DoThisHere: Multimodal Interaction to Improve
Cross-Application Tasks on Mobile Devices

Jackie (Junrui) Yang Monica S. Lam James A. Landay
Stanford University Stanford University Institute for Human-Centered Al
Stanford, CA, USA Stanford, CA, USA Stanford University

jackiey @cs.stanford.edu lam @cs.stanford.edu Stanford, CA, USA
landay @cs.stanford.edu
“Show me the (Y @ metacritic.com/search/game/ (2) } L < aabattery XJ
eview of this game? © [eust @) ome ﬁI} gl frmorieic s comip . @
ik 4 VYear Shelf Life. L
Al Movies Games Albums TvShows Person 313?@)
Advanced Filters) iva; pilierETras oy ¥ (g!—DeAA
House Flipper . % Balmry,BulkFﬁ*JO’G Count
jsarname Top Results for "beat saber " =
: ae ” HEEE L on

Example@example.com

Passcode in Duo

| 635152

Beat Saber

Login L]

¥ Remember me

Moving Out

B Beat Saber

ROLLBACK
ACDelco Super Alkaline AA
Batteries, 48 Count
*hkkkk 7

$12.98 27«

Free shipping on orders $35+

Beat Saber is a VR rhythm game where your goal is
to slash the beats which perfectly ft into precisely
handcrafted.

op Alkaline AA

Figure 1. DoThisHere accepts users’ multimodal input and helps users complete cross-app tasks. The user can use voice commands (shown in quotes)
to specify their intention and touch (shown in green boxes) to specify the relevant parameters. DoThisHere supports three major functions: Query, Do,
and Keep, which help the user retrieve information from another app, execute an app function with the current content as a parameter, and remember

content on the screen, respectively.

ABSTRACT

Many computing tasks, such as comparison shopping, two-
factor authentication, and checking movie reviews, require us-
ing multiple apps together. On large screens, “windows, icons,
menus, pointer” (WIMP) graphical user interfaces (GUIs) sup-
port easy sharing of content and context between multiple
apps. So, it is straightforward to see the content from one
application and write something relevant in another applica-
tion, such as looking at the map around a place and typing
walking instructions into an email. However, although today’s
smartphones also use GUISs, they have small screens and lim-
ited windowing support, making it hard to switch contexts and
exchange data between apps.

We introduce DoThisHere, a multimodal interaction technique
that streamlines cross-app tasks and reduces the burden these

(©MOM

This work is licensed under a Creative Commons Attribution 4.0 International License.
UIST 20, October 20-23, 2020, Virtual Event, USA

© 2020 Copyright is held by the author/owner(s).

ACM ISBN 978-1-4503-7514-6/20/10.

http://dx.doi.org/10.1145/3379337.3415841

tasks impose on users. Users can use voice to refer to infor-
mation or app features that are off-screen and touch to specify
where the relevant information should be inserted or is dis-
played. With DoThisHere, users can access information from
or carry information fo other apps with less context switching.

We conducted a survey to find out what cross-app tasks people
are currently performing or wish to perform on their smart-
phones. Among the 125 tasks that we collected from 75 partic-
ipants, we found that 59 of these tasks are not well supported
currently. DoThisHere is helpful in completing 95% of these
unsupported tasks. A user study, where users are shown the
list of supported voice commands when performing a rep-
resentative sample of such tasks, suggests that DoThisHere
may reduce expert users’ cognitive load; the Query action, in
particular, can help users reduce task completion time.

Author Keywords
Multimodal interaction; voice interfaces; cross-app tasks.

CCS Concepts
*Human-centered computing — Graphical user inter-
faces; Natural language interfaces; Gestural input;

https://creativecommons.org/licenses/by/4.0/deed.en

INTRODUCTION

“There’s an app for everything”!; however, many tasks require
multiple apps to complete them [6]. On desktop or laptop
environments, working with multiple apps is relatively easy
as the WIMP system allows users to lay out windows side by
side and exchange data without disturbing the graphical layout.
However, mobile devices have limited screen real estate, and
to make it worse, the fat finger problem [4] requires mobile
devices to have larger control widgets. Therefore, mobile de-
vices usually only support one app running in the foreground,
which makes completing cross-app tasks significantly harder.

Previous work tries to solve this problem by allowing two apps
to be laid out side-by-side [1] or improving the task switching
interface [8, 13]. However, to make mobile phone apps touch-
friendly, they usually use large control widgets, and therefore
the information density is more sparse as compared to desktop
applications. Combined with the mobile phones’ small screen
real estate, the amount of information that can be presented
is limited. Instead of presenting more information on the
screen, DoThisHere allows the user to specify the relevant
off-screen information by making verbal references to it and
only displays the most relevant information on the screen.
Therefore, DoThisHere can potentially reduce both the amount
of context switching and the cognitive load on the user.

We identified two types of data exchange that often occur
between apps: simple data exchange (copy-and-paste on the
desktop) and complex data exchange (looking at and interpret-
ing the information from one app while working on another).
For the first type, the user may either refer to the relevant
information verbally and specify the destination with touch
(Query action in Figure 1), or specify the relevant information
with touch and refer to the target action in a verbal command
(Do action in Figure 1). For the second type, we allow the
system to capture part of the UI of an app and the user can put
it on top of another app like a “post-it note” (Keep action in
Figure 1).

It is important that we make DoThisHere applicable to apps
without requiring any modification. We do so by leveraging the
APIs provided by operating systems (OSs) and an open-source
virtual assistant framework. We use mobile OS APIs for rec-
ognizing information and input control on-screen, intercepting
the user’s touch points for selection, and displaying relevant
results. For understanding the user’s voice commands, retriev-
ing off-screen information, and executing the user-specified
command, we leverage the speech understanding and app in-
tegration functionality of a virtual assistant framework. In
this way, DoThisHere can take advantage of the large num-
ber of apps that have already been integrated into the virtual
assistant framework; DoThisHere can continue to expand its
functionality as more apps are integrated into the assistant.

The contributions of DoThisHere include:

1. A multimodal interaction paradigm that facilitates complet-
ing cross-app tasks on mobile devices by letting users make
verbal references to off-screen content and app functions.

1https ://www.wired.com/2010/10/app- for-that/

2. A system design and implementation that is portable and

expandable as the virtual assistant framework grows.

3. An evaluation showing that the DoThisHere system can

apply to the majority of cross-app tasks that are currently
not well-supported by mobile OSs. We compared the maxi-
mum performance of our system with Android navigation
in actual cross-app tasks with a user study. When users are
provided with the list of supported voice commands, our
system induces less task load (based on NASA-TLX) on
the user, the majority of users prefer DoThisHere over the
baseline Android navigation, and the Query action in DoTh-
isHere can significantly improve the user’s performance
time in completing tasks.

RELATED WORK

There are three categories of related work for DoThisHere:
multimodal virtual assistant systems, window managers that
support voice, and research on small screen multi-tasking.

Multimodal virtual assistant

DoThisHere is built upon voice interactions provided by the
Almond virtual assistant framework [7]. We added touch in-
teractions to specify which GUI elements to evoke verbally
specified actions upon. There is other research in this area of
building a virtual assistant that can receive multimodal input.
MVA [15] is one of the earliest projects in this area. It pro-
posed a system similar to existing smartphone virtual assistants
but can also receive input from touch and voice to better de-
fine information queries. However, MVA requires a complete
rebuild of the original virtual assistant infrastructure to make
commands that can accept input from both channels. Bras-
sau [12] makes the process of adopting multiple modalities
easier by automatically generating a GUI to accompany any ex-
isting voice command. Similar to DoThisHere, these systems
use virtual assistant frameworks and multimodal interaction,
but their goal is to enhance the experience for single-app tasks
that are supported by voice commands, while DoThisHere is
aimed to reduce a user’s task load while performing cross-app
tasks that involve multiple GUI applications.

Other researchers have also built assistive systems for mo-
bile phones that leverage multimodal interaction to facilitate
UI automation. Li et al. have proposed two systems, SUG-
ILITE [18] and APPINITE [19], that can help virtual assis-
tants learn commands and concepts through multimodal input
from users. Similarly, Gesto [21] allows users to record Ul
commands and evoke them by voice or gesture. These three
systems work similarly to DoThisHere in that they use voice
to understand the user’s intention and touch to understand the
UI element that the user wants to manipulate, but for the differ-
ent purpose of allowing end-users to expand virtual assistant
skills.

Window managers with multimodal input

Another category of related work focuses on building screen
managers with different modalities including voice. Using
voice to control computers is not a new idea. Richard Bolt [5]
demonstrated an interface that can accept voice and gesture as
input as early as 1980. In 1993, Bellik et al. [3] brought this

https://www.wired.com/2010/10/app-for-that/

idea to a window manager that allows apps built within their
framework to accept voice, touch, and traditional mouse clicks
as input. Cohen et al. [10] presented the QuickSet system that
uses multimodal interaction for distributed applications, but
the interaction paradigm was not yet integrated at an OS-level.
More recently, on smartphones, Cutugno et al. [11] have pro-
posed a framework for developers to build stand-alone apps
that can accept multimodal input, but their framework does
not support interaction across different applications. These
systems primarily focused on allowing users to execute a sin-
gle action via different modalities. To support multimodal
input, they require apps to be rebuilt with their framework and
they have not demonstrated benefits for completing cross-app
tasks.

Other publications on window managers are mainly focused on
using voice as the single channel of input. For example, Odell
et al. [20] described the architecture of the built-in voice con-
trol system for Windows Vista. People have also implemented
similar systems for mobile and web platforms. JustSpeak [22]
supports using voice commands as a replacement for touch to
interact with Android apps through system-supported accessi-
bility APIs. Capti-speak [2] is a similar voice control system,
but for web interfaces. Although these systems allow users
to use voice to manipulate GUI interfaces, they are primarily
built for accessibility purposes. As every voice command is
almost always mapped to a single GUI action, the amount of
context switching and information to remember remains the
same as compared to pure GUI interactions. Therefore, these
systems are unlikely to reduce users’ mental and physical load
on cross-app tasks.

Small-screen multi-app usage

There is a range of prior work that aims to support multi-app
usage on small screens. Some collected data from users’ smart-
phone usage traces to better describe people’s existing behav-
ior regarding multi-app usage [6,9, 16, 17]. Others built tech-
niques to better facilitate usage across different apps. Almost
all smartphones these days have some kind of app switcher
to allow users to switch back-and-forth between apps in the
foreground 2. Some Android devices also have a split-screen
mode [1] that lets users see two applications at the same time.
As aresearch project, Peek-a-View [8] helps the user switch
between a messaging app and another app by using interac-
tions with the screen cover. Gupta et al. [13] built a system
that recognizes different fingers of the user’s hand and lets the
user interact with two applications that are overlaid on top of
each other at the same time. The former is focused on task
switching between two unrelated apps (messaging app and
other apps) while the latter requires apps to be specially built
for this interaction. In comparison, DoThisHere focuses on
making apps work together to support the same task and does
not require that the apps be specially built.

DOTHISHERE CONCEPTS
We identified data exchange as one of the important challenges
for completing tasks on mobile devices that involve multiple

2Recents screen introduced in Android 5.0: https://developer.
android.com/guide/components/activities/recents

apps. The data exchanged can be a complex piece of informa-
tion (e.g., write an email about walking instructions between
two locations), or a simple piece of text that needs to be shared
(e.g., insert my remaining travel budget from Mint into Google
Flights). This data exchange can happen within the same app
(e.g., compare two restaurants in yelp) or across different apps
(e.g., find the IMDB review of a movie on fandango). Also, the
data exchange can happen now (e.g., write an email about the
news that I just read) or can span a period of time (e.g., write
an email about an item that I saw last week on Amazon). We
wanted DoThisHere to be able to handle all of these different
types of data exchange consistently.

To allow users to access this new functionality, we float the
DoThisHere icon on top of apps; users can tap on it to start
DoThisHere listening for voice commands and monitoring for
screen selections.

Query

On the desktop, simple data exchange between apps is usually
handled by “copy” and “paste.” In copy and paste actions, one
app is functioning as a content provider and the other app is
acting as a content receiver. On mobile devices, the screen size
is limited and the application navigation hierarchy is likely
to be deeper. Finding the desired information or going to the
desired feature is a much harder problem. To solve this, we
introduce a “Query” feature (shown in Figure 1a), so that the
user can get a piece of (usually off-screen) information from
another app specified by voice and insert it back into a textbox
specified by touch in the current app without needing to switch

apps.

Do

We also support a “Do” feature, so that the user can send a
piece of information in the current app to a feature off-screen
in another app specified by voice without needing to copy the
information and manually find that feature. In other words,
Query can help users in simple information retrieval when they
are in the content receiver app, whereas Do can help users
who are already in the content provider app.

Keep

For complex data, it is useful to see the content from one app
while working in another. On desktop devices, this can be
achieved by laying out multiple windows side-by-side. How-
ever, on mobile devices, the small screen can only fit a limited
amount of content, and apps usually have large control wid-
gets for finger touch, which further reduces the possibility of
presenting information efficiently.

As the user usually only needs to see the relatively static
information displayed in the source app while interactively
working in another app, it is possible to improve complex data
exchange by only showing the important piece of information
in the source app while allowing the user to interact with
another app using almost the entire screen. Thus, we introduce
the “Keep” concept. Keep allows users to snip a piece of
content on the screen and keep it visible while using another
app. The user indicates the area of interest by selecting the
content and saying “keep this” to DoThisHere. That area

https://developer.android.com/guide/components/activities/recents
https://developer.android.com/guide/components/activities/recents

is shown on the screen like a “post-it note.” The user can
drag it around, make it smaller or larger by using two-finger
pinching, minimize it to an icon, add annotations to it by
tapping on the pencil icon, and close it when needed. If the
user wishes to refer to a piece of content at a later time, they
can ask DoThisHere to remember it, without keeping it on the
screen, by saying “remember this as [tag].” When they need
the information again, they can retrieve the off-screen content
by saying “recall the [tag].”

DoThisHere
Features

Query | | Do | | Keep |

DoThisHere Voice App Screen

Modules | Interface Integration Ul Output | Ul Input | | Overlay
Mobile Platform . . Android Application

Technologies Virtual Assistant | | Accessiblity | | OCR | | Overlay

Figure 2. DoThisHere uses existing technologies provided by mobile plat-
forms and apps, so that its features can be easily expanded to new plat-
forms and apps.

SYSTEM ARCHITECTURE

As the DoThisHere concepts deal with interactions between
apps, they need to be incorporated at the operating system
level. We leverage existing technologies on mobile platforms
so DoThisHere can work with existing apps without modi-
fication. As shown in our system architecture (see Figure
2), the Query, Do, and Keep features are built on top of five
functional modules, which in turn are based on four mobile
platform technologies.

Voice interface and app integration

DoThisHere allows users to use voice to specify which off-
screen information they want to use, and what app function-
ality they want to trigger in the Query and Do commands,
respectively. To achieve this, we leverage an existing virtual
assistant that has been designed to perform a large number
of skills. Our system uses Almond, an open-source virtual
assistant [7]. Almond’s speech understanding translates nat-
ural language into a domain-specific language (DSL) called
ThingTalk.

We expanded ThingTalk to accept multimodal input by adding
a primitive for getting the content on the screen (reading text),
and a function for outputting results on the screen (writing
to textboxes). We also added new skills for the Keep feature:
keep, remember, and recall.

The Query and Do commands depend on third-party apps
actively exposing their in-app information and APIs to DoTh-
isHere (app integration). Getting app integration could be
hard if we have to start from scratch. Luckily, many apps
have already exposed their functions to virtual assistants and
those functions are exactly what DoThisHere needs. For our
implementation of DoThisHere we leveraged app integrations
provided by Almond. As described above, by extending the
DSL, the user can use screen content instead of voice as input
parameters, and textboxes on-screen as output instead of voice
feedback when using the app-provided features. All of this
can be done without any additional app modification.

4,938 results

Keep tm
W

L2 22 20

- Common parent

$12.98 27

2-¢ deliven
ey cairvery Selected nodes

BEST SELLE:

15V Coppertop Alkalihe AA

Duracell
Batteries 8 Pack |
*kkk 280

Energizer MAX AA Batteries, qlkal'\

| :
WZEL | Double A Batteries (8 Pack)
ngrg” ok kR 205
i 2 dlay defivery
= Free pickup today

Rayovac High Energy Alkaline, AA

Batteries, 16 Count
*hk kK g

e] 38] =

Figure 3. DoThisHere supports flexible and robust UI node selection.
The red circle is the user’s start touchpoint and the blue circle is the
user’s end touchpoint. Each solid-line box represents a UI node, and the
tree represents the UD’s hierarchical structure.

days?

“What is the rating
of this restaurant”

Now « SMS

N\
strongly recommendl 2/ Bodequita
De iolfor dinner! They have good
Cuban food.

Now

Figure 4. DoThisHere supports partial text selection on screen by OCR.
The red circle is the user’s start touchpoint and the blue circle is the
user’s end touchpoint. The purple boxes are recognized text and the
green boxes are the user-selected text.

Ul selection

To automatically get and set content on the screen for app
integrations and remembering things, we built the DoThisHere
system on top of the Android accessibility APIs. From the OS,
we can get the list of UI nodes that are currently on display,
their hierarchical structure, and their content. Using the Ul
nodes, we created an interface so that users can easily select
parts of the UI for the Query, Do, and Keep actions.

We want our selection Ul to be flexible and resistant to error.
It should accommodate different kinds of content that the user
wishes to select; it should be easy to perform on an error-prone
touch screen. However, if we ask the user to directly select the
desired area, it can be challenging for them to precisely specify
the bounding box of the area on a mobile device. For example,
as shown in Figure 3, the user wants to select both battery
listings in the search result, but they have not dragged the
bounding box all the way through. The green dotted-line box
represents the bounding box that the user has dragged across,
while the two green solid-line boxes are the two battery listings
that the user intends to select.

Therefore, DoThisHere leverages the hierarchical structure of
UI nodes (as shown in Figure 3). For example, the start touch
point is within the red node, the green node, and the purple
node, and the end touch point is within the blue nodes, the
green node, and the purple node. One way to implement this
selection algorithm is to select every bottom-level node that
has an intersection with the user’s selection box (shown by
the green dotted line). This method is flexible but would have
missed the delivery information in the second battery listing.
Another more error-resistant approach is to find the common
ancestor that contains both the start touchpoint and the end
touchpoint, but this method is not flexible enough to select
only the two battery listings. Instead, it would select the entire
area of the purple node.

DoThisHere solves the problems of both solutions by first
finding the common ancestor (purple box), and then selects
all the nodes that are direct children of that ancestor who
have intersected with the selection box. In this way, the sys-
tem can precisely find the two green nodes even if the user’s
touchpoints are not entirely accurate.

For Query commands, we noticed that sometimes, Ul node-
level selection is not enough. For example, in Figure 4, the
user wants to know the rating of a restaurant, and wants to
select only a part of the text in that node. However, the entire
text message is shown as one node in the accessibility API. To
solve this, we use an OCR library to recognize every line of
words on the screen. If the user’s start and end touchpoints
are both on the same group of recognized text (shown in
purple boxes), we treat the start and the end touchpoints as the
beginning and the end of the text selection (shown in green
boxes) and extract that text for the executed command. Note
that this also has the added benefit of allowing the user to
select text in images.

Screen overlay

DoThisHere needs to provide a special Ul that can be dis-
played on top of other apps. We implemented DoThisHere’s
display component as an application overlay in Android. The
overlay API can be used to draw boxes of selected Ul content
to provide real-time feedback for the user during the selection
process. We also rely upon the overlay API to draw the user’s
kept UI content as a half-transparent layer so that it is less dis-
turbing for the user to use the current foreground app. We also
use this same API to display the Almond icon for triggering
commands as mentioned above.

Implementation

In our current version of DoThisHere, we use speech recogni-
tion from Microsoft Azure, and natural language parsing from
Almond with the addition of some regular expression tem-
plates. In this way, DoThisHere can parse common commands
accurately, while leveraging the full vocabulary of the Almond
virtual assistant. DoThisHere relies on Almond to integrate
with other apps. During the development of DoThisHere, we
also built a few demo apps (a budget app, a two-factor authen-
tication app, and a password manager) and integrated them
into Almond for our user study.

mmm OS Supported
DoThisHere
--.I _ i
DoThisHere
f— Partially Supported
mmm Not Supported
0 20 40 60 80 100 120
Count

Figure 5. We found that DoThisHere can support almost all of the tasks
that are not well-supported by current mobile operating systems.

8
6
2
0
R, %

Figure 6. The most common categories of tasks found in our survey that
are supported or partially supported by DoThisHere.

Count
e

All features of DoThisHere can be packaged as a regular An-
droid application; there is no need to root the device. Due to
the modular design of DoThisHere, we expect DoThisHere
to be portable to other operating systems if similar APIs are
available. As the virtual assistant framework gains more apps,
DoThisHere can also get these additional apps for free.

EVALUATION

We conducted two studies to design and evaluate DoThisHere.
In the first study, we gathered common cross-app tasks per-
formed on smartphones and evaluated whether DoThisHere
could be helpful for those tasks. In the second study, we
asked participants to perform a representative sample of those
tasks and compared their performance and stress levels when
performing those tasks with and without DoThisHere.

Study 1: How people use cross-app tasks

To design DoThisHere, we first investigated how people utilize
multiple apps to accomplish a single task on their smartphones.
Prior work by Bohmer et al. [6] showed that even back in 2011,
31.8% of smartphone usage sessions involved two or more
apps. However, they did not investigate whether those apps
were used to accomplish the same or different tasks. To know
more about users’ cross-app usage, we conducted a survey
asking about tasks people are performing or wish to perform
that involve multiple apps working together, and the apps
involved.

We conducted the survey on Amazon Mechanical Turk and col-
lected 125 valid® responses from 75 unique participants. We

3We removed invalid tasks in the following categories: (1) tasks with
unclear descriptions (e.g., “To do daily mobile work™), (2) tasks that

Category Example

Review Find a show on Hulu with a good IMDB
rating.

Password Login to the corporate Outlook server with
Microsoft Authenticator.

Compare Find prices of groceries on Fred Meyer and
compare them to those at Safeway.

Balance Buy crypto currencies on Coinbase with a
portion of the bank balance from a Wells
Fargo account.

Compose Compose directions to a bar in Messages
while looking at the map in Google Maps.

Take Notes Create a to-do item in Reminders from con-
tent in Messages.

Match Find the best time for hiking by matching
the traffic data from Google Maps and the
weather forecast from the Weather app.

Calculate Calculate tips with Calculator for a Door-

Dash delivery.

Table 1. Examples of the most common categories of tasks identified in
our survey that are supported or partially supported by DoThisHere.

paid participants $1 for a 5-minute survey, which corresponds
to a wage of $12 per hour. This study was approved by our
university’s IRB. One author labeled each task by how well
the task is supported by common mobile operating systems
and by our proposed DoThisHere architecture. Each task is
classified into these four categories:

1. OS supported (66 tasks): The amount of task switching
and the load on a user’s working memory on a current-
generation mobile OS is comparable with that on a desktop
OS (e.g., post a photo in the camera roll to a social network;
this feature is well supported by the built-in share sheet.)

2. DoThisHere supported (40 tasks): With DoThisHere, the
amount of task switching and the load on a user’s working
memory can be reduced to the same level as on a desktop
OS (e.g., set a timer according to a recipe app; the user can
select the relevant time and use a Do action with a timer

app.)

3. DoThisHere partially supported (16 tasks): With DoTh-
isHere, the amount of task switching and the load on a
user’s working memory is reduced, but not yet to the same
level as on a desktop OS (e.g., compare the price of the
same item on eBay and Amazon; the user can use a Keep
action to keep the price of the item and reduce the load
on working memory, but cannot browse the two websites
side-by-side as on a desktop.)

4. Not supported (3 tasks): DoThisHere cannot be used in this
task (e.g., browsing relevant information on a website while
on a phone call; DoThisHere cannot extract information
from a phone call.)

involve apps of identical, rather than complementary, functionalities
(e.g., Temple Run and Candy Crush for “Playing games”), and (3)
irrelevant responses (spam).

As shown in Figure 5, a significant portion (59 out of 125)
of cross-app tasks are not yet well-supported by mobile OSs.
Among these tasks, DoThisHere can potentially help users
reduce the amount of task switching and mental load on 56
tasks (95%).

We then used open coding to generate a list of categories
for tasks that DoThisHere supports (including partially sup-
ported tasks). We conducted open coding on the filtered survey
data to develop codes that describe the tasks involved (e.g.,
choose an item based on reviews). Then we conducted axial
coding to group these codes into high-level categories (e.g.,
review). During the analysis, 28 codes emerged initially from
the open coding stage and the final results contain 12 high-
level categories. We list the common categories (categories
with more than 3 tasks) in Figure 6, and group other categories
into Others in the figure. We list examples for these common
categories in Table 1.

Study 2: Task performance and cognitive load with DoTh-

isHere

To evaluate how well DoThisHere can help users in a real-
world task, we conducted a study comparing users’ time per-
formance and cognitive load with and without DoThisHere.
As a baseline, we compared DoThisHere to the native Android
navigation system.

Tasks

To construct a list of user study tasks that are representative of
real world experience, we used the top four categories of tasks
we identified from Study 1. Those categories covered more
than 50% of the collected DoThisHere supported tasks. We
designed three sets of tasks shown in Table 2, each containing
one task in each of the four selected categories. In the study,
we used one task set for training, one task set for the baseline
condition, and one task set for the DoThisHere condition in a
counter-balanced order.

Procedure

Our study was conducted during the COVID-19 pandemic, and
we took measures to follow social-distancing guidelines while
evaluating DoThisHere. Although DoThisHere is packaged
into a standalone application that can be installed on most
Android phones, we also need to set up an environment that
includes demo apps and accounts for the user study tasks.
Therefore, participants had to have access to our physical
device for the evaluation. So we physically delivered the demo
device to the participants in a package and conducted the rest
of the study remotely. We used ADB over TCP/IP # and the
Zoom teleconferencing software to achieve a similar format
to a normal user study.

We first gave the participant a brief introduction to the interac-
tion for both DoThisHere and the baseline.

We then trained the users for both conditions so that users
could get close to their maximum performance for both sys-
tems, even if they are not regular Android users. We first asked
the participants to use the baseline condition to complete the

4Connect to ADB over Wi-Fi: https://developer.android.com/
studio/command-1line/adb#wireless

https://developer.android.com/studio/command-line/adb#wireless
https://developer.android.com/studio/command-line/adb#wireless

Task

Taskset 2

Taskset 3

Category Feature Taskset 1

Compare Keep Find the cheapest battery on Ama-
zon and Walmart.

Password Query Login to a website with Duo.

Balance Query Filter Ebay results using a shop-
ping budget.

Review Do Find the Netflix show with the
best review in the IMDB.

Find the most reviewed repair ser-
vice from Google Maps and Yelp.
Login with SMS.

Filter hotel result by a travel bud-
get.

Find the Amazon book with the
best goodreads review.

Find the cheapest hotel on Ho-
tel.com and Priceline.

Login with a password stored in a
password manager.

Buy bitcoin with half of a bank
balance.

Find the Steam game with the best
review on Metacritic.

Table 2. We derived tasks used in Study 2 from the most common categories of cross-app tasks that are not well-supported by current-gen mobile OSs.

Mental Demand** Physical Demand* Temporal Demand*

-~

o

Likert-Scale (lower is better)

= W e o

Task Task Task

Performance Effort**

VLALLM

Task Task

Frustration*

B Baseline
B DoThisHere

Task

Figure 7. NASA-TLX results for Study 2 showed that DoThisHere can reduce participants’ cognitive load while working on cross-app tasks.
This plot compares distributions of the user’s Likert-scale response between conditions (left: Baseline, right: DoThisHere) in the NASA-TLX questions
for all four tasks. Thicker bands indicates there are more responses of that option.

*: statistically significant (p<0.05), **: (p<0.01)

Note that the task-wise comparison is done by comparing all NASA-TLX question-task pairs between two conditions for each task.

training task set. During the process, we gave them tips about
the baseline condition such as double-tapping the square but-
ton on the navigation bar to quickly switch between recent
apps. After that, we asked the participants to use DoThisHere
to complete the same training task set. During the process, we
suggested which features in DoThisHere to use for each task,
as shown in Table 2.

After the training session, we asked the participants to com-
plete a unique task set with each condition. So both conditions
were less constrained by learning time, in the baseline condi-
tion we showed hints about the Android navigation system,
and in the DoThisHere condition we showed the list of sup-
ported voice commands in the tasks. We timed each task and
asked participants to fill out the NASA-TLX [14] form after
each task. The order of the task sets and the order of the
two conditions were both counter-balanced between partici-
pants. After the two conditions, we collected the participants’
subjective feedback on both systems.

Participants

We recruited 12 participants (5 female, 7 male), aged 22 to 38
(median 24). Two of them were regular Android users. Each
participant was compensated $15 for their participation. The
total session time was around 45 minutes. This study was
approved by our university’s IRB.

Results

The participants’ reported task loads are shown in Figure 7.
We computed two-sided Wilcoxon tests for the NASA-TLX
responses combined for all tasks and corrected the p-value by

250

ot
(=}

I Baseline
200 I DoThisHere

O
[}
E 150
'_
j=
.o
5]
2 100
1S
5
O

0

¥

¢

Task

4

Figure 8. Study 2 showed that DoThisHere reduced task completion time
for Task 2 and 3 (Query), but increased it for Task 1 (Keep).

This plot compares distributions of the user’s task completion time be-
tween conditions (left: Baseline, right: DoThisHere) for all four tasks.
Thicker bands indicates more users finished their tasks at that duration

(lower is better).

*: statistically significant (p<0.05), **: (p<0.01)

Holm’s sequential Bonferroni procedure. We found that DoTh-
isHere had a statistically significant positive effect on partic-
ipant’s mental load (p < 0.001°), physical load (p = 0.017),

SWhen p is smaller than 0.001, we report p < 0.001, otherwise, we
report the approximate value of p up to three significant digits.

temporal demand (p = 0.017), effort (p = 0.004), and frustra-
tion (p = 0.016). This shows that, in general, DoThisHere can
help participants reduce their task load while doing cross-app
tasks.

The task completion times are shown in Figure 8. We com-
puted two-sided paired t-tests for the completion time and
corrected the p-value by Holm’s sequential Bonferroni proce-
dure. For tasks 2 and 3, we observed a statistically significant
reduction (p = 0.032 and p = 0.022 respectively). This shows
that Query can help participants reduce their task completion
time significantly. For task 1, we observed an increase in
completion time (p = 0.002). We think the reason why partic-
ipants spent more time in Task 1 with DoThisHere is because
remembering the best battery in their mind is faster than in-
teracting with DoThisHere. For task 4, we didn’t observe any
statistically significant difference in task completion time.

Eight out of 12 participants reported that they preferred the
DoThisHere condition to the baseline, three other participants
reported that they would prefer DoThisHere in some of the
tasks, and one participant said that he preferred not to use
DoThisHere. Six participants mentioned that DoThisHere
can help them remember things so they don’t have to. Five
participants mentioned that DoThisHere can reduce or ease
the switching between apps. P6 and P11 mentioned that the
delay in triggering DoThisHere affected their performance.
Participants had mixed feelings about the selection system:
P7 and P10 were happy to see that DoThisHere can select
text in pictures, while P5, P8, and P11 complained that the
selection was not always accurate. We also noticed that even
though Task 4 was designed for Do, three participants used
Keep along with Do in that task to help them remember things.

DISCUSSION

In this section, we discuss the limitation of our current evalua-
tion and implementation and how future research may solve
these issues.

We noticed that Keep actions increased the task completion
time in Study 2, although many participants explicitly said
that they liked this feature and some even used it in tasks
that were designed for other DoThisHere features. Due to
the ease of remembering something for a short period, we
think Keep may not be the fastest way to do it in this artificial
situation. Triggering the action and performing the selection
takes around 10 seconds, which is more than enough time
for participants to remember the information manually in a
timed user study session. However, in real life, Keep should
still be helpful when the user needs to remember complex
information or remember information for a long time. Delay in
the DoThisHere system is another factor that contributes to the
longer task completion time. Improving the implementation of
DoThisHere can reduce the delay between different functions,
especially the speech recognition function, and can potentially
improve task performance.

Also, although we implemented the “remember” and “recall”
commands for the Keep action, we were not able to test them in
the user study. One possible use case is for users to remember
an interesting piece of news with DoThisHere, and recall it

in future conversations with friends. However, such use cases
span a longer period of time, and we could not easily test these
in the user study.

As stated above, the current implementation of DoThisHere
has some delay (approximately 2 seconds) after the user taps
on the icon before the system can start listening to voice com-
mands and UI selections. There are a few sources of this delay:
The Android screen capture API takes time to get a screenshot,
the OCR library takes time to recognize text, and the audio
recording function takes time to start. Future systems can
try to parallelize these action or start some of those activities
before the user triggers a DoThisHere action®.

DoThisHere uses voice interaction extensively to allow the
user to quickly express their intention to complement precise
UI selection for the content. Our paper did not focus on the
challenges of the speech interaction system, such as handling
ambiguity and providing feedback, as these are handled by the
virtual assistant framework in our system design. Future work
may be able to further optimize the voice assistant framework
specifically for DoThisHere interactions.

We noticed that there is still room for improvement in the Ul
element selection algorithm. Although our algorithm is robust
to input error, having to drag to select elements on screen is
still slow, and because of the fat-finger problem the user’s
movement is also at a reduced speed. Future systems may
improve on this by inferring a user’s intention from the user’s
voice command and suggesting what the user may want to
select so that the user can select the corresponding element in
a single touch. For example, the selection has to be a textbox if
the user says “Insert my bank balance here” while the selection
is likely to be one or more rows in a list if the user says “Keep
these items.”

Another limitation of our current system is that the kept con-
tent from the Keep action is completely static. Although users
can move it around and annotate it, they cannot interact with
the underlying app. We made this design decision because dy-
namic, interactive content either requires deep OS integration
or custom app integration, which limits our portability. Also,
DoThisHere leverages the fact that the kept content is not in-
teractive, which allows the text to be scaled down as a way of
efficiently using the screen space. However, supporting dy-
namic kept content can help some tasks to be fully supported
by DoThisHere (instead of partly supported). For example,
currently, if the user wants to read a book to another person
during a video chat, they would have to ask DoThisHere to re-
member each page of the book separately and ask DoThisHere
to recall it later. By supporting dynamic content, the user only
needs to ask DoThisHere to remember the (changing) page
once. We leave the exploration of supporting dynamic kept
content for future work.

CONCLUSION
Our current-generation of mobile OSs offer limited support
for cross-app tasks due to small screen sizes. In this paper, we

6Shazam keeps the microphone open for a while after the user exits
the app so that if it’s opened again, it can immediately start recording:
https://www.theregister.co.uk/2016/11/15/shazam_listening/

https://www.theregister.co.uk/2016/11/15/shazam_listening/

present DoThisHere, a system that uses multimodal interaction
to help users access information from or carry information
to other apps with less context switching. We designed the
system in a way that is portable to other operating systems
and can be expanded to more apps when they are integrated
with an existing virtual assistant framework. We designed and
evaluated the system through two user studies and discovered
that DoThisHere has the potential to help users on almost all
of the cross-app tasks that are not well-supported by current
mobile operating systems. Our study shows an early indication
that DoThisHere may help reduce a user’s task load when
doing actual cross-app tasks. We believe DoThisHere is a
concrete step towards a more capable and natural way of
interacting on future smartphones and we strongly encourage
mobile OS developers to adopt our interaction techniques.

ACKNOWLEDGEMENT

The authors would like to acknowledge Tianshi Li for her
help with the early prototypes and writing. Also, the authors
would like to thank Giovanni Campagna and Silei Xu for their
help with Almond integration. The authors would also like
to thank Gaurab Banerjee for giving early feedback. Finally,
the authors would also like to thank the reviewers for their
constructive feedback.

This work is supported in part by the National Science Foun-
dation under Grant No. 1900638.

REFERENCES

[1] 2016. Multi-Window Support | Android Developers.
https:
//developer.android.com/guide/topics/ui/multi-window.

(2016). (Accessed on 05/05/2020).

Vikas Ashok, Yevgen Borodin, Yury Puzis, and I. V.
Ramakrishnan. 2015. Capti-speak: a speech-enabled
web screen reader. In Proceedings of the 12th Web for
All Conference on - W4A '15. ACM Press. DOI:
http://dx.doi.org/10.1145/2745555.2746660

Yacine Bellik and Daniel Teil. 1993. A multimodal
dialogue controller for multimodal user interface
management system application: a multimodal window
manager. In INTERACT '93 and CHI '93 conference
companion on Human factors in computing systems -
CHI '93. ACM Press. DOI:
http://dx.doi.org/10.1145/259964.260124

Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts law:
modeling finger touch with fitts’ law. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems - CHI '13. ACM Press. DOI:
http://dx.doi.org/10.1145/2470654.2466180

Richard A. Bolt. 1980. “Put-that-there”. ACM
SIGGRAPH Computer Graphics 14, 3 (Jul 1980),
262-270.DOI:
http://dx.doi.org/10.1145/965105.807503

[2

[ar}

3

[}

[4

[}

(5]

[6] Matthias Bohmer, Brent Hecht, Johannes Schoning,
Antonio Kriiger, and Gernot Bauer. 2011. Falling asleep

with Angry Birds, Facebook and Kindle: a large scale

[7

[8

[9

[10

[11

[12

[13

[14

—

[}

—

—_

—_—

[}

—_

[}

study on mobile application usage. In Proceedings of the
13th International Conference on Human Computer
Interaction with Mobile Devices and Services -
MobileHCI '11. ACM Press. DOI:
http://dx.doi.org/10.1145/2037373.2037383

Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael
Fischer, and Monica S. Lam. 2017. Almond: The
Architecture of an Open, Crowdsourced,
Privacy-Preserving, Programmable Virtual Assistant. In
Proceedings of the 26th International Conference on
World Wide Web. International World Wide Web
Conferences Steering Committee. DOI :
http://dx.doi.org/10.1145/3038912.3052562

Koeun Choi, Hyunjoo Song, Kyle Koh, Jinwook Bok,
and Jinwook Seo. 2016. Peek-a-View: Smartphone
Cover Interaction for Multi-Tasking. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems. ACM. DO :
http://dx.doi.org/10.1145/2858036.2858426

Leor Cohen. 2015. World attending in interaction:
Multitasking, spatializing, narrativizing with mobile
devices and Tinder. Discourse, Context & Media 9 (sep
2015), 46-54.DOI:
http://dx.doi.org/10.1016/j.dcm.2015.08.001

Philip R. Cohen, Michael Johnston, David McGee,
Sharon Oviatt, Jay Pittman, Ira Smith, Liang Chen, and
Josh Clow. 1997. QuickSet. Proceedings of the fifth
ACM international conference on Multimedia -
MULTIMEDIA ’97 (1997). DOI:
http://dx.doi.org/10.1145/266180.266328

Francesco Cutugno, Vincenza Anna Leano, Roberto
Rinaldi, and Gianluca Mignini. 2012. Multimodal
framework for mobile interaction. Proceedings of the
International Working Conference on Advanced Visual
Interfaces - AVI ’12 (2012). DOI:
http://dx.doi.org/10.1145/2254556.2254592

Michael Fischer, Giovanni Campagna, Silei Xu, and
Monica S. Lam. 2018. Brassau: automatic generation of
graphical user interfaces for virtual assistants. In
Proceedings of the 20th International Conference on
Human-Computer Interaction with Mobile Devices and
Services. ACM. DOI:
http://dx.doi.org/10.1145/3229434.3229481

Aakar Gupta, Muhammed Anwar, and Ravin
Balakrishnan. 2016. Porous Interfaces for Small Screen
Multitasking using Finger Identification. In Proceedings
of the 29th Annual Symposium on User Interface
Software and Technology. ACM. DOT :
http://dx.doi.org/10.1145/2984511.2984557

Sandra G. Hart. 2006. Nasa-Task Load Index
(NASA-TLX): 20 Years Later. Proceedings of the
Human Factors and Ergonomics Society Annual
Meeting 50, 9 (oct 2006), 904-908. DOI:
http://dx.doi.org/10.1177/154193120605000909

https://developer.android.com/guide/topics/ui/multi-window
https://developer.android.com/guide/topics/ui/multi-window
http://dx.doi.org/10.1145/2745555.2746660
http://dx.doi.org/10.1145/259964.260124
http://dx.doi.org/10.1145/2470654.2466180
http://dx.doi.org/10.1145/965105.807503
http://dx.doi.org/10.1145/2037373.2037383
http://dx.doi.org/10.1145/3038912.3052562
http://dx.doi.org/10.1145/2858036.2858426
http://dx.doi.org/10.1016/j.dcm.2015.08.001
http://dx.doi.org/10.1145/266180.266328
http://dx.doi.org/10.1145/2254556.2254592
http://dx.doi.org/10.1145/3229434.3229481
http://dx.doi.org/10.1145/2984511.2984557
http://dx.doi.org/10.1177/154193120605000909

[rt

[15] Michael Johnston, John Chen, Patrick Ehlen, Hyuckchul

Jung, Jay Lieske, Aarthi Reddy, Ethan Selfridge,
Svetlana Stoyanchev, Brant Vasilieff, and Jay Wilpon.
2014. MVA: The Multimodal Virtual Assistant. In
Proceedings of the 15th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (SIGDIAL).
Association for Computational Linguistics. DOI:
http://dx.doi.org/10.3115/v1/wl4-4335

Simon L. Jones, Denzil Ferreira, Simo Hosio, Jorge
Goncalves, and Vassilis Kostakos. 2015. Revisitation
analysis of smartphone app use. In Proceedings of the
2015 ACM International Joint Conference on Pervasive

and Ubiquitous Computing - UbiComp '15. ACM Press.

DOI:http://dx.doi.org/10.1145/2750858.2807542

Luis Leiva, Matthias Bohmer, Sven Gehring, and
Antonio Kriiger. 2012. Back to the app: the costs of
mobile application interruptions. In Proceedings of the
14th international conference on Human-computer
interaction with mobile devices and services -
MobileHCI '12. ACM Press. DO :
http://dx.doi.org/10.1145/2371574.2371617

Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
2017. SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems. ACM. DOI:
http://dx.doi.org/10.1145/3025453.3025483

—_

[19] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li,

Xiaoyi Zhang, Wenze Shi, Wanling Ding, Tom M.
Mitchell, and Brad A. Myers. 2018. APPINITE: A
Multi-Modal Interface for Specifying Data Descriptions
in Programming by Demonstration Using Natural
Language Instructions. In 2018 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). IEEE. DOI:
http://dx.doi.org/10.1109/vlhcc.2018.8506506

Julian Odell and Kunal Mukerjee. 2007. Architecture,
User Interface, and Enabling Technology in Windows
Vista's Speech Systems. IEEE Trans. Comput. 56, 9 (sep
2007), 1156-1168. DOI:
http://dx.doi.org/10.1109/tc.2007.1065

Chang Min Park, Taeyeon Ki, Ali J. Ben Alj,

Nikhil Sunil Pawar, Karthik Dantu, Steven Y. Ko, and
Lukasz Ziarek. 2019. Gesto: Mapping UI Events to
Gestures and Voice Commands. Proceedings of the
ACM on Human-Computer Interaction 3, EICS (jun
201 9), 1-22. DOI:http://dx.doi.org/10.1145/3300964

Yu Zhong, T. V. Raman, Casey Burkhardt, Fadi Biadsy,
and Jeffrey P. Bigham. 2014. JustSpeak: enabling
universal voice control on Android. In Proceedings of
the 11th Web for All Conference on - W4A '14. ACM
Press. DOI :http://dx.doi.org/10.1145/2596695.2596720

http://dx.doi.org/10.3115/v1/w14-4335
http://dx.doi.org/10.1145/2750858.2807542
http://dx.doi.org/10.1145/2371574.2371617
http://dx.doi.org/10.1145/3025453.3025483
http://dx.doi.org/10.1109/vlhcc.2018.8506506
http://dx.doi.org/10.1109/tc.2007.1065
http://dx.doi.org/10.1145/3300964
http://dx.doi.org/10.1145/2596695.2596720

	Introduction
	Related Work
	Multimodal virtual assistant
	Window managers with multimodal input
	Small-screen multi-app usage

	DoThisHere Concepts
	Query
	Do
	Keep

	System Architecture
	Voice interface and app integration
	UI selection
	Screen overlay
	Implementation

	Evaluation
	Study 1: How people use cross-app tasks
	Study 2: Task performance and cognitive load with DoThisHere
	Tasks
	Procedure
	Participants
	Results

	Discussion
	Conclusion
	Acknowledgement
	References

