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Abstract—Smart contracts in the blockchain systems such as
Ethereum are usually executed or verified by all nodes, and thus
inefficient for heavy-duty computation. This paper addresses the
limitation by proposing, implementing, and evaluating a practical
and efficient solution based on a game theoretic approach. The
solution defines a template of heavy-duty smart contract (HDSC);
recruits only a small number of executors to execute heavy-duty
tasks; employs a game theoretic scheme to enforce economically-
rational executors to individually or collectively perform the
execution correctly. Extensive game theoretic analysis has been
conducted to show the security and computational efficiency of
the solution even in face of collusion among the executors. As
a proof of concept, the proposed solution has been implemented
and experimented to demonstrate its practicality and compati-
bility with Ethereum.

Index Terms—Blockchain, Smart Contract, Computation Effi-
ciency, Game theory, Collusion

I. INTRODUCTION

Starting from Bitcoin [1] to Ethereum [2], the functionality
of blockchain is completed from pure cryptocurrency to smart
contracts that enable general-purpose computation in the ver-
ifiable, transparent and non-repudiable manner. However, in
most of the currently popular blockchain systems, the smart
contracts have to be executed or verified by all nodes, which
leads to significant waste of computation and limited scalabil-
ity, and consequently makes smart contracts more suitable for
lightweight but not heavy-duty computation.

Related Works & Limitations: Studies on improving the
computational efficiency of blockchain are extensive. The
proof-of-stake (PoS) mechanism [3], [4], [5] which selects
nodes to be block creators based on random selection, wealth,
age, or a combination of these, has been explored as an alterna-
tive of the proof-of-work (PoW) which selects block proposers
based on highly energy-consuming competitions in solving
cryptographic puzzles. A PoS-based system, however, still
requires every stakeholder to participate in verifying (which
often means repeating) every execution. There are proposals
of utilizing the trusted execution environment (TEE) [6],
[7], [8] to achieve the community computation instead of
having all nodes involved. However, currently prevalent TEE
such as Intel SGX is inappropriate for multi-threading and
tasks requiring high demand of memory which could make
it a bottleneck of enormous computation and validation on
blockchain. The sharding-based approach [9], [10], [11] has
been proposed to divide a blockchain into multiple subchains
for scalability; however, each subchain still needs a large
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number of members to guarantee security, and hence each
smart contract is still repeatedly executed by a large number
of nodes. Researchers also proposed the hierarchical approach,
for example Thunderella [12], where periodically a leader and
a committee are elected to execute and verify transactions
(including smart contracts), and all the nodes on the chain are
resorted to only when the leader is found not trustable; such
approach may not improve the scalability for systems with
heavy-duty tasks as there is only a small number of leaders at
a time to execute them.

Recently, the on-chain/off-chain hybrid approach [13], [14],

[15], [16], [17], [18] has been proposed, which combines
off-chain execution of heavy-duty or private tasks with on-
chain execution of lightweight and privacy-insensitive tasks.
However, the state-of-the-art designs have several limitations,
such as difficult-to-satisfy requirements posed to users, no
consideration of collusion, and inefficient use of on-chain
operations, which may hinder their application in practice.
For example, the designs proposed in [14], [15], [16], [17] all
assume no collusion among the involved parties, and require
the users to find executors off-chain; some designs require the
off-chain executors to include at least one being honest [16],
or be configured with a TEE [18] or even a TTP (trusted third
party) [15]; some designs require the off-chain executors to
run secure multiple-party computation protocols [17]. Average
blockchain users may find such requirements inconvenient
or infeasible. Some of the designs [16] introduce multiple
rounds of on-chain challenge-response operations to verify
computation results, which could pose high cost to both on-
chain nodes and off-chain executors.
Our Contributions: The hybrid approach is promising in
improving the efficiency of handling heavy-duty computation
in blockchain, but remains impractical or inefficient due to the
afore-discussed limitations. This paper aims to address this
issue by proposing, implementing, and evaluating a practical
and efficient solution based on the approach.

In the proposed solution, a user who has a heavy-duty task
simply posts to the blockchain a heavy-duty smart contract
(HDSC) that follows our designed template, where the desired
number of executors and other optional parameters are speci-
fied; then, the user deposits money that should be paid to the
honest executors. Once the HDSC gets ready for execution, the
executors who are either selected from the blockchain nodes
following a default rule or picked by the user, make deposits
to be responsible for their executions, execute individually
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or collectively the computation task embedded in the HDSC,
commit the execution results, reveal the results, and finally
get rewards (if honestly executing the computation) or lose
deposits (otherwise). With a low and adaptable frequency, a
trusted mechanism (e.g., the underlying blockchain, available
TEE, or other mechanism optionally picked by the user)
also executes the HDSC, which serves as a deterrence to
executors’ misbehavior. A game theoretic scheme is designed
to regulate the above operations such that, economically-
rational executors have to act honestly or collude only in a
benign way where computation cost can be saved but the
computation result is guaranteed correct.

Compared to the afore-discussed related works, the pro-
posed solution has the following features: (i) Compatibility
- Users can launch a HDSC in a way almost the same as
launching a regular smart contract. They are not required to
find executors; if they choose to pick executors themselves,
there is no expectation for trusted executors. The proposed
solution can run atop a general blockchain system, though
Ethereum is assumed throughout the paper. (ii) Security -
As demonstrated through game theoretic analysis, the pro-
posed solution enforces economically-rational executors to
conduct computation honestly and submit correct results, no
matter whether they collude or not. (iii) Efficiency - The
computation is mostly conducted by the selected executors;
the more expensive trusted computation mechanism such as
the underlying blockchain or available TEE is only used as
deterrence with low frequency, which is — dewiwm- where ¢
is the cost for executing the HDSC computation, n is the
number of executors and degzecutor 1S the deposit made by
each executor; hence, the more executors are selected, the
low frequency for using the trusted computation mechanism.
Furthermore, the proposed solution encourages benign collu-
sion where executors collude by having only one of them to
honestly conduct the computation, which can further reduce
the computation cost. (iv) Flexibility - The proposed solution
tolerates dynamics in the blockchain, such as churning and
failure of executors. Also, users are given the freedom to
determine the operational parameters for each HDSC.
Organization: In the following, Section II presents the pre-
liminaries. Section III provides an overview of our proposed
solution. Section IV presents and analyzes our proposed game
theoretic schemes. Section V reports an implementation of the
proposed schema and discusses the evaluation results. Finally,
Section VI concludes the paper.

II. PRELIMINARIES

System Model: We consider a blockchain system that supports
verifiable, transparent and non-repudiable general-purpose
computation submitted as smart contracts. We classify the
smart contracts into heavy-duty smart contracts (HDSCs) and
regular smart contracts. A HDSC demands a heavy computa-
tion, and thus is ideal to be executed by only a small subset
(instead of all) of the nodes in the system. Whether a smart
contract is heavy-duty or regular can be determined by a
certain policy. For example, the gas upper bound of a block

in Ethereum can be set to x; hence, a smart contract that may
consume more than % gas can be classified as heavy-duty if
a block is expected to store more than y transactions. We
also assume the computation in each HDSC is deterministic;
hence, the result of the computation should be the same if it
is honestly executed by different parties.

Security Assumptions: We assume the blockchain system
itself is secure, and has the following specific features: (i) The
nodes who add blocks to the blockchain are selected randomly.
Particulary, in a proof-of-work based system, the probability
for a node to be selected is proportional to the percentage
of computation power that it owns; in a proof-of-stake based
system, the probability is proportional to the percentage of
stake that it holds. (ii) There exists a bound « such that, a
block that has been confirmed by « blocks linearly following
it is stable (or irreversible with an overwhelming probability).

We assume the existence of a trusted computing mechanism.
As a baseline, posting a computation task as a regular smart
contract and calling on all nodes to execute or verify the result
can serve the purpose. For efficiency, it is more desirable that
the trusted computing mechanism only involves a subset of
the nodes (e.g., through the sharding-based or hierarchical
approach) or some special nodes (e.g., nodes equipped with
trusted computation hardware).

We assume each node in the system is financially rational
and aims to maximize its own payoff.

Also, we assume a misbehaving node that is selected to

execute a HDSC may collude with others, and may attempt
to: (i) free-ride via sharing other’s execution result without
really conducting the required execution; (ii) make up a result
without real execution; (iii) accuse other executors who are
innocent to obtain a reward that it does not deserve.
Design Goals: We aim to design a solution that meets the
following goals: (i) Security - Each HDSC must be correctly
executed. Particularly, if an incorrect result is submitted by
an executor, it can be detected and rectified. (ii) Efficiency -
The execution of each HDSC should involve as few nodes
as possible and incur as low cost as possible. Although low
delay is desirable, we assume the computation in each HDSC
is delay insensitive. (iii) Flexibility - The solution should be
adaptive to system dynamics, including failures and churning
of nodes. (iv) Compatibility - The solution can run atop a
general blockchain systems, e.g., Ethereum.

III. SOLUTION OVERVIEW

In our proposed solution, a heavy-duty smart contract
(HDSC) is processed according to the following framework.
Posting a New Smart Contract: Like a regular smart con-
tract, a HDSC should be posted to the blockchain before exe-
cution. The HDSC owner broadcasts a transaction containing
the HDSC, and waits for it to be posted and stabilized. Once
it is posted stably, the owner makes a deposit to the account
of the HDSC, used later to pay the executors. To facilitate
processing, a HDSC contains the following:

o A flag indicating this smart contract as a HDSC.
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o System parameters of this HDSC, including: n, the
number of desired executors; the maximum time period
for executing and committing the execution results; the
maximum time period for revealing the execution results
after the commitments have been posted; w, the wage
paid to each executor who provides the correct result;
degecutor, the deposit that should be made by each
executor; optionally a list of executors picked by the
HDSC owner.

o Code for the computation task that should be executed.

o Current state of the HDSC, which is one of the following:
initial, when the HDSC is posted but its owner has not
made deposit; unready, when the owner has made the
deposit, but the HDSC is waiting for inputs needed for
execution; ready, when the HDSC has collected needed
inputs; result-committed, when the desired executors have
posted their commitments for results or the maximum
time period for execution and commitment has expired;
result-revealed, when the executors who had committed
have revealed their results, or the maximum time period
for revelation has expired; complete, when the HDSC has
been completely handled.

o Functions called to process the HDSC: owner-deposit,
called by the owner to make deposit; provide-input, called
by a user to provide an input; commit-result, called by an
executor to commit its execution result and meanwhile
make a deposit to be responsible for the execution; reveal-
result, called by an executor to reveal its execution result;
report-collusion, called by a user to report a collusion
and meanwhile make a deposit to be responsible for
the reporting; resolve-dispute, called to launch a trusted
execution if there is a collusion report or a discrepancy
in the revealed results; distribute-fund, called after the
results of the executors’ computation and/or the launched
trusted executions have completed, to distribute the de-
posits to involved parties (owner, executors and collusion
reporters). Note that, other than the provide-input function
which is computation-specific, the rest of the above
functions are generic and independent of the computation
embedded in the HDSC.

Providing Inputs: For a HDSC that requires one or more
inputs, users should call the provide-input function to provide
inputs. Once a required number of inputs have been provided,
or a certain pre-specified time period for providing inputs has
expired, the HDSC transits to the ready state.

Executing a Ready HDSC and Committing Results: For a
HDSC that transits to the ready state at block by, its executors
should start executing the embedded computation code; by de-
fault its executors are the miners of blocks bg+1, -+, bg+n.
After an executor has executed the code, it does not imme-
diately disclose the result, to prevent other executors from
copying the result. Instead, the executor calls the commit-result
function to post a cryptographic commitment, e.g., the well-
known Pedersen’s commitment [19], of the result. With this
function, the executor also makes a deposit to be responsible

for the result.

Revealing Results: After all executors have posted com-
mitments or the specified time period for computation and
commitment has expired, each of the executors who have
committed should call the reveal-result function to open its
commitment and thus reveal the computation result. Note that
the number of desired executors and the actual executors who
eventually reveal their results can be different.

Reporting Collusion: Executors may collude to save compu-
tation cost. In the proposed system, an executor or other users
are encouraged to report collusion. During the time periods
for result commitment and revelation, a collusion reporter
can call the report-collusion function to report collusion and
meanwhile make a deposit to be responsible for the report.
After-revelation Processing: After all committed results have
been revealed or the period for result revelation has expired,
the results are compared. If all of the results are the same and
no collusion report is received, the executors are all marked
as honest. Otherwise, the resolve-dispute function is called to
launch a trusted computation; based on the result of the trusted
computation, each executor can be marked as either honest
or dishonest. Finally, the distribute-fund function is called to
distribute the deposits to the owner and the honest executors.

IV. GAME THEORETIC SCHEMES AND ANALYSIS

To regulate the operations in the afore-described frame-
work, we propose game theoretic schemes called outsourcing
contracts. The schemes specify the interactions between the
HDSC owner and the HDSC executors, reward the honest
executors, punish the misbehaving executors, and encourage
executors to report collusion. In this section, we first present
two outsourcing contracts in Section IV-A. The first contract
only reactively triggers the trusted computation mechanism
when discrepancy exists in executors’ results or a collusion
is reported; the second contract further proactively triggers
the trusted computation mechanism with a certain probability
Dfallback» 10 deter the executors’ misbehavior. To analyze the
security and efficiency of these two contracts, we conduct the
following game theoretic analysis:

o In Section IV-B, we classify collusion into two categories
- benign collusion and malignant collusion, and model the
executors’ collusion into two generic contracts.

¢ In Section IV-C, we analyze the games induced from the
First Outsourcing contract and the collusion contracts,
and show the existence of positive probability for malig-
nant collusion to succeed; hence, the First Outsourcing
contract is defective in security.

¢ In Section IV-D, we analyze the games induced from the
Second Outsourcing contract and the collusion contracts,
and show that, economically-rational executors will not
conduct a malignant collusion, as long as pyraipack =
— dmiwm in the Second Outsourcing contract, where ¢
is the cost for computation, n is the number of executors
and degzecutor 18 €ach executor’s deposit.

The analysis demonstrates the necessity of proactively launch-
ing the trusted computation mechanism as deterrence to ex-
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ecutors’ misbehavior. It also reveals the relation between n,
degecutor AN Pranipack; that is, the frequency for using the
deterrence decreases as the number of executors or the amount
of deposit an executor is required to make increases. So
the frequency can be low, and thus the proposed Second
Outsourcing contract can be both secure and efficient. Due
to space limit, the proofs are skipped here, but can be found
at [20].

A. Outsourcing Contracts

We propose two Outsourcing contracts in the following.

1) First Outsourcing Contract: The contract contains the
following phases:

Phase I - Initial Depositing. The HDSC owner makes a
deposit of dyyner = 1 - w. Here, w is the wage paid to each
honest executor and should be greater than c¢ to encourage
executors to participate. Each executor also makes a deposit
of degecutors and the deposit should be greater than the cost
for a trusted computation mechanism to execute the HDSC,
which is denoted as cyq;.

Phase II - Submission of Execution Results. This phase starts
after all executors have made deposits or a specified time
duration for depositing has passed; it contains the following
steps. Stage (i) - Commitment of Results. In this stage, every
executor submits a cryptographic commitment of its execution
result. Stage (ii) - Revelation of Results. After Stage (i)
complete or a specified time duration for commitment has
expired, every executor opens its commitment posted during
Stage (i) to reveal its execution result.

Phase Il - Anonymous Reporting of Collusion. This phase
starts after all the executors who have committed have revealed
their results or a specified time duration for result revelation
has expired. An executor may choose to report a collusion
anonymously by making a deposit dyeport = cfuu. The
identity of this traitor of collusion is implicitly represented
by the ID of the account that launches the reporting. Note
that, the ID should be different from and not linkable to the
ID of the executor in the Outsourcing contract, so that a traitor
is not linkable to any executor.

Phase IV - Dispute Resolution. This phase starts after the
time period specified for Phase III expires. If the results
revealed by all executors are not the same, a trusted execution
is launched to obtain the correct execution result, and the cost
is paid from the deposits made by the executors. Otherwise
(i.e., all the revealed results are the same), a trusted execution
is still launched if there is one or more anonymous reporting
of collusion; in this case, the cost for trusted execution is paid
from the deposits made by the reporters.

Phase V - Distribution of Deposits. There are two cases:
Case (i) - Executors report different results. Each collusion
reporter takes back its deposit. The executors who are found
submitting the correct result are marked as honest, while the
others are marked as dishonest. If all executors are dishonest,
the remaining deposits are taken by the HDSC owner; other-
wise, the deposits are evenly taken by the honest executors.
Case (ii) - Executors report the same result. If the trusted

execution has not been launched or the executors’ result is
found correct by the trusted execution, the remaining deposits
are evenly taken by all the executors; otherwise, the remaining
deposits are evenly taken by the collusion reporters.

2) Second Outsourcing Contract: As to be demonstrated
later, the First Outsourcing contract cannot prevent the execu-
tors from submitting an incorrect execution result. Hence, we
further propose the Second Outsourcing contract. This contract
is the same as the First Outsourcing contract, except for
the following added to Phase III: With probability pfaipacks
which is a system parameter, the HDSC owner pretends as
an anonymous reporting executor by also making a deposit
dreport = Cyuil. As to be elaborated later, the probability
Dfallback IS a function of n. Since the expected executors may
not all be able to completely participate in the execution, the
n used in determining pfalivack efer to the number of actual
executors who completely participate in the computation. This
way, churning and failure of executors can be tolerated.

B. Contracts among Executors

Economically-selfish executors may collude to save their
computation cost. Based on the consequence of collusion, we
classify a collusion as either benign or malignant: If a collu-
sion results in a correct result submitted by all the executors
participating the collusion, we call it a benign collusion. If
a collusion results in an incorrect result submitted by all the
executors participating the collusion, we call it a malignant
collusion. A benign collusion may save the executors’ cost
but does not lead to incorrect execution result. Hence, we only
target at preventing the malignant collusion.

Based on the way that executors interact with each other in
a collusion, we further describe their behaviors and identify
two collusion types: Type-I collusion - one or more executors
provides a result, which is promised as correct, to other
executors; in return, the latter offer to the former a reward,
which is smaller than the cost they would pay if directly do
the computation. Type-II collusion - one or more executors
proposes a result, which may or may not be correct, and ask
other executors to submit the same result; to ensure the latter
collude, the former promise to reward a bribe to the latter if
they do, and meanwhile the latter are required to make deposit
and will lose the deposits if they do not.

In the following, we describe the generic contracts for these
two types of collusion.

1) Type-I Collusion Contract: We call an executor as leader
(denoted as LDR) if it promises to execute the HDSC and
shares the result to the others. There could be multiple leaders;
for simplicity, we assume there is only one single leader.
We call the other executors participating in the collusion
as followers (denoted as F'LR each). The collusion contact
consists of the following three phases, where Phases I and II
of this contract should happen after Phase I and before Phase
II of the Outsourcing contracts, while Phase III of this contract
should happen after Phase V of the Outsourcing contracts.

Phase I - Initial Depositing. The LDR makes a deposit
of dppr. Each FLR also makes a deposit of drpr, where

Authorized licensed use limited to: lowa State University. Downloaded on January 29,2021 at 23:39:37 UTC from IEEE Xplore. Restrictions apply.



2020 IEEE Conference on Communications and Network Security (CNS)

drrr < c; ie., the deposit, which will be rewarded to the
leader if the provided result is correct, should be no greater
than the cost for honestly executing the HDSC by itself.

Phase II - Preparing the Execution Result. This phase
includes the following three steps. Step (i) - LDR Preparing
the Result. The LDR honestly executes the HDSC to get
the correct result r with a probability of prpr; or it makes
up an arbitrary result 1’ otherwise. Step (ii) - LDR Sharing
the Result to Followers. The LD R shares its prepared result,
which is either 7 or 7/, to the followers. Step (iii) - Followers
preparing their Results. For each F'LR, it honestly executes
the HDSC to get the correct result with a probability of prrR;
or it directly uses the result shared by the LDR.

Phase 11 - Distribution of Deposits. If the result shared by
the LDR is accepted as correct in the Outsourcing contract,
the LDR takes all the deposits; otherwise, the deposits are
evenly distributed to the followers.

In this contract, the leader is supposed to provide the correct
result. If the leader does, all the followers should collectively
reward the leader by offering their deposits to the leader. This
way, only one computation is conducted by the leader and
all the executor share the cost of the computation, instead of
every executor repeating the same computation for multiple
times; hence, their overall computation cost is reduced.

However, if the leader provides an incorrect result, the
followers who use the result can be harmed. That is, if the
incorrect result is detected in the Outsourcing contract, every
follower that uses the result will lose deposit dezecutor. TO
protect the followers from such loss, it is economically-rational
to set the leader’s deposit as follows:

dLDR = (TL - ]-) : de:vecuto’r; (1)

This way, if the leader provides an incorrect result and this
misconduct is detected, the leader should pay the loss of
every follower in this collusion contract. We call a Type-
I Collusion contract a Fairly-responsible Type-1 Collusion
contract if dppg is set as in Equation (1).

Also, a Type-I Collusion can be benign, if the leader
provides the correct result, or malignant, if the leader provides
an incorrect result and all the followers submit the same result.

2) Type-1I Collusion Contract: Similar to Type-I collusion,
we call the executor who proposes an execution result as leader
(denoted as LD R), call the others in the collusion as followers
(denoted as F'LR each), and assume there is only one leader
for simplicity. The leader makes up an execution result 7/, and
promises a reward to the followers as long as they all use this
result to submit and the result is accepted as correct in the
Outsourcing contract. The contract consists of three phases,
where also similar to the Type-I Collusion Contract, Phases
I and II of this contract should happen after Phase I and
before Phase II of the Outsourcing contract, while Phase III of
this contract should happen after Phase V of the Outsourcing
contract.

Phase I - Initial Depositing. The LD R makes a deposit of
drpr+ (n—1)-b, and each F LR makes a deposit of dpp,g.

Here, b represents the amount of a bribe that LD R promises
to reward each F'LR who follows the collusion.

Phase Il - Preparing the Execution Result. This phase
includes the following steps. Step (i) - LDR Sharing the
Result to Followers. The LD R makes up a execution result r/
and shares it to the followers. Step (ii) - Followers preparing
their Results. For each follower F'LR, it honestly executes
the HDSC to get and then report the correct result with a
probability of pprg; or it directly uses the result shared by
the LD R otherwise.

Phase III - Distribution of Deposits. There are the following
different cases: Case (i) - At least one executor is found
betraying the collusion by reporting a result different from
r’. There are different ways to distribute the deposits, but
all share the following: each executor betraying the collusion
loses its deposit in the collusion contract; each executor who
does not betray can take back its deposit, and further obtain
the bribe if it is a follower. Case (ii) - All executors report
r', and the result is accepted as correct. The LDR takes
drpr, and every FLR takes dprr + b. Case (iii) - All
executors report r', but the collusion is detected (because there
is reporting of collusion). No one can be identified as traitor of
the collusion due to the anonymity in reporting. Hence, there
are two approaches to distributing the deposits. In the first
approach, the deposits are distributed as in the previous case;
in the second approach, none of the executors is funded from
the deposits. It is straightforward to see that, when the first
approach is taken, it must not be a Nash Equilibrium when
no executor reporting the collusion because any executor who
betrays can obtain higher utility. Hence, here we only consider
that the second approach is adopted.

As we can see, a Type-Il collusion is malignant if it
succeeds, because it will lead to an incorrect execution result
being accepted.

C. Analysis I: First Outsourcing Contract v.s. Collusion

In this subsection, we analyze the games induced by the
First Outsourcing contract and the two types of collusion,
respectively. The purpose is to show that, with the First
Outsourcing contract, the game can terminate at malignant
collusion.

1) First Outsourcing Contract v.s. Type-I Collusion: Fig-
ure 1 illustrates Game 1, which is induced by the First
Outsourcing contract and the Type-I Collusion contract. Note
that, we do not show the branches with collusion reporting
because, in the Type-I collusion the strategy of reporting is
dominated by the strategy of checking and submitting the
correct result.

In Game 1, there is no pure dominating strategy for the
LDR or each FLR. When the LDR submits r, no matter
what actions the followers take, it always get the rewards of
w—c+(n—1)dprr. When the LD R submits 7/, it can get ei-
ther —dr pr—dezecutor OF W+ (n—1)dpr r depending whether
there is follower honestly computes and submits r. Since
wH(n—1)dprr > w—c+(n—1)drrLr > —drpR—dexecutor
the LDR would play mixed strategy instead of pure strategy
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provide & submit r
(with probprpr)

provide & submit r'
(withprob 1 — prpg)

check then —checkthen  check then —check then
submit r submit r submit r submit r'
(withprrr) (With 1 = prrr) (withprrr), (With 1 = prrg)

ULDR) ., (w—c+(n— Ddrr w—c+(n—1)drr us,f,
u, . w—c—dpg w—d, Us.p some other
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} [w + - l)d[.-,_R}

w —drrr

Figure 1: The game induced by the First Outsourcing contract
and the Type-I Collusion contract. Here, urpr and uprr denote
the utility functions of LD R and F'L R, respectively; ng is the number of executors
who compute the result and submit 7; n1 is the number of executors who submit the

result 7’ received from LD R; also, us, 1, = —dezecutor — dLpR and us p =
., dLDR nidegecutor —Cfull
w— ¢+ py— =+ 0 .

to maximize its profit. Similarly, for each F'LR, a mixed
strategy makes more profits than a pure strategy. The following
Lemma 1 gives the Nash Equilibrium of Game 1, and the
positive probability that the game terminates at a malignant
collusion.

Lemma 1: A mixed strategy o = (arpr,QrLr) =
((prorr, (1 = pLpR)T), (PFLRT, (1 — pRLR)T')) is @ Nash
Equilibrium of Game 1 in Figure 1 where

(l—pror)" '=1— c
R wtdegecutortdLpr+Y(n—1)dpL R’

c

pPLDR=1— w+"deweou.:"(ir7cfu” _
Also, both pprr and prpr are in (0,1); hence, there is a
positive probability (1 — prpgr) - (1 — prrr) that Game 1
terminates at a malignant collusion.

2) First Outsourcing Contract v.s. Type-II Collusion:
Figure 2 illustrates Game 2, which is induced by the First
Outsourcing contract and the Type-II Collusion contract, and
Table I shows the strategies and corresponding utility functions
for the LDR and each F'LRs in Game 2.

The LD R can either initiate a collusion or not. If a collusion
is initialized, each F'LR can either collude or not. Once a
collusion is set up, the LDR and each F'LR can report the
collusion anonymously or not. The LD R can submit either a
correct computation result r or a coordinated fake result 7.
Also each F'LR can either compute honestly and submit r or
submit r’ provided by the LDR.

Table I shows the normal form representation of the game.
The LDR has five strategies as —init, init - r - ~report, init -
r' - =report, init - r - report and init - ' - report. Each FLR
has five strategies as —collude, collude - r - —report, collude -
r’ - —report, collude - - report and collude -1’ - report. Each
collum corresponds to one strategy of the LD R, and each row
corresponds to one strategy of each F'LR.

Table I also presents the utilities of the LD R and each F'LR
under each strategy profile in the corresponding cell, where the

compute then
submit r

compute then
submit r

compute then submit 1’ compute then submit r'

submit r submit v’ submit r

Figure 2: The game induced by the First Outsourcing Contract
and the Type-II Collusion.

first row in the cell is the utility for the LD R and the second
row is for the F'LR. The following notations are introduced
to simplify the presentation:

e 2=wW—¢, de= degecutor;
o di=drpr+ (n—1)b, df =drrr:
_ madezecutor —Cfull . _ madegecutor —Cfull .
by = sl by = e e
mi dmo
_ Cfull, _ . maidy .
. b3 = Tmo( 5 b4); (m2 1)b +d ma
1+(m1—1 . _ maydy
.b5:.m7f’ bg = b+ m2f,. )
e Mg is the number of executors reporting collusion;
e mj is the number of executors submitting 7;
e o is the number of executors submitting 7.

_ d N
(1-ppLR)" ?(wtdezecutor—drLr—+2f) Note that, the value of m; and my may affect the payoffs

under some strategies; in those cases, the cell is divided further
divided into multiple columns. The Nash Equilibrium with the
maximum payoffs is in bold.

Based on Table I, we have the following Lemma 2. Intu-
itively, the Lemma states that, under certain configurations of
the collusion contract that can be controlled by the executors,
Game 2 can terminate at a equilibrium where the executors
succeed in a malignant collusion.

Lemma 2: When dLDR > (TL - 1)dewecutor’ dFLR >
(n — Vdezecutor and (n — 1)b < ¢, strategy profile o =
(aLpr,arLr) = (init - r' - —report, collude - v’ - —report)
is a Nash Equilibrium of Game 2. With this strategy profile,
all the executors choose to collude in reporting a faked result
r’ and not to report it; together with the First Outsourcing
constract, this results in a malignant collusion.

3) Summary: Based on the above analysis of games in-
duced from the First Outsourcing Contract, particularly the
Lemmas 1 and 2, we have the following Theorem 1.

Theorem 1: If a HDSC owner interacts with executors
based on the First Outsourcing contract, which only launches
trusted computation reactively when executors report different
results or report collusion, there is positive probability that the
executors succeed in a malignant collusion.
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Table I: First Outsourcing Contract v.s. Type-II Collusion: Strategies and Utilities

FLR\ LDR —init init - r - —report init - v’ - —report init - r - report init - v’ - report
z z z z z
—collude
z z z z z
ma =0 mao >0 mo =0 ma >0
collude - r - =report Z z—d; z—d; + b :d(; ++b‘;) z—d;—b3 | z—d; +b1 :d; —:f)i
z Z—df Z—df—‘rbl ? ! 1 Z—df Z—df+b1 z ! 1
m1 =0 my1 >0 m1 =0 my1 >0
collude - r' - =report Z Z:ddl++bb1 w—(n—1)b | —de +ba Z:ddl++bb1 —d; —de +ba | —de + b4
e w+b —d, + bg e —df —d. —d, + bg
mo =0 mo >0 mo =0 mo >0
collude - T - report 2 z—d; z—d; + b1 z:d(; ++b}1) z—d; —bs | z—d; + b1 Zidg +_fi
Z*df*by, Z*df+bl f 1 Z*df*bg Z*df+b1 f 1
mp =0 mi1 >0 m1 =0 mi >0
collude - ' - report i Z:ddl++bb1 —d; — de —de + by Z;ddl:_bbl —d; — de + ba —de + by
T —df —de+bs | —de+bs T —dy —de+by | —de+bs

D. Analysis II: Second Outsourcing Contract v.s. Collusion

In this subsection, we first analyze the games induced by
the Second Outsourcing contract versus the type-I and type-II
Collusion respectively. Then, we summarize the analysis and
present our conclusion that, based on the Second Outsourcing
contract which launches a trusted computation proactively with
a proper probability, the executors will not choose to conduct
a malignant collusion, as the collusion will not maximize their
utilities.

1) Second Outsourcing Contract v.s. Type-I Collusion: Fig-
ure 3 illustrates Game 3 induced by the Second Outsourcing
contract and Type-I Collusion. Note that, we skip the branches
with collusion reporting as the strategy of collusion reporting
is dominated by the strategy of checking and submitting the
correct result.

provide & submit '
(withprob | = pior)

provide & submit r
(with prob pLor)

Game 3

check then
submit r
(withprig)

~check then
submit 1’
(with 1 = prrg)

fallback
(With pratipact),

fallback
(With pratiback )

no FLR checks

[’AS‘LJ
accept Usk)  someother (with (1 = prag)'™)

(With 1 = praiipack) FLR check
with 1 = (1 = prrg)'™2),

[M 1 ,L}
mr)
fallback
(With praipact),

accept
(with | = prapack)

us,L
usF

uLprY | (U7.L
UFLR | " (UT.F

Ug,L
Uy

{u 10.L }
H0F, accept
with 1 = praiipack)

13,1 U141
Uiz F H1aF

Figure 3: The game induced by the Second Outsourcin
Contract and the Type-I Collusion. The utilities for the LD
and each F'L R under each strategy profile (i.e., in each branch)
is listed as follows: us 1 = —desecentor—drpr, us, r = w—c+2LLE 4
W, ur,p, =w—c+ (n—1)dprr, u7,F =w — c — dpLR,
us,L = u7,L, U8, F = U7, F, U9, L = U7, [, U9, F = W — drLR, w10,L = U7,L,

d
U10,F = U9, F, U11,L = Us,L. U11,F = —dezecutor + =2, w13 1 = us, 1,

w13, F = U11,F, Y14, = w + (n — 1)dpL R, and w14, p = w — drLR.

Analyzing the game, we have the following Lemma 3.
Intuitively, the lemma shows that, when the HDSC owner has a
proper probability to launch a trusted computation proactively,
Game 3 will not terminate at a strategy profile in which all

the executors collude to submit an incorrect result and not to
report the collusion. Hence, the game can only terminate at
a state where there is no collusion, or the executors report
different results, or some executors report the collusion; none
of the cases will make an incorrect result to be accepted.

Lemma 3: As long as praupack = m, Game 3 will
not terminate at state vy3 or vy4. That is, rational executors
will not collaborate to conduct a malignant collusion.

Though the above Lemma 3 shows that malignant Type-
I collusion can be prevented, the frequency for proactive
launching of trusted computing needs to be m. However,
the following Corollary shows that, a fairly-responsible Type-
I collusion can be prevented from being malignant with a
lower and more scalable frequency for proactive launching
of trusted computing. Note that, a fairly-responsible Type-I
collusion is more restrictive than a general Type-I collusion
by requiring dypr > (n — 1)dezecutor; but as explained in
Section IV-B1, this additional requirement is economically-
rational in practice to protect the followers in the collusion
contract against a misbehaving leader who does not keep the
promise of providing a correct result.

Corollary 2: For a fairly-responsible Type-I collusion (i.e.,
dLDR > (n - 1)dezecutor), as long as P fallback > ndmimm,
Game 3 will not terminate at state w3 or wvi4. That is,
rational executors will not collaborate to conduct a malignant
collusion.

2) Second Outsourcing Contract v.s. Type-II Collusion:
Figure 4 illustrates Game 4 that is induced by the Second
Outsourcing contract and the Type-II Collusion.

Analyzing Game 4, we have Lemma 4 as follows.

Lemma 4: Aslong as praupack > m the game
shown by Figure 4 will not terminate at state vy5 or vig.

Note that, in each of the terminal states other than vyg,
either the type-II collusion is not launched or it not successful
(either because the parties submit different results or some
parties report the collusion). Hence, according to Lemma 4, as
long as praiivack = e ¢ , a type-II collusion cannot
succeed.

3) A Special Case: When all selected executors share the
same interest (e.g., they belong to the same miner or the same
mining pool), with the Second Outsourcing Contract, we have
the following Lemma 5.

dezecutor
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LDR
Game 4
(] o
compute then .
o submit r submitr’
compute then X L,
submit r'  compute then submit r

submit r

{“m}
accept UsF

(With 1 = praiipack)

fallback
(With praipact),

accept
With 1 = Pratipack)

o) )

{lﬂu}

M3 F) o

fallback
(With praipact),

Uys,L
UisF,

16,
Hi6,F,

Figure 4: The game induced by the Second Outsourcing
contract and the Type-II Collusion. Bold edges indicate the
actions that the executors will play in the unique sequential
equilibrium. The reachable terminal node of the game is in
grey. The utility of LDR and FLR in each branch is listed

as follows. us = z —d; + b1, us.r = —de + bs, ug,, = —de + ba,
ug,r = z — dy + b1, w11, = wus,L, U1, F = Ug,F, U12,L = U8 L,
Uiz, F = Ug,F, U13,L = —de + b4, u13,p = —de + bg, w15, = —de — di,
Uls, F = —de — df, U6,L = W — (’ﬂ — l)b and ule, F = W + b.

Lemma 5: As long as praupack > m, the best
strategy for all executors with the same interest is to have one
executor honestly compute result and all executors submitted
the computed result and receive a payoff n - w — ¢ as a group.

4) Summary: Based on the above analysis of games in-
duced from the Second Outsourcing contract and a fairly-
responsible Type-I collusion or a Type-II collusion, particu-
larly the Corollary 2, Lemma 4 and Lemma 5, we have the
following Theorem 3.

Theorem 3: If a HDSC owner interacts with executors
based on the Second Outsourcing contract and the executors’
potential collusion is either a fairly-responsible Type-I collu-
sion or a Type-II collusion, economically-rational executors
will not conduct a malignant collusion as long as praipack >

W in the Second Outsourcing contract.

V. IMPLEMENTATION AND EVALUATIONS

As a proof of concept, we implement the proposed sys-
tem atop Ethereum. Specifically, we implement in Solidity a
HDSC template as presented in Section III and the Second
Outsourcing contract proposed in Section IV; we develop in
Javascript a program which can be called by the Ethereum
official Go implementation Geth to handle HDSCs in the way
as we propose.

To test and evaluate the system, we rent AWS EC2 in-
stances, each running Ubuntu Server 18.04 LTS with 8GB
RAM, to set up a small-scale private Ethereum network with
up to 32 nodes. Each HDSC contains the code of applying
the Kaccak-256 hash function on a string for 1000 times; for

simplicity, no input is required. The variables in the evaluation
include: (i) IV: the total number of full nodes; N varies from
8 to 32, with 32 as the default value. (ii) n: the number of
executors for each HDSC; n varies from 6 to 12 with 6 as the
default value. (iii) a: the required number of blocks that must
have linearly extended a block before the block is considered
stable; in this evaluation, we set &« = n. (iv) p: the number of
HDSCs issued every minute, which varies from 1 to 4 with 2
as the default value.

We measure the following performance metrics: (i)
getResDelay: the delay from when a HDSC gets ready till
when the correct result is obtained. (ii) finalizeDelay: the
delay from when a HSDC get ready till the HDSC has been
completely processed.

The results are presented in Figure 5, where each point is
the average of the measurements collected for one hour, and
95% confidence intervals are depicted as vertical lines.

As shown in Figure 5(a), when N = 32, p =2 and n =
a = 6, the average delay from when a HDSC gets ready
till when the execution result gets available is around 250
seconds, which can be explained as follows: Suppose a HDSC
get ready at block =z, its executors are the miners of blocks
r+1,z+2,--- ,x 4+ 6. Block « + 6 gets stable only after
blocks x + 7,--- ,x + 12 have been added (due to o = 6),
which is the time when all the executors can start executing
the HDSC code. After the execution finishes, commitments are
posted to the following blocks, which get stable only after they
are extended linearly by at least @ = 6 more blocks. Then,
the executors can start revealing their results to the following
blocks, which get stable also after being linearly extended by
at least &« = 6 blocks. Hence, the results cannot be revealed
before block x + 24. Because the block interval is usually
between 10 and 20 seconds, the delay from when the HDSC
gets ready till when the execution results are revealed is more
than 200 seconds. After the results are revealed, 100 more
seconds are further needed for the distribution of deposits to
be performed and stabilized. This result indicates that, when
the frequency of posting HDSC:s to the blockchain is not high
and each HDSC does not require a large number of executors,
the delays are mainly due to: (i) the delays to wait for blocks
get stable, (ii) the delay for the executors to be determined,
and (iii) the several steps (i.e., result commitment step and
the result revelation step) required by the proposed scheme.
Here, factors (ii) and (iii) are the overheads introduced by the
proposed scheme, and also the tradeoff for not involving all
nodes in the execution.

Figure 5(a) also shows how the delays vary as n. As
expected, when n increases (which also increase «), the
delays increases accordingly. More over, as n increases, larger
percentages (from 19% to 38%) of the nodes are demanded
for each HDSC execution, which results in sharp increase
of the delays. The phenomenon indicates that, when larger
percentage of the nodes is required to execute a HDSC, not
only that more computation power is wasted, but also that
longer delays are incurred, as the increase in workload taken
by each node decreases the system throughput. This is also
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echoed by Figure 5(b) which shows that, when n = 6, the
larger is N (i.e., the smaller percentage of the network nodes
is required to execute a HDSC), the shorter are the delays.

Figure 5(c) shows the change of delays with p, where 19%
(i.e., 6 out of 32) of the nodes are demanded to execute each
HDSC. As we can see, when p increases (i.e., more HDSCs
are issued per minutes, the workload taken by each nodes
also increases, which causes sharp increase of the delays. This
further indicates the necessity of reducing the percentage of
nodes required to execute each HDSC, especially when the
number of HDSCs issued to the system gets large.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a game theory based, practical solution,
to efficiently and securely execute heavy-duty smart contracts.
Extensive game theoretic analysis was conducted to show
the security and computational efficiency of the solution,
even in face of collusion among the executors. The proposed
solution was implemented atop Ethereum, and experimented in
a small-scale private network, to demonstrate its practicality
and compatibility with Ethereum. In the future, we plan to
enhance the current implementation and conduct larger-scale
experiments to further evaluate the solution.
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