shift
both the inclination and eccentricity of the stationary points (e.g.
Migaszewski & Goździewski 2011). To illustrate this, let us consider
the addition of a relativistic contribution (equation 57 of Naoz 2016)
to the right-hand side of equation (2). If we set ω̇1 = 0 in the case of
ω1 = π /2 (the Q2 solution), we now derive a modified condition on
the inclination of the fixed point, namely

θ = θ0

⎡
⎣−1 ±

(
1 + 60

(
1 − e2

1

) − γ

μ2
12α12

(
1 − e2

1

) (
1 + 4e2

1

)2

)1/2
⎤
⎦ , (22)

where θ0 = 0.1μ12α
1/2
12 (1 − e2

1)1/2(1 + 4e2
1) and

γ = 40
Mc

M2

RSa
3
2

a4
1

(
1 − e2

2

)3/2(
1 − e2

1

)1/2 , (23)

and a1, a2 are the semimajor axes of the inner and outer planets,
and RS = 2GMc/c2 is the Schwarzschild radius of the central object.
This is essentially a ‘squashed’ version of the original Q2 family,
since e1 is now bounded from above at a smaller value than unity.
The equivalent correction for the Q1 family shifts the mass threshold
at which it appears. Note also that the relativistic contribution has
broken the scale invariance of the problem, since lengths are now
scaled relative to RS.

Fig. 8 shows the effect of relativity on the fixed point families of
the full octupole problem, as we move the system closer to the star,
while keeping α12 = 0.05 fixed. The upper two panels show the case
of μ12 = 10 (realized in this case by M1 = 10MJ and M2 = 1MJ).
Far from the star, the fixed point families should look as they do in
Figs 4 and 5. However, the upper panel shows that, if a1 = 0.15 AU,
then the effects of relativity are significant. The quadrupolar family
is squashed and distorted, and the positions of additional families
(such as P1 or P2) are shifted as well. The middle panel shows the
effect of moving the system in even further (a1 = 0.1 AU). We see
now that the P2 and P2 families no longer intersect the quadrupolar
family (which is now squashed down to e1<0.2).

The bottom panel of Fig. 8 shows what happens if we decrease
the mass ratio to μ12 = 1 (M1 = 1MJ) at this location. Now
the quadrupolar family has completely disappeared (see also Ford,
Kozinsky & Rasio 2000; Naoz et al. 2013b, 2020), but the P1 and
P1 families remain. This illustrates that the inner planet mass is
important too.

One of the reasons to be interested in the effect of relativity is in
the case of planet migration driven by secular interactions and tides.
In this case, we should keep the outer planet location fixed (a2 fixed,
rather than α12) and move a1 inwards. Thus, as a1 decreases, for fixed
a2, the γ contribution increases more rapidly. When the numerator
factor in equation (22) equals zero, θ = 0 and this is the maximum

Figure 8. The upper panel shows the fixed point families for the case of
α12 = 0.05, μ12 = 10, where the scales are set by a1 = 0.15 AU and M1 =
10MJ. The dotted line is the ‘squashed’ Q2 family given by equation (22).
The middle panel shows the effect of shifting everything inwards so a1 =
0.1 AU. The Q2 family is now entirely retrograde and the P2 and P2 families
have now detached from P+

Q . The bottom panel shows the result of keeping

a1 fixed but reducing M1. We see that the P+
Q family completely disappears

at this point, leaving only P1 and P1. The P1 family was not present in the
upper two panels and only appears when M1 < 6MJ, in this case.

e1 for which the quadrupolar solution remains, namely

e1 = emax =
[

1 −
(

2Mc

3M2

)2/3
R

2/3
S a2

2

a
8/3
1

]1/2

. (24)

Eventually, a1 is small enough that emax = 0, which yields the
criterion for the Kozai–Lidov family to survive:

a1 > 0.32 AU
( a2

20 AU

)3/4
(

M2

0.01 M


)−1/4 (
Mc

M


)1/2

. (25)

Fig. 9 shows the evolution of the full fixed point family (to
octupolar order) in an example where we hold the outer perturber
fixed at 20 AU, but move the inner planet closer to the star. We show
here the stationary point families in the case of ω1 = ω2 = π /2.
We see the evolution of this ‘squashed’ Kozai–Lidov family to ever
smaller emax as a1 decreases. However, we see that the P1 family
remains and plays an ever larger role as emax decreases. This family
starts at emax and extends up to almost radial orbits. The family is also
strongly polar. Even when the Q2 family disappears, the P1 family
continues to exist for non-zero e2. This eventually disappears too at
∼0.15 AU (for this example). The equivalent antialigned case (P1)
shows a similar form but extends to slightly retrograde orbits instead
of slightly prograde ones.

The ω1 = 0 cases remain qualitatively similar with the introduction
of relativity. Of more interest are the special cases because the
allowed values of ω1 are shifted by the relativistic precession, and
because tidal circularization naturally takes us to the e1 → 0 limit.
The one that survives the furthest in is the polar OC limit, wherein

cos 2ω1 = 1

5

[
1 − 8RSa

3
2

a4
1

Mc

M2

(
1 − e2

2

)3/2
]

. (26)
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1690 B. M. S. Hansen and S. Naoz

Figure 9. These curves illustrate the effect of relativistic precession on the
fixed point families for the case of ω1 = ω2 = π /2. The outer planet semimajor
axis is kept fixed at 20 AU, but we show here the fixed point families for a
variety of inner semimajor axes – 1 (black), 0.5 (red), 0.4 (blue), 0.35 (green),
0.3 (cyan), and 0.2 AU (magenta). The e1–e2 relation in the upper panel
demonstrates that there are two components – an essentially quadrupolar
version (e2 ∼ 0) that looks like a ‘squashed’ version of the Q2 family, and an
extension of the P1 family that extends to large e1 and e2.

For this to provide a physically reasonable answer, cos 2ω1 > −1,
which implies

a1 > 0.278 AU
( a2

20 AU

)3/4
(

M2

0.01Mc

)−1/4 (
1 − e2

2

)3/8
. (27)

Comparison with equation (25) shows that the OC saddle point
survives longer than the Kozai–Lidov quadrupolar fixed point family
as a planet is dragged down by tides.

Thus, the effects of relativity start to have a marked effect on the
stationary point families for a1 < 1 AU. In the case where we keep
a2 fixed – so that α12 decreases as a1 does, the bulk of the stationary
points are wiped out by a1 ∼ 0.3 AU. For more compact systems,
wherein we keep α12 fixed as we move the planet pair inwards, some
stationary points can survive interior to 0.1 AU. A generic tendency
is for the surviving stationary point families to lie close to polar.

5 STA B I L I T Y O F T H E STAT I O NA RY P O I N T
FA MILIES

In the previous sections, we reviewed the stationary point solutions of
the octupolar-level expansion of the hierarchical three-body problem.
This identifies equilibria, but does not specify the stability of said
equilibria. Here we shall review each family of stationary points in
order to determine their stability – whether they are fixed points
or saddle points – and their role in fixing the orbital structure.
Furthermore, we will do this as a function of μ12. In the previous
section, we arranged our solutions in terms of their apsidal alignment,
but it is also instructive to see how the various classes fit together for
particular mass ratios. We will once again fix α12 = 0.05, so that we
can vary μ12 alone. The results are summarized in Table 2.

To determine stability, we will make use of the fact that the short-
term dynamics are still driven primarily by the quadrupolar term
(Naoz et al. 2013a; Li et al. 2014a; Antognini 2015; Naoz 2016),
with longer term drifts imposed by octupolar contributions. So, we

first construct contours of constant energy and angular momentum, to
identify whether the underlying short-term dynamics are consistent
with a fixed point or a saddle point. We then follow this with direct
integrations of the full octupolar equations to verify whether the
octupolar terms change the long-term dynamics.

In the octupolar case, we also encounter families where ω1 librates
about the equilibrium while ω2 displays a saddle point behaviour. In
this case, ω2 circulates, but can show a brief reversal that qualifies as
a solution to our equilibrium conditions of ė1 = ė2 = ω̇1 = ω̇2 = 0.
In this case, we will refer to an ‘inner fixed point’.

5.1 Low mass ratios: μ12 = 0.1

Empirically, this is the most common kind of system observed in
exoplanet systems. It is also the least complicated case, because the
small inner mass induces a limited precession of the outer mass and
so the configuration of the stationary point families hews pretty close
to the quadrupolar case. Fig. B5 of the online appendix summarizes
the stationary point families present.

5.1.1 Kozai–Lidov analogue: PQ

As one might expect, this limit is dominated by the PQ and PQ

families, the generalization of the Kozai–Lidov Q2 family. However,
despite the low μ12, both ω1 and ω2 librate so these represent a full
generalization of the Q2 families to the octupolar case. Fig. B6 of
the appendix shows an example of such a trajectory.

5.1.2 Saddle points: A1

The A1 family is also present in the low μ12 limit, where it occurs for
almost polar orbits. This is a saddle point. A trajectory that begins
near this point exhibits large-scale variations in e1, and is located at
the extreme of librations about the PQ fixed point. This stationary
point performs the same role as the QC fixed point in the quadrupole
description (see Section 2.3 and Fig. 1), but is more localized because
it includes the criterion that ω̇2 = 0, which restricts the family to
almost polar configurations. It is also worth noting that many of
these trajectories yield intermittent orbital flips, as itot can fluctuate
about the polar value.

5.1.3 Radial families

One feature to note, in addition to the analogues of the quadrupolar
families, is the presence of the quasi-radial stationary point families
PR, PR, and OR, as shown in Fig. 10. To demonstrate their role, we
choose a starting point close to θ ∼ 0, and integrate the equations for
different initial apsidal misalignments (varying ω1 keeping ω2 fixed).
Although the PQ curves pass through the same point in the e1–θ

space, these OR equilibria exist for large e2 as well. The examples
shown in Fig. 10 are integrated using an initial e2 = 0.5.

These integrations establish that PR (red points) and PR (blue
points) are examples of the inner fixed point variety discussed above
– the angle ω2 does not librate over a finite range but circulates,
while ω1 librates. The circulation of ω2 introduces a small variation
in the parameters that can generate orbital flips if the librations are
large enough to approach ω1 ∼ 0 or π . However, this requires large
amplitude librations – we have not found cases where the small-
amplitude librations are destabilized because the variation in e2 is
not large for low μ12. If we start with enough apsidal misalignment,
we do indeed see orbital flips, as shown by the cyan points. These
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Hierarchical stationary points 1691

Table 2. Classification of octupole-level stationary points.

Name Orbit Stability Comments

A1 Prograde Saddle point Critical inclination starts at Icrit = 90◦ at low masses and tends to Icrit = 63.◦75 at high μ12.
A2 Retrograde Saddle point Appears for β > 4, with Icrit = 120◦ initially, but asymptotes to Icrit = 116.◦25 at large μ12.
AQ Retrograde Saddle point Generalization of quadrupolar family Q1. Requires β > 2.236. Critical inclination starts

at Icrit = 180◦ and evolves to Icrit = 90◦ in high-mass limit.
A1 Retrograde Saddle point Icrit = 180◦ for β = 0.5 and decreases to 120◦ at β = 3.35, where it is subsumed by

AQ in the circular limit.
P+

Q Prograde Fixed point Generalization of Quadrupolar family Q+
2 . Critical inclination is 39.◦23 for low μ12,

increasing to 65.◦75 at β = 5.25, where it switches apsidal alignment.
P−

Q Retrograde Fixed point Generalization of Quadrupolar family Q−
2 . Critical inclination is 140.◦76 for low μ12,

increasing to 180◦ at β = 2.254. For larger β, it does not reach e1 = 0.
P1 Prograde Fixed point Most robust family in face of relativistic precesson. Icrit → 63.◦43 in the high-mass limit.
P2 Retrograde Fixed point Appears when β = 0.773, with Icrit = 148.◦9. Tracks PQ

− but extends to large e1.
P3 Retrograde Fixed point Satisfies ε < 0.1 for β > 0.314. For β > 0.46, this has a solution at e1 = 0, with

critical angle Icrit = 180◦.
Retrograde Saddle point For β > 0.653, this becomes a saddle point, at Icrit = 148.◦9. The critical angle decreases

with increasing mass, tending to Icrit = 116.◦56 in the high-mass limit.
PR Prograde Inner fixed point At low masses, 80.◦7 < I < 90◦ for ε < 0.1 and narrows for μ12 > 2.
PQ

+ Prograde Fixed point Generalization of Quadrupolar family Q+
2 , which reaches e1 = 0 for β > 5.25 and

Icrit = 65.◦75. In the high-mass limit, Icrit → 90◦.
PQ

− Retrograde Fixed point Quadrupole and Octupole apsidal switches limit to 0.794 < β < 1.738.
P1 Prograde Fixed point Emerges for β > 0.47 for ε < 0.1.
P2 Retrograde Fixed point Appears when β = 0.773, with Icrit = 148.◦9. Tracks PQ

− but extends to large e1.
P3 Prograde Saddle point Icrit ∼ 90◦ for low μ12, but drops to 65.◦75 at β = 5.25.
P4 Retrograde Fixed point Large e1 but not as large as PR. Appears for β > 0.492, assuming ε < 0.1.
PR Retrograde Inner fixed point At low masses, 90◦ < I < 99.◦3 for ε < 0.1 and narrows for μ12 > 2.
OC Prograde Saddle point This is related to the Icrit limits of other families noted above.
OLL Prograde Fixed point This is generalization of the Laplace–Lagrange solutions.
O|| Retrograde Saddle point Generalization of Q||, which it closely resembles.
OR Polar Saddle point In the coplanar limit, the solution is localized unless e2 exceeds a threshold.

Notes. The solution β = μ12α
1/2
12 /

√
1 − e2

2. We define critical inclination Icrit as the inclination of a solution in the e1 → 0 limit. Family A
represents (ω1, ω2) = (0.0), while A represents (0, π ), P represents (π /2, π /2), and P represents the case (π /2, 3π /2).

integrations also establish the relationship between the different
radial families. The PR and PR families are inner fixed points and
the OR family is a saddle point that separates the regimes of libration
and circulation of ω1, as shown by the green and black points.

5.2 Comparable mass ratios: μ12 = 1.5

As the mass ratio becomes comparable, the effects of the inner planet
on the outer become stronger, and start to introduce features not
found in the limit of an inner test particle. Fig. 11 shows the different
stationary point families for the case μ12 = 1.5. The four different
cases for ω1 and ω2 are shown in blue (case A), cyan (case A), red
(case P), and black (case P).

5.2.1 Kozai–Lidov generalizations: PQ and P1

We see that the most prominent feature is still the generalized version
of the Kozai–Lidov family (P+

Q and P−
Q ). We see also the emergence

of the P1 family, the eccentric version of the K-L family.
Fig. 12 shows the contours of constant energy for the case where

the angular momentum is given by the upper dotted line in Fig. 11.
We also need to specify a value of e2, because this contour crosses
both the P+

Q and P1 families, which have very different values of e2

at their intersections. We know that the P+
Q family is a stable point

from the quadrupolar analysis, so we choose e2 = 0.52 to isolate the
P1 stationary point. From the contours in Fig. 12, we identify P1

as a stable equilibrium – a fixed point. We confirm this by a direct

integration of the orbital equations, shown in red. The finite width
of the libration trajectory is a consequence of the small variation
of e2 (which is assumed to be constant in the calculation of the
contours). Therefore, P1 represents a high-eccentricity offshoot of
the PQ family.

5.2.2 The prograde saddle points: A1 and P3

The families A1 and P3 exist at low e1 (for all μ12 and e2). Direct
integrations from the starting points of A1 and P3 families indicate
that these two are saddle points, representing the minima of large
amplitude librations or circulations. These saddle points are also
associated with the special case solutions OC. The dotted lines in
Fig. 12 indicate the angle appropriate for the special case OC – it is
along this angle that large amplitude librations approach the saddle
point at the origin. The geometry of the curves in this figure also
illustrate the nature of the A1 and P3 stationary points – the curves
that turn away from the origin indicate that these are saddle points.
Inspection of Fig. 12 might suggest that saddle points exist for all
four possible apsidal alignments, but the requirement ω̇2 = 0 restricts
this to just the A and P cases.

5.2.3 The retrograde families A1 and P3

At the lower left-hand side in Fig. 11, the cyan feature represents
the appearance of the A1 and P3 retrograde orbital families. The P1

family appears to be a high-eccentricity offshoot of the traditional
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1692 B. M. S. Hansen and S. Naoz

Figure 10. The lower panel shows the evolution of e1 with ω1 for five
different orbital integrations. All integrations start with e1 = 0.995, e2 = 0.5,
θ = 0, and ω2 = π /2. The integrations shown in red start with ω1 = π /2
and the blue integrations with ω1 = −π /2. These correspond to the radial
families PR and PR, and demonstrate the stability of the equilibrium in this
limit. The integrations shown in black begin with ω1 = π . This shows the
chaotic switching between prograde and retrograde orbits discussed by Li
et al. (2014a,b) and Naoz (2016) and references therein. Note also that this
trajectory spends a lot of time in a coplanar configuration – either in prograde
or retrograde directions. The green integrations start with ω1 = 26◦, which
is close to the special case of OR discussed in the text. We see that this is
a saddle point – once the value of ω1 approaches the critical value (shown
by the vertical dashed lines), it transitions from libration to circulation. This
family is therefore the saddle point that separates the libration and circulation
regimes of ω1. The cyan integrations start with ω1 = 66◦ – an intermediate
value. In this case, we see ω1 still librates, but experiences flips from prograde
to retrograde, illustrating that orbital flips do not require passage through a
saddle point in ω1.

Kozai–Lidov quadrupolar family, but the families A1 and P3 appear
to be qualitatively distinct. Fig. 13 shows two examples of direct
integration – one chosen from the P3 branch and one from the
A1 branch. The P3 family is shown to be a stable fixed point
family, with both ω1 and ω2 librating about the equilibrium values.
The A1 family, on the other hand, shows libration of ω1 on short
time-scales, but an overall circulation of the libration centre on
longer time-scales, combined with circulation of ω2. We find that
the combination ω1 + ω2 librates about a value of π in this case,
which means that the two planets precess at roughly the same rate and
maintain a maximal separation of their perihelia. The value of e1 also
undergoes a large excursion with a minimum at the stationary point,
so the A1 family is most accurately characterized as a saddle point.
These two families are likely to be related to the known families of
stable retrograde orbits in the problem of equal masses (e.g. Henon
(1976)).

5.2.4 The Laplace–Lagrange analogues

For completeness, we note also the presence of the two OLL families
in this case, but do not discuss them further as their behaviour and
stability is well documented (Lee & Peale 2003; Michtchenko &
Malhotra 2004) – at least until they approach the orbit crossing limit.

Figure 11. The lower panel shows the e1–θ relations for each of the
stationary point families observable in this case. The upper panel shows
the corresponding e1–e2 relationships. Only points that satisfy ε < 0.1 are
shown. Case A (ω1 = ω2 = 0) is shown in blue. Case A (ω1 = π , ω2 =
0) is shown as cyan. Case P (ω1 = ω2 = π /2) is shown in red, and case
P (ω1 = 3π /2, ω2 = π /2) is shown in black. The A1 and P3 families lie
exactly on top of one another, so that the cyan points in this figure cover a
similar feature in red. The OLL extension of the Laplace–Lagrange stationary
points are shown in magenta. The dotted lines represent two cases of fixed
total angular momentum, G2

0 = 0.023 (upper curve) and G2
0 = −0.16 (lower

curve). In both cases, e2 = 0.73.

Figure 12. The solid curves are loci of constant energy, subject to a fixed
total angular momentum, given by the upper dotted line in Fig. 11. The dashed
line represents e1 = 0.95, which is the expected value of the stationary point
P1 identified for these parameters. We see that this passes through the centre
of libration. The red points indicate a direct integration, using e1 = 0.9 and
ω1 = ω2 = π /2 as initial conditions. The dotted lines indicate the value of ω1

derived from the special solution OC. The blue points show a trajectory that
illustrates this family, which starts with the same initial conditions as the red
trajectory, except that e1 = 0.09 initially.
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Hierarchical stationary points 1693

Figure 13. The upper panel shows the evolution for an example of starting
conditions that belong to the P3 stationary point family. The starting values
are ω1 = ω2 = π /2. We see that this is a global equilibrium in the sense
that both ω1 and ω2 librate. The shorter time-scale libration is driven by the
quadrupole potential, while the longer time-scale variations are driven by the
octupole. In the lower panel, we show an example of the A1 family. The
eccentricities and mutual inclination are almost the same as the upper panel,
but the initial starting values are ω1 = π and ω2 = 0. In this case, ω1 librates
with a drifting centre, and ω2 circulates (albeit slowly). The combination ω1

+ ω2 librates about π , with brief periods of circulation when ω2 ∼ ±π /2.

5.3 Large mass ratios: μ12 = 10

The landscape of stationary points gets more complicated as the mass
ratio increases – as is shown in Fig. 14. This is not surprising, as a
more massive inner planet is more capable of affecting the orbital
dynamics of the outer planet.

5.3.1 The Kozai–Lidov generalizations: PQ, P1 and P2: PQ, P1,
and P2

The asymmetry of the Kozai–Lidov PQ family between prograde
and retrograde is clearly evident in Fig. 14. More interesting is the
fact that the prograde branch is split into an apsidally aligned P+

Q

(e1 < 0.4) and apsidally antialigned P+
Q (e1 > 0.4) branch. Both also

merge smoothly into their higher e2 analogues P1 and P1. The P1

family now also merges smoothly with the P3 family. The retrograde
family now shows a high eccentricity offshoot as well, with P2 and
P2 now present at large e1.

Fig. B7 of the online appendix shows the energy contours along
the two uppermost of the dotted lines in Fig. 14, representing two
choices for the total angular momentum of the system and illustrates
that the P1 and P1 families still represent stable librations, as they
did for lower mass ratios.

Fig. 15 shows the orbital behaviour near the P2 and P2 families
of retrograde orbits in the bottom right-hand side of Fig. 14. We see
that these correspond to a fixed point, i.e. a stable equilibrium. This
is therefore the high e2 equivalent of P−

Q , just as P1 and P1 are the
high e2 equivalents of the P+

Q family.
This new set of families first appears at e1 = 0 when the P−

Q

family passes through e1 = 0 and θ = −0.856. This is also the point
at which the special family OC appears, with cos 2ω1 = −1, and so
this becomes degenerate with the P−

Q family. We see no equivalent

Figure 14. The lower panel shows the e1–θ relations for the stationary point
families in the case of α12 = 0.05 and μ12 = 10. The upper panel shows the
corresponding relations for e1–e2. The colours indicate the apsidal geometries
– blue represents ω1 = ω2 = 0, cyan represents ω1 = π and ω2 = 0, red
represents ω1 = ω2 = π /2, and black represents ω1 = 3π /2, ω2 = π /2. The
magenta curves represent the OLL family – the extension of the Laplace-
Lagrange solutions. The gap between AQ and P−

Q is well matched by the
O|| solution shown in fig. B10 in the online appendix. The dashed curves
represent contours of constant angular momentum, and will be described in
the following figures.

split on the prograde side because cos 2ω1 = 1 would require a much
larger μ12 and the P+

Q family does not pass through any such point.
A more general criterion for the appearance of this family can be
obtained by noting that the P−

Q family represents the e2 → 0 limit of
the P2/P2 families.

5.3.2 The saddle points: A1, AQ, A1, P3, and P3

Also apparent in fig. B7 is that there is a saddle point close to the
origin – these are the A1 and P3 stationary point families that are
also present at lower masses. The families A1 and P3 were also
present at lower masses, but were found at retrograde inclinations
and moderate e1. They have now shifted to an inclined family or
almost circular orbits, and are now saddle points. In the case of
P3, this is a change in the behaviour of this family, relative to the
discussion in Section 5.2.3.

Fig. 16 shows the evolution of e1 versus ω1 in examples from the
P3 family for four different mass ratios – μ12 = 1.5 from the last
section, μ12 = 10 from this section, and two intermediate values
μ12 = 2 and 3. We see that the transition occurs between μ12 = 2 and
3, and results when the P3 family switches from a retrograde family
at small e1, to a circular family slightly inclined relative to retrograde
coplanar. Thus, increasing μ12 destabilizes the P3 family, turning it
from a fixed point to a saddle point. This is a consequence of the
increased libration and eventually circulation of ω2, which causes ω1

to circulate, with only intermittent libration.
The AQ family also retains its saddle point nature, as expected

(since e2 is small along this family). This is shown in fig. B8 of the
online appendix, which shows both the AQ point at e1 ∼ 0.37, but
also the P+

Q fixed point at e1 ∼ 0.95. Unlike the prior contour plots,
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1694 B. M. S. Hansen and S. Naoz

Figure 15. The contours represent constant energy at a fixed angular mo-
mentum given by the dotted curve in the lower right-hand corner of the lower
panel in Fig. 14, specifically for G2

0 = −0.583 and e2 = 0.5. This represents
the P2 family and demonstrates that this is a stable librational family. The
dashed circle indicates the value of e1 expected for these initial conditions.
The red curve shows a direct integration of a trajectory near this fixed point.
The reason that the available parameter space is restricted to between the two
magenta circles is that the angular momentum restricts the allowed range of
e1 (as can be seen from Fig. 14). In particular, the range is limited by the
requirement θ > −1, which means that the saddle point O|| also appears.
The dashed lines show the expected value of ω1 calculated from equation (9).
The blue curve shows an integration that starts from a coplanar, retrograde
configuration for these parameters. We see that this saddle point is sensitive
to the octupolar terms, as the orbit switches between libration and circulation.

Figure 16. The lower panel shows the stable libration of ω1 for the cases of
μ12 = 1.5 and 2. The upper panel shows how these stationary points become
saddle points at higher masses, leading to large variations in e1. The larger
amplitude of libration of the red curve in the lower panel is the harbinger
of looming instability, as it is driven by the larger amplitude libration of ω2,
which eventually overwhelms ω1.

Figure 17. This plot shows the fixed point families for two cases – μ12 = 20
and 100. The colours represent the same apsidal configurations as before. The
overall trend is to drive the families towards polar orbits as μ12 increases.
The short dashed curves represent the e1–θ relationships, which cause the
quadrupolar part of ω̇2 to vanish. The long dashed curve is when the octupolar
contribution to ω̇2 vanishes in the e2 → 0 limit.

this one does not allow solutions for the full range of e1 because the
dotted curve corresponding to the fixed angular momentum does not
extend to e1 = 0 in Fig. 14.

5.4 Extreme mass ratios: μ12 = 20 and 100

Fig. 17 shows the evolution of the stationary point families as μ12

continues to get larger and starts to approach the outer test particle
limit. The behaviour of the stationary point families can be divided
into several subsets.

5.4.1 The Kozai–Lidov generations: PQ, P1, P2; P1 and P2

As shown in Fig. 17, at μ12 = 20, the prograde families P1 and
P+

Q are compressed to e1 < 0.2 and they disappear completely by
μ12 = 100 (although vestigial versions of P−

Q , P2, and P2 remain).
The P1 family comes to dominate at these masses, and becomes
progressively more polar as the mass ratio increases.

5.4.2 The saddle points: A2, AQ, A1, and P3

Similarly to P1, the AQ family evolves towards the polar limit
as μ12 increases, but from the retrograde direction. At larger μ12,
the family A1 moves to larger e1 and truncates when it intersects
AQ. Furthermore, we finally see the appearance of the A2 family
discussed in Section 3.1. We see that it is also clearly associated with
the AQ/A1 family, filling in a gap in the AQ family at μ12 = 100. The
appearance of the A2 family produces a new saddle point. This has
qualitative similarities to the AQ point, as it divides the parameter
space into an inner and outer region of circulation, which encircle a
libration (about the P1 fixed point). This is demonstrated in fig. B8
of the online appendix.
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Hierarchical stationary points 1695

Figure 18. The red curve shows the result of a direct integration (including
relativity) starting from the P2 family in the middle panel of Fig. 8. In
particular, e1 = 0.461, e2 = 0.3965, and θ = −0.633 (with ω1 = ω2 = π /2).
We see that this alternates between periods of libration and circulation, which
are driven by the circulation of ω2 and the resulting fluctuations in e2. The
black curve shows the libration that results purely from the secular dynamics
(no relativistic precession) using the exact same initial conditions.

The P1 family merges smoothly into the saddle point family P3,
so one question, based on Fig. 17, is whether, in the limit of large
μ12, the prograde solutions are entirely of family P1, or whether a
family of P3 saddle points remains. Examination of the black curve
for μ12 = 100 shows that this entire curve is stable – i.e. belongs to
the P1 family. Thus, P3 disappears at the same time as P1.

5.5 Influence of relativity

In Section 4, we showed that the inclusion of relativistic precession
alters the positions of the stationary point solutions if the inner planet
orbits too close to the star. It also has consequences for the stability
of those equilibria.

In particular, the inclusion of relativistic precession appears to
destabilize both the quadrupolar extensions PQ as well as the P2

and P2 families seen in the panels of Fig. 8. An example of this is
shown in Fig. 18. We see that ω1 does librate intermittently, but also
experiences circulation and fluctuations in e1, which are driven by
the circulation of the angle ω2. Thus, we cannot regard this family
as a fixed point family anymore.

The family that does remain stable is P1, in which both ω1 and ω2

librate for starting conditions taken from all three panels in Fig. 8.
The corresponding familyP1 in the lower panel shows libration of ω1

but circulation of ω2, which introduces a larger amount of variation
in e1.

This prograde, polar fixed point family is stable even when the
quadrupolar family is destroyed by the relativistic precession, and
extends down to at least a1 = 0.025 AU in the case where M1 =
M2 = 1MJ and α12 = 0.05. Of perhaps greater relevance is the case
where the inner mass and semimajor axis is fixed and the outer values
varied, as this is more representative of the observational situation.
The sequence shown in Fig. 9 is more representative of this, and
shows that the P1 family persists in this sequence as well. It also

remains stable as a2 and/or M2 increases. However, it does move to
ever higher e2, although ε remains below the threshold level of 0.1
because α12 is also dropping.

5.6 Influence of orbital separation

We have so far focused on the mass ratio, μ12, as the principal
parameter, holding the ratio of separations fixed at α12 = 0.05. At the
quadrupolar level, the stationary point structure is regulated by the
quantity μ12α

1/2
12 , so that the configurations for smaller α12 should

largely mimic those at α12 = 0.05 but with lower μ12. At the octupole
level, an additional consideration is the fact that changing α12 will
change the value of e2 corresponding to the threshold ε = 0.1. A
comparison at fixed μ12 but different α12 is shown in fig. B11 of the
online appendix. As expected, shifting from α12 = 0.05 to α12 =
0.005 moves the families towards a configuration more reminiscent
of the lower mass case in fig. B5. Similarly, moving to larger α12 =
0.2 shifts the configuration more towards that observed in Fig. 17.

If α12 gets too large, the neglect of higher order terms becomes
problematic and the hierarchical assumption fails. However, at least
some of the stationary points discussed here appear to survive
at closer separations. Studies of the secular structure of specific
exoplanet pairs by direct numerical averaging of the secular Hamil-
tonian (Michtchenko et al. 2006; Migaszewski & Goździewski 2009)
show fixed points associated with Kozai–Lidov resonances as well
as several additional families. Section B4 of the online appendix
discusses the relationship between the naming convention used here
and that used in Migaszewski & Goździewski (2009, 2011). These
studies focus either on a limited mass range and more compact
configurations (Migaszewski & Goździewski 2009) or high masses
but only prograde orbits (Migaszewski & Goździewski 2011), but
indicate that the structure we discuss here is robust beyond the
hierarachical approximation.

6 D ISCUSSION

Table 2 summarizes the different stationary point families and
clarifies which are fixed points and which are saddle points. In terms
of stable stationary points (fixed points), we find that the octupole
problem shows analogues of the quadrupolar Kozai–Lidov family
(PQ, PQ) for low but finite e2 as well as branches that exist at
large e2 (P1 and P1). We also find that these branches switch apsidal
alignments in certain places, driven by the direction of the precession
of ω2 at quadrupole order. We find a branch of fixed points at almost
radial orbits (PR and PR) and another stable family of fixed points in
a retrograde configuration (P2 andP2). The stationary point structure
is much richer for μ12 > 1 than it is for μ12 < 1.

An analogue of the Q1 saddle point also appears at large μ12, in
the form of AQ, A1, and A2, with branches for both small and large
e2 in a manner similar to the P/P family fixed points. The set of
saddle point families A1, A1, P3, and P3 define the seperatrices of
large-scale librations about the P and P fixed point families in the
limit e1 → 0. There are also generalizations of the special case saddle
points for circular, radial, and coplanar orbits.

6.1 Switching of apsidal alignments

One curious feature of the solutions to the octupole problem is
that, although extensions of the quadrupolar families are present, the
generalized families switch apsidal alignment for particular values
of e1. This can be understood by noting that the sign of the octupolar
contribution must change whenever the sign of the quadrupolar
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1696 B. M. S. Hansen and S. Naoz

contribution switches sign, in order to fix the stationary point. Thus,
we can identify the switches in apsidal alignment by finding the cases
when ω̇1 = ω̇2 = 0 at quadrupole order.

At low μ12, there are no switches in apsidal alignment. As we
increase μ12, the first case arises in the limit e1 ∼ 1. If we take the
e1 → 1 limits of the prograde versions of equations (4) and (11),
we find the critical value at which this apsidal switch first appears
from the requirement that the two expressions have the same limit,
namely

μ12α
1/2
12

2

√
1 − e2

1

1 − e2
2

⎛
⎝1 +

(
1 + 12

√
1 − e2

2

5μ2
12α12

)1/2
⎞
⎠

= μ12α
1/2
12

√
1 − e2

1

1 − e2
2

. (28)

This is satisfied when μ2
12α12 = 0.3. Therefore, the two curves first

overlap when μ12 >
√

6 = 2.449 for α12 = 0.05. For mass ratios
above this value, the prograde analogue of the Q2 solution is split
between PQ

+ and PQ
+, with the transition moving to lower e1 as

μ12 increases.
As the mass ratio increases, the point of reversal moves to lower

e1 and eventually disappears again. The corresponding mass can be
derived from the e1 → 0 limit, which yields μ2

12α12 = 256/5(1 − e2
2),

or μ12 > 32(1 − e2
2) for α12 = 0.05.

Similar behaviour occurs for the retrograde branches. In this case,
the alignment reversal sets in at lower masses in the e1 → 0 limit.
There is no closed form solution for this criterion, but numerically
it is μ12α

1/2
12 = 0.659

√
1 − e2

2. As the mass increases, the reversal
moves to larger e1, with a limiting behaviour in the large μ12 limit of

e2
1 → 1 − 2

5

(
1 − e2

2

)
α12μ

2
12

. (29)

The retrograde solutions exhibit another curious feature, in that the
octupolar contribution to ω̇2 contains a term ∝ 1/e2. The PQ

− and
PQ

− solutions occur in the limit of low e2 so fixing a stationary point
in this limit requires that the coefficient of that term must go to zero
too, which imposes a condition θ2 = (1/5)(11 + 17e2

1)/(3 + 4e2
1) as

well. When the solutions cross this threshold, there is another apsidal
reversal. The consequence is that the PQ

− contribution is limited to
a finite range of μ12 and e1. The inset in Fig. 19 illustrates this.

Related behaviour is apparent in the ω1 = 0 solutions. At the
quadrupolar level, ω̇2 = 0 yields equation (13). Reversals in apsidal
alignment are therefore to be expected when this criterion overlaps
with the Q1 criterion, which leads to the condition

μ2
12α12 = 16

1 − e2
2

1 − 6e2
1

. (30)

The lowest mass for which a solution occurs is found by setting e1 =
0, and so we expect apsidal reversals when μ12 > 4

√
(1 − e2

2)/α12,
which amounts to μ12 > 17.9

√
1 − e2

2 for α12 = 0.05. We note also
that solutions are limited to e1 < 1/

√
6 = 0.4082 because otherwise

μ2
12 < 0. The approach to this limit leads to large μ12, which explains

why this eccentricity was identified as a critical value for the outer test
particle case (Naoz et al. 2017; Zanardi et al. 2017, 2018; Vinson &
Chiang 2018; de Elı́a et al. 2019; Naoz et al. 2020).

As in the case of the P and P families, we see that the apsidal
reversal between A and A families also only occupies a limited
range of e1, and for the same reason. The criterion that the octupolar
term be finite as e2 → 0 for this case implies a condition θ2 =
(1/5)(1 − 8e2

1)/(1 − e2
1). In the limit of very large masses, θ → 0 and

Figure 19. The solid line shows the criterion for ω̇1 = 0 at the quadrupolar
level (the Q2 solution). The long dashed lines shows the equivalent criterion
for ω̇2 = 0. The short dashed lines show the criterion for the octupolar
contribution to ω̇2 = 0 in the limit of small e2. The inset shows a zoom-
in to the region where the three curves cross in the retrograde case. In red
we show the full P family solutions for this region and in green we show the
P family. We see there is a limited range of e1 for which there is an apsidal
reversal – sandwiched between the criteria for the quadrupolar and octupolar
contributions to reverse.

e1 → 1/
√

8 = 0.3536. Together, these eccentricity limits explain the
behaviour of the retrograde families in Fig. 17.

6.2 The eccentric Kozai–Lidov mechanism

One motivation for this work was to get a more unified view of the
rich dynamical structure (e.g. Naoz 2016) of the hierarchical three
body problem, using the stationary point families as a ‘scaffolding’,
or organizing principle. The most obvious feature of the dynamics
of this problem is the Kozai–Lidov resonance (Kozai 1962; Lidov
1962), which couples the eccentricity and inclination variations due
to a resonance between the apsidal and nodal precession rates. The
original (quadrupole) description of this resonance is associated with
our Q2 family of fixed points, although the QR saddle point is also
important, as it represents the turning point of the librations about
the Q2 family.

The appreciation that the octupolar contribution can qualitatively
change the dynamics (Naoz et al. 2011, 2013a) motivates the
generalization of the study of the stationary points to the more general
octupolar case. We see that the form of the K-L fixed point family
retains its basic nature with the introduction of the octupole term,
although we note that the apsidal alignment between inner and outer
orbits does vary depending on the eccentricity and mass ratio.

Fig. 20 shows the evolution of a system with the same parameters
as those shown in fig. 6 of Naoz et al. (2013a) – a demonstration of
the kind of orbit orientation flip introduced by the inclusion of the
octupole term in the dynamics. The evolution of the system is plotted
relative to the particular stationary points relevant to the dynamics
of this particular case. We see that the fundamental libration is still
driven by the location of the P+

Q family, but the turnaround at low e1

is associated with the A1 saddle point. It is also notable that the range
of ω1 over which the value of e1 remains low is regulated by two
of the solutions of the OC special family – depending on the value
of the mutual inclination. The excursions at large e1 do come close
to the OR special point, but are regulated by the limited variation
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Hierarchical stationary points 1697

Figure 20. The upper panel shows the evolution of the mutual inclination,
and the lower panel shows the evolution of the inner planet eccentricity e1,
as a function of the inner argument of perihelion. The parameters of the
integration were chosen from fig. 6 of Naoz et al. (2013a) – mc = 1 M
,
m1 = 1MJ, m2 = 2MJ, a1 = 4 AU, a2 = 45 AU, e1 = 0.01, e2 = 0.6, ω1 = π ,
and ω2 = 0. Initial itot = 67◦. The green points indicate when e1 < 0.2 and
the cyan parts when e1 > 0.7. The red points and lines indicate stationary
point families, as labelled. In principle, the value of e1 for P+

Q should should
vary with e2, but the effect is small, given the variation observed here (e2

varies from 0.496 to 0.618).

allowed by the conservation of angular momentum (even including
the variations induced by libration of e2).

The generalization of the K-L family – PQ – occurs for small,
but non-zero e2. We do find, however, that there are extensions of
this fixed point family to high e2 (the P1/P1 and P2/P2) families. In
particular, the P1 and P+

Q families share very similar trends in terms
of e1 and θ , but differ dramatically in terms of e2. Are they truly
distinct?

Fig. 21 shows the results of three integrations that all start from the
same initial conditions except for a different value for e2. The masses
are mc = 1 M
, m1 = 2MJ and m2 = 1MJ, while the semimajor axes
are a1 = 1 and a2 = 20 AU (so α12 = 0.05). The inner eccentricity
is e1 = 0.8 and itot = 67.◦6. We also assume ω1 = ω2 = π /2. For
these values, the P+

Q fixed point is located at e2 = 0.03 and the P1

fixed point is located at e2 = 0.77. The figure shows the evolution
for e2 = 0.03 (black), 0.4 (blue), and 0.77 (red).

For low values of e2, ω2 librates, as expected for the PQ
+fixed

point. However, for e2 in the range 0.1–0.7, ω2 circulates, although
ω1 continues to librate. This is consistent with the behaviour expected
of a generalization of the quadrupole behaviour, since e2 plays little
role in the evolution of ω1 if the octupolar contribution is weak.
However, Fig. 21 shows that libration of ω2 returns at e2 = 0.77.
This is the appearance of the P1 fixed point. Thus, the P1 point is
qualitatively distinct from the PQ point in the sense that we find an
extended range of e2 in between the two fixed point values, for which
ω2 circulates.

6.3 Coplanar flip behaviour

Li et al. (2014a) noted the appearance of an orbital ‘flip’ behaviour
in systems with almost coplanar orbits but high eccentricities. This

Figure 21. The upper panel shows the evolution of e1 as a function of time
for each of the three cases discussed in the text. The middle panel shows that
the inner argument of periastron librates for all cases studied here, while the
lower panel shows the outer argument of periastron. We see that this angle
librates for e2 = 0.03 (the PQ

+ case – black curves) and 0.77 (the P1 case
– red curves) but circulates for e2 = 0.4 (blue curves).

is qualitatively different from that associated with the Kozai–Lidov
family in that it starts from approximately coplanar configurations
and also transitions from prograde to retrograde on a time-scale con-
siderably shorter than the diffusive evolution seen in manifestations
of the eccentric Kozai–Lidov effect.

This appears to be related to the radial fixed point family OR

discussed in Section 3.5. Li et al. discussed the case of α12 = 0.02
and find that the orbit flips if the outer body eccentricity is large
enough. The family OR is a saddle point, and so the approach to
this limit in the coplanar case drives the system away from the
equilibrium. As noted in Section 3.5.3, the range of ω1 for which
the equilibrium exists is limited unless e2 is large enough. If we
apply our criterion equation (21) for the critical solution to extend
over all ω1, we derive a criterion e2 > 0.627, which compares well to
Li et al.’s empirical estimates for the threshold value. They also find
a restriction to large initial e1, but this is more related to the initial
conditions – it is required to limit the value of the z-component of the
angular momentum to a value that is less than the variation induced
by the octupolar term.

Fig. 22 shows an integration of the case chosen by Li et al. (2014a)
in fig. 2 of that paper. We see that the ‘flip’ is indeed associated with
a saddle point in ω2 – where the direction of precession reverses.
For lower values of e2, the precession of ω2 does not reverse and the
inclination increases by only a small amount. We also highlight the
cycle in ω2 that leads to the flip in blue. This demonstrates the speed
at which the transition occurs because it is a direct passage through
the saddle point and not a diffusive evolution like in the case of the
flips driven by the eccentric Kozai–Lidov evolution.

6.4 The inverse Kozai–Lidov resonance

The original Kozai–Lidov solution represents the fixed point as-
sociated with an inner test particle, and is found above a critical
inclination (at low e1) of θ2 = 3/5. The equivalent solution for an outer
test particle yields another critical inclination at θ2 = 1/5 (Jefferys &
Moser 1966; Krasinsky 1972; Lidov & Ziglin 1976) at quadrupole

MNRAS 499, 1682–1700 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/1682/5900990 by U
C

LA Biom
edical Library Serials user on 29 January 2021



1698 B. M. S. Hansen and S. Naoz

Figure 22. The upper panel shows an example of the ‘Coplanar flip’
discussed in Li et al. (2014a). The parameters here are chosen to reproduce
fig. 2 of that paper. The masses are Mc = 1, M1 = 0.001, and M2 = 0.02 M
,
and the semimajor axes are a1 = 1 and a2 = 50 AU. The initial eccentricities are
e1 = 0.9 and e2 = 0.7. The initial mutual inclination is 5◦ and the arguments
of periastron are chosen to be ω1 = ω2 = 0 in the invariable plane. The lower
panel shows the precession of the angle ω2 in the neighbourhood of the first
flip. The curves are red if itot > 90◦. We see that the flip is associated with
a reversal in the direction of precession of ω2, i.e. it has passed through the
saddle point at θ = 0 and e1 ∼ 1. The last cycle in ω2 is highlighted in blue
and demonstrates that the transition from almost coplanar to flip is rapid – as
noted by Li et al., who found this happened much more rapidly than in the
Kozai–Lidov case.

order. Fig. 23 shows the critical inclinations Icrit (the e1 → 0 limit) of
various orbital families, as a function of μ12 (keeping α12 = 0.05).
The changeover from the PQ family to the P1 contribution is because
ω̇1 = 0 and ω̇2 = 0 have different quadrupolar limits as the mass ratio
increases, and it requires large octupolar corrections to satisfy both
criteria simultaneously. Eventually, this violates the ε < 0.1 criterion,
although the addition of higher order terms can recover a solution in
this limit (Gallardo, Hugo & Pais 2012; Naoz et al. 2017; Vinson &
Chiang 2018; de Elı́a et al. 2019).

Within context of our classification, the ‘inverse Kozai–Lidov
resonance’ (as defined by Vinson & Chiang (2018)) is related to
the high-e2 extensions of the original quadrupolar family (P1 for
the prograde case, P3 for the retrograde case) rather than the low e2

extensions P+
Q and P−

Q that form the natural generalizations of the
Kozai–Lidov family, as these latter families either tend to polar or
disappear in the high μ12 limit.

6.5 Warm Jupiters

The presence of giant planets on scales ∼0.1–1 AU (‘Warm’ Jupiters)
is considered to be a curious phenomenon, given that the most
common theories of giant planet formation suggest that planets are
easier to form on larger scales. The presence of ‘Hot’ Jupiters, with
a < 0.1 AU is suggested to be a consequence of either migration
through a disc to the inner edge (Goldreich & Tremaine 1980; Lin &
Papaloizou 1986; Lin, Bodenheimer & Richardson 1996) or by the
tidal capture of planets excited to high-eccentricity orbits due to either

Figure 23. The upper panel shows the critical inclinations (e1 = 0) for the
orbital families in the case ω1 = π /2. Black points are the apsidally aligned
families, and red points are the apsidally antialigned. The lower panel shows
the equivalent for the ω1 = 0 cases. The dotted lines indicate the quadrupole
constraint on ω̇1 = 0, the dashed curve incidates the quadrupolar term ω̇2 = 0,
and the dot–dashed curve indicates the octupole term ω̇2 = 0.

planetary scattering (Rasio & Ford 1996; Weidenschilling & Marzari
1996) or secular interactions (e.g. Fabrycky & Tremaine 2007; Naoz
et al. 2011; Wu & Lithwick 2011; Naoz et al. 2012; Stephan, Naoz &
Gaudi 2018). Warm Jupiters fall in between these two classes. It has
been proposed that such planets may be in the process of a slow or
stalled tidal drag-down because their periastra get close enough to
the star for meaningful tidal dissipation only for a small fraction of
the duration of secular oscillations (Dong, Katz & Socrates 2014;
Frewen & Hansen 2016; Petrovich & Tremaine 2016). Dawson &
Chiang (2014) present evidence that Warm Jupiters with outer
planetary companions have substantial mutual inclinations, based on
the clustering of the projected δω near values ∼90◦. This clustering
is related to the fact that systems undergoing large librations about
the P+

Q family approach the OC saddle point and the preferred
value of θ ∼ 0.77 emerges from the location of the P+

Q family in
the limit of μ12 < 1 (which holds for most of the Warm Jupiter
systems).

6.6 High-eccentricity orbits

Much of the interest in hierarchical triples derives from their potential
to generate high eccentric orbits through Kozai–Lidov oscillations
(Naoz 2016). One new feature identified here is the existence of
highly eccentric fixed point families, where the eccentricity remains
high. The PR and PR families exist for approximately polar orbits,
while the P2 and P2 families exist for retrograde orbits in the limit of
large μ12. These families of orbits potentially offer alternative path-
ways to high eccentricity migration, but would require a dissipative
process to place a system into such a configuration if one started
from a traditional coplanar alignment.
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7 C O N C L U S I O N S

Our goal in this paper is to survey the stationary points of the
hierarchical three body problem. We aim to understand the variety
of possible secular behaviours available to planetary systems in
hierarchical configurations.

The principal feature at the quadrupole level of approximation is
the fixed point family Q2, identified originally by Lidov and Kozai
(Kozai 1962; Lidov 1962), along with several saddle points that
appear in various limits (Ziglin 1975; Lidov & Ziglin 1976). We find
that the same fixed point behaviour appears at the octupolar level, for
small but non-zero values of the outer planet eccentricity e2, although
it is split between two fixed point families, PQ and PQ, depending on
whether ω1 and ω2 are aligned or antialigned. An interesting feature
of these families is that, for larger mass ratios, the apsidal alignment
can change as a function of e1. These switches are associated with
the change in sign of ω̇1 and ω̇2 at quadrupole order.

In addition to identifying the analogue to the quadrupolar family,
we also identify extensions to this family, with both prograde and
retrograde cases. These new fixed point families are distinct in that
they are branches that continue up to much larger e2 and have
no analogue at the quadrupolar level. They demonstrate that the
octupolar contribution can do more than simply induce variations
about the quadrupole solution and contribute to chaos – it can
also help to fix and stabilize new equilibria. Elements of these
families are also the most robust against the destabilizing effects of
relativistic precession when the inner planet gets close to the central
star.

The secular architecture gets more diverse as μ12 increases (at
fixed α), with the various new fixed points appearing for μ12 >

1 and the original Kozai–Lidov family tending to polar orbits as
μ12 gets large. We also find several stationary points for retrograde
configurations.

We also find a variety of special case solutions, most of which
are saddle points (although we recover the known extension of the
Laplace–Lagrange solution in the coplanar limit). As one would
expect, many of these are associated with the transitions between
circulation and libration about one of the fixed points. One saddle
point of dynamical significance is that in the radial, coplanar limit,
which is responsible for the coplanar flip behaviour identified by Li
et al. (2014a).

These results indicate that the secular architecture of multiplanet
systems contains several possible fixed points, especially in the case
of more massive inner planets. Although current methods of planet
detection yield only weak constraints on mutual inclination in most
cases, the anticipated astrometric information to be gained from Gaia
in the near future (Perryman et al. 2014) may allow us to constrain
the full three-dimensional behaviour of the best studied systems
and to classify their dynamics in terms of the behaviour outlined
here.

AC K N OW L E D G E M E N T S

This research has made use of NASA’s Astrophysics Data System
and of the NASA Exoplanet Archive, which is operated by the
California Institute of Technology, under contract with the National
Aeronautics and Space Administration under the Exoplanet Explo-
ration Program. SN acknowledges partial support from the NSF
through grant No. AST- 1739160. Moreover, SN thanks Howard and
Astrid Preston for their generous support. The authors acknowledge
a helpful referee report.

DATA AVAI LABI LI TY

All data used in this paper are available upon request from the
corresponding author.

REFERENCES

Antognini J. M. O., 2015, MNRAS, 452, 3610
Dawson R. I., Chiang E., 2014, Science, 346, 212
Dawson R. I., Johnson J. A., 2018, ARA&A, 56, 175
de Elı́a G. C., Zanardi M., Dugaro A., Naoz S., 2019, A&A, 627, A17
Dong S., Katz B., Socrates A., 2014, ApJ, 781, L5
Fabrycky D., Tremaine S., 2007, ApJ, 669, 1298
Ferrer S., Osacar C., 1994, Celest. Mech. Dyn. Astron., 58, 245
Ford E. B., Kozinsky B., Rasio F. A., 2000, ApJ, 535, 385
Frewen S. F. N., Hansen B. M. S., 2016, MNRAS, 455, 1538
Gallardo T., Hugo G., Pais P., 2012, Icarus, 220, 392
Goldreich P., Tremaine S., 1980, ApJ, 241, 425
Hamers A. S., Portegies Zwart S. F., 2016, MNRAS, 459, 2827
Harrington R. S., 1968, AJ, 73, 190
Henon M., 1976, Celest. Mech., 13, 267
Innanen K. A., Zheng J. Q., Mikkola S., Valtonen M. J., 1997, AJ, 113,

1915
Jefferys W. H., Moser J., 1966, AJ, 71, 568
Kozai Y., 1962, AJ, 67, 591
Krasinsky G. A., 1972, Celest. Mech., 6, 60
Lee M. H., Peale S. J., 2003, ApJ, 592, 1201
Li G., Naoz S., Kocsis B., Loeb A., 2014a, ApJ, 785, 116
Li G., Naoz S., Holman M., Loeb A., 2014b, ApJ, 791, 86
Libert A. S., Tsiganis K., 2009, A&A, 493, 677
Libert A.-S., Henrard J., 2006, Icarus, 183, 186
Libert A.-S., Henrard J., 2007, Icarus, 191, 469
Lidov M. L., 1962, Planet. Space Sci., 9, 719
Lidov M. L., Ziglin S. L., 1976, Celest. Mech., 13, 471
Lim H., Rodriguez C. L., 2020, Phys. Rev. D, 102, 064033
Lin D. N. C., Papaloizou J., 1986, ApJ, 309, 846
Lin D. N. C., Bodenheimer P., Richardson D. C., 1996, Nature, 380, 606
Liu B., Muñoz D. J., Lai D., 2015, MNRAS, 447, 747
Liu B., Lai D., Wang Y.-H., 2019, ApJ, 883, L7
Marcy G. W., Butler R. P., Vogt S. S., Fischer D., Liu M. C., 1999, ApJ, 520,

239
Marcy G., Butler R. P., Fischer D., Vogt S., Wright J. T., Tinney C. G., Jones

H. R. A., 2005, Prog. Theor. Phys. Suppl., 158, 24
Mayor M., Queloz D., 1995, Nature, 378, 355
Michtchenko T. A., Malhotra R., 2004, Icarus, 168, 237
Michtchenko T. A., Ferraz-Mello S., Beaugé C., 2006, Icarus, 181, 555
Migaszewski C., Goździewski K., 2009, MNRAS, 395, 1777
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A P P E N D I X : O C T U P O L E E QUAT I O N S

Our analysis of the stationary points is based on the equations
in section 8 of Naoz (2016). For completeness we reproduce the
equations here. Some simplifying quantities are

B = 2 + 5e2
1 − 7e2

1 cos 2ω1, (A1)

A = 4 + 3e2
1 − 5

2
B(1 − θ2), (A2)

cos φ = − cos ω1 cos ω2 − θ sin ω1 sin ω2. (A3)

We can simplify our expressions a little because we are interested
in the zeroes of the equations and so the absolute time-scales is not
of immediate relevance. We consequently divide out the quantity
6C2/G1 from Naoz (2016). After this operation, the precession of the
inner body is given by

ω̇1 = F1 + F2 cos 2ω1 − 5

8

α12e2(
1 − e2

2

) [F3 + F4] , (A4)

where

F1 = 5θ2 + e2
1 − 1 + (

2 + 3e2
1

)
βθ, (A5)

F2 = 5
(
1 − θ2 − e2

1 − βe2
1θ

2
)
, (A6)

F3

e1(θ + β)
= sin ω1 sin ω2

[
10(3θ2 − 1)

(
1 − e2

1

) + A
]

− 5Bθ cos φ, (A7)

e1F4(
1 − e2

1

) = sin ω1 sin ω2

[
10θ (1 − θ2)

(
1 − 3e2

1

)]

+ (3A + 2 − 10θ2) cos φ, (A8)

where β = G1/G2 = μ12α
1/2
12

√
(1 − e2

1)/(1 − e2
2). Note that we

have assumed m1, m2 � m0 in calculating the prefactor of F3 and
F4, so that this applies primarily to the planet problem.

The precession of the outer body is given by

ω̇2 = F5 + F6 cos 2ω1 − 5

8

e1(
1 − e2

2

) [F7 + F8] , (A9)

where

F5 = (2 + 3e2
1)

[
β

2
(5θ2 − 1) + θ

]
, (A10)

F6 = 5e2
1

[
β

2
(5θ2 − 3) − θ

]
, (A11)

F7 = sin ω1 sin ω2

[
β

e2

(
1 + 4e2

2

)
10θ (1 − θ2)

(
1 − e2

1

)
− e2 (1 + βθ )

(
A + 10(3θ2 − 1)

(
1 − e2

1

))]
, (A12)

F8 = cos φ

(
5Bθe2(1 + βθ ) +

(
1 + 4e2

2

)
e2

βA

)
. (A13)

To complete the description of the stationary points, we also need
the rate of change of the eccentricities,

ė1

1 − e2
1

= F9 sin 2ω1 − 5

8

α12e2

1 − e2
2

(F10 + F11) , (A14)

where

F9 = 5e1(1 − θ2), (A15)

F10 = 35 cos φ(1 − θ2)e2
1 sin 2ω1, (A16)

F11 = θ
[
A − 10(1 − θ2)

(
1 − e2

1

)]
cos ω1 sin ω2

−A sin ω1 cos ω2, (A17)

and

ė2

1 − e2
2

= 5

8

α12e1

1 − e2
2

βF12, (A18)

where

F12 = θ
(
10(1 − θ2)

(
1 − e2

1

) − 1
)

sin ω1 cos ω2

+A cos ω1 sin ω2. (A19)
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