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Abstract— We propose a decentralized algorithm to help
reduce demand-supply imbalance in a power grid by varying
the demand from loads, just like charging and discharging a
battery. The algorithm ensures strict bounds on the consumers’
quality of service (QoS) by constraining the bandwidth of
demand variation. A model-predictive-control formulation is
adopted to compute local decisions at the loads. The algorithm
is decentralized in the sense that loads do not communicate with
one another. Instead, loads coordinate using local measurements
of the grid frequency, which provide information about global
demand-supply imbalance. It is envisioned that consumers will
be recruited through long-term contracts, aided by the QoS
guarantees provided by the proposed scheme. Simulation results
show that loads are able to reduce frequency deviations while
maintaining QoS constraints and that the performance of the
algorithm scales well with the number of loads. Closed-loop
stability is established under some assumptions.

I. INTRODUCTION

Reliable operation of the power grid requires generation
(supply) to equal demand at all timescales. Intermittent re-
newable energy sources (solar and wind) exacerbate demand-
supply imbalance, requiring additional balancing resources,
but building additional conventional generators or installing
large batteries is expensive.  An alternative is to vary the
demand to help restore demand-supply balance. Many loads
have some flexibility in demand, e.g., air conditioners [1].
Their demand can be varied around a nominal demand profile
(baseline) to absorb the volatility of renewable generation—
like charging and discharging a battery. In effect, controllable
loads provide Virtual Energy Storage (VES). The key chal-
lenge is to ensure that  any loss of consumers’ quality of
service (QoS) is limited and predictable.

Most works on demand-side management involve use of
real-time electricity prices to encourage loads to shift or
reduce demand [2, 3]. An advantage of a price-based scheme
is that it enables decentralized coordination where market
clearing price (computed and broadcast by the balancing
authority (BA)) provides a feedback signal all loads can
use [4]. A price-based scheme suffers from several difficul-
ties. First, it assumes that consumers are willing to endure
some loss of QoS in return for a payment [3, 5]. There has
been some work on minimizing the QoS loss experienced by
consumers when deciding demand changes [6, 7]. However,
modeling the loss of QoS as a function of demand variation
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and computing the dollar value of that  loss is challenging.
Second, consumers face large uncertainty in how much
financial reward they may receive since the reward depends
on real-time prices that historically show spiky behavior [£].
In fact, a survey of demand response found price volatility to
be a significant limiting factor in consumer participation [9].
The third problem is uncertainty faced by the grid operator.
Currently, generating units are committed through a bidding
process in day-ahead and hour-ahead markets, whose clear-
ing requires solving an optimization problem. The informa-
tion needed to solve this problem involves capacity,  ramp
rate, and marginal cost of all generating units, along with
forecast of demand-supply imbalance in the grid. Including
a large number of consumer loads—with an uncertain cost
of demand variation—into this optimization is infeasible.

In this paper, we propose an alternative approach for
control of flexible loads to reduce demand-supply imbalance.
The proposed approach does not involve an aggregator or
real-time prices and reduces uncertainty to both consumers
and grid operators. It consists of two main ideas: (1) con-
straining the bandwidth of demand variation (i.e., magnitude
of the Fourier transform of demand variation) to ensure strict,
predetermined bounds on the QoS, and (2) decentralized
coordination based on local grid-frequency measurements.

Constraining bandwidth is inspired by prior work that ar-
gues that the change in a consumer’s QoS is a function of the
frequency characteristics of the demand variation [ 10]. E.g.,
variations in the air flow rate of an HVAC system in a large
building will have a negligible effect on the indoor climate
if the variation is of sufficiently high frequency [ 1, ]-
Demand variation at lower frequencies will lead to loss
of QoS; e.g., 2— "F variation in indoor temperature [12].
Similarly, pool pumps can provide service to the grid without
affecting pool owners’ QoS as long as the demand variations
are limited to certain timescales (frequencies) [ 13], and this
may apply to aluminum-smelting plants as well [ 14].

In the proposed approach, each load employs a local
model-predictive-control (MPC) scheme to compute the con-
trol (demand variation) using prediction of demand-supply
imbalance from the grid operator. It is assumed that the
BA broadcasts these predictions over the Internet, which it
obtains from forecasts of demand and renewable generation.
The controller solves an optimization problem that does the
best it can to reject the disturbance faced by the grid subject
to local bandwidth constraints. Coordination is performed



by using measurements of the grid frequency, which can be
measured by each load locally using frequency disturbance

recorders [15] andis related tothe grid-level demand-
supply imbalance [16, 17]. Thus, every load is able to
infer global information from local measurements without
requiring inter-load communication. We call the proposed
control scheme the bandwidth-limited, disturbance-rejecting,
decentralized model-predictive control (BaLDuR-DMPC).

It is envisioned that each load signs a contract with the
BA that specifies the bandwidth of demand variation the
consumer signs up for. That guarantees the QoS loss the
consumer may experience for all time. For example, if a
consumer is willing to tolerate a maximum temperature
deviation (from the nominal value) of 2 °F, then the band-
width constraint will be tighter and monthly payment will
be smaller compared to those for a consumer who is willing
to tolerate a 4-"F change. This contract-based mechanism
makes it easy for the grid operator to estimate how much
VES capacity it can count on at every instant. By the same
reason, the consumer knows ahead of time how much money
she will make and maximum discomfort she may experience.

One class of loads will not have sufficient flexibility to
meet all the needs of the grid. It is arguedin [10] that
a spectral decomposition of the demand-supply imbalance
can be used to assign the appropriate part thereof to the
appropriate resource. For instance, the slowly varying part of
the net demand (demand minus renewable generation) of a
future grid can be handled by traditional generators. A “mid-
pass” component can be provided by pool  and irrigation
pumping, a “high-pass” component can be provided, HVAC
systems in buildings, etc. This is illustrated in Figure 1. Since
the BA signs long-term contracts with various flexible loads,
it knows ahead of time whether it has adequate capacity at
all frequencies (timescales). Each class of resources therefore
only focuses on the task of rejecting the part of the imbalance
that its bandwidth constraints allow.
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Fig. 1: Illustration of the grid’s regulation needs [&].

Our work is also related to [ 1 8—20]. These works use strict
output constraints to ensure QoS while optimizing a market-
based objective function. This approach, however, requires
an accurate model of each load’s dynamics. In contrast,
the proposed approach requires an imprecise characterization
of aload: thelocal controller only needs a conservative
estimate of the region in the magnitude-frequency plot that

the demand variation needs to stay within to satisfy the QoS
requirements of the consumer. Such a characterization can
be done at the factory for consumer loads like water heaters.

Compared to prior work on demand control ~ for grid
balancing, this paper makes three contributions. Though the
idea of limiting the bandwidth of demand variation to ensure
QoS bounds was espoused in our earlier work [ 10],  to the
best of our knowledge, this paper is the first to use explicit
bandwidth constraints in an MPC formulation for ~ demand
control. The second contribution is a novel  use of locally
obtained grid-frequency measurements for distributed coor-
dination without using communication, in which disturbance
predictions are scaled based on local  frequency measure-
ments. The third contribution is analysis of the closed-loop
system under the proposed BaLDuR-DMPC scheme. There
have been a number of papers on applying distributed MPC
schemes for load control in the power grid (e.g., [18-20]).
However, these references do not provide any analysis of
closed-loop behavior. Although the analysis  presented in
this paper is preliminary and makes strong assumptions,
results from dynamic simulations suggest that the algorithm
performs well even when the assumptions are violated.

Our focus is onloads providing grid support in the
intermediate time-scale of a few minutes to a few hours.
Although in principle it can be extended to faster time-scales,
some of the assumptions we have made—such as availability
of disturbance predictions through periodic broadcasts from
the BA—may not hold in those timescales.

The rest of the paper is organized as follows.  Section II
introduces the problem to be solved. The proposed BaLDuR-
DMPC algorithm is  described in Section III.  Preliminary
analytical results are presented in Section IV. Dynamic-
simulation results are shown and discussed in Section V.
Finally, Section VI concludes this work.

II. PROBLEM FORMULATION

Let time be measured by the discrete iteration counter:
k=0, 1, .., andlet T be the discretization interval. The
control action at load / at time K is the demand variation
from the nominal value, denoted by V,(p .

The grid is modeled as a plant ~ with input equal to the
real power injected and output equal to the grid frequency.
We only consider the linearized grid dynamics around the
nominal system frequency, 60 Hz, with the nominal input
being the net real power (generation minus nominal demand)
injected to maintain the nominal frequency. The linearized
plant, discretized with sampling period T, is denoted by
G(2). The inputto G(z) is the sum of disturbance, Ok, and
the control actions of the loads; denote this input bpl, Hk. Let
Ik be the total control action by the loads: Jk = ;7:1 vl
Then, Hk = dk + J«k. The output of G(z) is the deviation of
the system frequency from 60 Hz and is denoted by ~ &. In
the Z-transform domain, w(z) = G(z)u(z) .

The goal of the loads is to arrest frequency deviations from
60 Hz while ensuring no loss in QoS for consumers. We use
MPC because it is readily able to enforce constraints. Let N
be the prediction horizon for the MPC at every load.



The control at load /—its demand variation—must satisfy
the bandwidth constraints of that load. These are specified
in terms of the DFT of the control signal. The L -point DFT
of the control inputs, v ,atload I is

vV =
k=1

Vg)e"%mk, m=0, |
Bandwidth constraints on the control actions are enforced by
specifying upper bounds, af) , on the magnitude of the con-
trol signal’s L -point DFT: [V [sa ) 'm =0, L-1
for an appropriately chosen L . The control actions must also
satisfy upper and lower bound constraints, which are denoted
by U? and U | respectively, for load /.

We assume that a prediction of disturbances affecting the
grid are available to all loads (through periodic communica-

~(BA
tion from the BA). Let ) =[d&Y , ... 4@ 17
be the prediction of  the disturbance, [dks - - - » Rhn-1 ]T,

affecting the grid that is available to all loads at time K.

III. PROPOSED METHOD
A. Grid model used by loads

Since the proposed control scheme is MPC-based, each
load needs amodel of the plant, G(z). In the proposed
method, loads use an extremely simple model of G(z) for
control computations: a constant gain, which we call J.
The rationale for choosing such a simple model is twofold.
First, a simpler model aids in keeping control computations
simple. Second, since the focus of  this work is demand-
supply balance at the slower timescale of a few minutes to
a few hours, i.e., in the frequency range fe[ < nlm 1201min 1,
the linearized model of a power grid at these frequencies,
G(e’f ), is a nearly constant gain. This leads to the following
model used by every load:

W =guk =g(dk+9k)=gdk+ V). (1)
=1

B. MPC formulation for load |

Let Ug) denote the decision variables of load / at time K:

(1 0] (i) T
Uk ,[u Kik * ""uk+N—1|k ] .

The first entry of the optimal value, U f(")* , which is denoted
~u )
The optimal value U §<' is obtained by solving the following
optimization problem at time K by load /:

k-1

min w? 2)
uo

by Uf!fk , 1s implemented as the control, i.e., V,(j)
)*

subject to the following constraints over the horizon K <~ <
k+N-1:

© =g + ), )
ui <ul <o, 4)
|vngf|)k|sa§2, 0<m<2N -1, (5)

where a(ﬁ( ) is the disturbance prediction used by load / and

. 1 N Y o . .
Vn(;l)k = vl e Fmoy u(?k el & (6)
‘=k-N =k
is the 2N-point DFT of the array, [V,QN Py V,(L ,
Uf('l)k, cee Uf('lN_”k ]; recall that V¥ s the control action

previously implemented by load / at time -

The reason for including past control inputs in the band-
width constraint—through (6)—is the following. If only pre-
dicted values are used, even if the solution to the optimization
problem satisfies the bandwidth constraint, because MPC
only implements the first entry of the solution, the closed-
loop control action may not satisfy the bandwidth constraint.
This issue is faced in MPC schemes that ~ limit the rate of
change in control, where past data are used to enforce the
constraint in the closed-loop [19]. The use of past data in
computing the DFT in (6) was found to help maintain the
bandwidth constraint in the closed-loop.

Obtaining necessary conditions for feasibility of the op-
timization problem (2)-(5) is left for future work. However,
if (2)-(5) is feasible, then it can be shown that the problem
is convex by convexity of the cost and constraints.

C. Avoiding high-gain feedback

Note that the system-model constraint (3) indicates that
every load thinks it is the only load inthe  grid. The
MPC scheme encourages each load to reject  the predicted
disturbance through its local control. The combined actions
of all loads may lead to high-gain feedback and instability.
To avoid this, load ! does not use the grid-level disturbance

~(BA i
prediction, df( ) , for d;((l) in solving problem (2)-(5). Rather,
the disturbance prediction is scaled according to the follow-
N ) ~(BA i

ing: d;? = pg) d;(( ) , Where P,((’) >0 is a time-varying gain
that is updated via

A =r e ()
the ratio, I ,(<i) , i1s computed from
4(BA) )
r =min  max —~_—,r , T, 8
50
k_

where 0<r_ <1< I <%  arepredetermined bounds
on f,(j) (they ensure that 0 6= r,(j) € ) and 19,(!)_ is an
estimate obtained by load / at time K of the total control
effort by all loads at time K before the new values of V,(f)
are implemented.

At time K, load / has access to a noisy measurement,
UO,(!)_ , of the grid frequency, @k-, where UO,(!)_ =Wk + fj’
with measurement noise fj’ and K~ retains its meaning from
above. Recall from (1) that loads use the model & = guk =
g(dk + 9k). Thus, load / estimates the input from the output
measurements as Flg)_ = ~w,((i)_ /9 . From that, it obtains an

estimate, 79;!)_ , of the total demand variation, Ty - , as

af?)
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With the update law (7)-(8), if there is too much demand
variation at the previous time-step, the loads will reduce the
magnitude of disturbance predictions to use less control  in
the next step, which will presumably bring the frequency de-
viation closer to 0. Conversely, if there was too little demand
variation, they will increase the size of their disturbance
predictions. In this way, the loads scale their  disturbance
predictions until the scaled predictions cause the loads to
collectively execute the right amount of demand variation.

In summary, for load / at time K, the BaLDuR DMPC
algorithm is the following, with initial condition V =0.

BaLDuR-DMPC Algorithm At every K, load / does.

1) Obtain the estimate, 19,(('),

measurement of grid frequency, G),Q
2) Compute 7 9 from (8) and P') from (7).
() _ (BA)
3) Compute d p i d
4) Solve problem (2)-(5) to obtain u

5) Implement the control, V(') =u k|)k .

, via (9) frpm the local noisy

The inputs to the algorlthm for load I at time K are: the N
past (executed) inputs Vo (C =k-N, - 1k=1), the noisy
frequency measurement, 0'0,(()_ and the grid-level disturbance

. L. ~(BA)
prediction d; . The output is the control input, V . No
inter-load communication is needed.

IV. CLOSED -LOOP STABILITY

We now show that  the proposed algorithm drives  the
output, &k, to 0 under some assumptions. Simulations show
the controller is robust to those assumptions (see Section V).

Assumption 1.

1) (Perfect disturbance prediction) a,(<BA) =dk forall K.
2) (No “plant-model mismatch”) G(z) =g .
3) (Perfect [frequency measurements) &- = wg- forall

4) (Loose bandwzdth constramts) Om is sufficiently large
so that V . <O m forall I, M and K.

5) E)?u}j”aent actuatlon) 7:1 Ui >max |a}(') |, and
u® | > - max « 6 |,

Assumptions 1(2),(3) imply 19k_ =9k foralll, K; Assump-
tions 1(4),(5) imply strict feasibility of problem (2)-(5).

Since @ is the deviation from the nominal  system fre-
quency, 60 Hz, the desired elgulhbrlum of the closed-loop
corresponds to Wk = 0 with V(' =—d k.

Theorem 1. Suppose the disturbance affecting the grid is
constant: A = & for all K and some fixed O. If Assumption 1
holds, ' =0, and r=+w , then W - Qas K » ®

It is straightforward to see from &k = g(dk +3 k) that 9 =
=0 and w = 0 is an equilibrium: once the control reaches this
point at some k, f,(<'+1 =1 from (8), and 9211 = p,(!) by (7),
meaning each load will use the same disturbance prediction

at k + 1 as at K, which will lead to the same control action
at k+1 asat K; hence, 441 =-8 and Wuq =0. The

assumptions of an accurate grid model and perfect frequency
measurements and disturbance predictions are utilized in this
argument. The theorem states that the closed-loop trajectories
converge to this equilibrium.

Proof of Theorem 1. Without loss of generality, supposed >
0; symmetric arguments apply for & <0 . The solution to
problem (2)-(5) is the one that exactly cancels out the scaled
predicted disturbance if actuator constraints allow. That is:

uge =-y QPP 5, (10)
where
o . uo
Y ., min e 1 . (11)
pY o
Now, we have
X () /(1)
Hh=-6 PV (12)

The proof will proceed by showing P}!) converges, which

implies [9x| - O by (7) and (8). Since 2 and O are opposite

signs by (10), 9k — —0, which implies @ — 0 by (1).
From (8), using (7), (12), and 19;!)_ = J k- , we obtain

0 () p(k’)
j=1 pk yk ]—1 p

Now, suppose [9k,| >0 for some Kp; symmetric arguments
may be made if [Jx,| <O . Then there is too much total
éﬁmand Varlat10n at that instant. From (12), We then have

i=1 Pk V >1. By (13), we then have o 41 <P ig)
which 1mplles V,(<'())+1 2 Vk’l)) by (11). Now, by iterating (13),
we may observe

P
P i)
o) = Pl ERALNL
ko+2 ~ P o0 0
k
pko+1 Vko+1 o Vko+t
J=1 j= - Prcy Yig
(1) (1)
— A 0 < pko — A~
3 oy ket
o yP,, A v

=1 =1

Now,sz)Jr2 SP,(?OH implies f,(< +1 <1 by (7). Therefore,
[9x,+11 20 by (8). Hence, |7-9k0| >0 implies Pko+2 <
Pko +1 » which implies |79k0+1 |20 . By induction, it follows
that [9«| 2 0 for all K2 K (. Therefore, Pk+1 = Pg) for all /
and all K=K . Hence, if [9¢| >0 for any K, Pf(i) converges
for all / because it is bounded below by 0.

Now, suppose [9x| <9 . Then, we have Pﬁl < P,(g+1 . By
P, zp forall k2k o Hence,
Pki either converges or increases without bound. However,
if Pf() mcreases without bound, then it follows from (11)
that ,n=1 vY - 0, which implies that P}
a contradiction because it was supposed that Pg)

symmetric arguments,

converges—
increases



without bound. Therefore, Pg) converges for all /, and the
proof is complete.

V. DYNAMIC -SIMULATION RESULTS
A. Simulation Setup
We use the linearized grid model,

0.644s + 0.147
S2 +0.4797s + 0.147

which was based on a study of the Texas gridin [21].  For
simulations, we use a discretization interval of 1 second.

Control actions are discretized into 5-minute intervals; i.e.,
T =300 seconds. Loadsuse g =1 for their constant-gain
model, with input in GW and output in Hz. Loads use a 2-
hour prediction horizon, so N =24 ; this means loads also
use a 2-hour past horizon for bandwidth constraints.

The continuous-time disturbance to the grid is

G(s) = (14)

. 2n 2
d(t) = 0.05 sin 3600t 5 x3600t +0(1),
where t is in seconds and 6(f) is chosen from N (0, 0.05).
The disturbance prediction supplied to the loads from the
BA, a® , is the discrete form of d(EA) (t) = d(t) - (1)
with a sampling interval of T =300 seconds.

The measurement noise (for grid-frequency measure-
ments) is modeled as a zero-mean normal random variable
with variance of 107 . For each /, we use U0 = —y_() = oo
so that the effects of bandwidth constraints are clearly seen
(rather than those of saturation). Finally, we use I=1/r=
0.95and A =0.01 forall /.

To solve problem (2)-(5), each load uses a sequential-
quadratic-programming (SQP) formulation. Any method may
be used, but SQP is useful in the presence of nonlinear con-
straints, such as (5), and has robust theoretical foundations.

In the sequel, we present simulation results of the
BaLDuR-DMPC algorithm for n =10 loadsand n =100
loads with different choices for Om, m =0, 2N -1.

+ 0.1 sin

B. Discussion

When 7 =10 loads, the total objective value was

« ¢ = 84.3, compared to 135when n =0 (no intelligent
loads). Increasing the number of loads significantly improved
performance because, with more loads, each load is respon-
sible for a smaller portion of the disturbance, d. Results for
n =100 loads are presented in more detail below.

Since the bandwidth constraint is posed in terms of  the
DFT of a finite-length signal, the closed-loop control signal
may not satisfy the bandwidth constraint even if the solution
to problem (2)-(5) at every K satisfies it. This is because the
bandwidth constraint (5) is enforced for each individual time-
step using the past N control actions, but for the overall DFT,
as the number of data points used to compute the overall
DFT tends to infinity, the magnitude of the DFT also tends
to infinity. At each time K, no U,g)* violated (5).

Figure 2 shows the disturbance, d, total demand variation,
9, and grid frequency, @, for n =100 loads. The bottom
plot shows the magnitude of the DFT of the overall control

actions for load 1 as well as bandwidth constraints, Om, for
each frequency. There was a75.6%reduction in the objective
value compared to the case without intelligent loads.
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Fig. 2: 100 loads:  , W¢ = 32.6; cf. 0 loads:  , W¢ = 135.

In Figure 3, n = 100, and the values of dm, m=0, 1, 2
were ten times smaller than those in Figure 2, while Om
was the same as in that figure for all other M; i.e., the
lowest three frequencies in the DFT were subjected to stricter
constraints. The result of stricter constraints was a higher
objective value relative to that for Figure 2. Even so, Figure 3
still shows a 58.8%reduction in objective value compared to
the baseline with no load control. Additionally, the energy of
the control actions in the more strictly constrained frequency
was significantly attenuated compared to that  in Figure 2,
while the energy in the less constrained frequency remained
nearly the same—effectively shaping the frequency content
of the loads’ actions to maintain QoS.

VI. CONCLUSION

We proposed a bandwidth-limited, disturbance-rejecting
decentralized MPC (BaLDuR-DMPC) algorithm that enables
loads to reduce demand-supply imbalance in a power grid
while maintaining predetermined bounds on the loads’ qual-
ity of service (QoS). Each load solves an MPC problem
with constraints on the demand bandwidth (magnitude of
the discrete Fourier transform of demand variation). The
bandwidth constraint is the key in maintaining QoS.  De-
centralized coordination is achieved by scaling disturbance
predictions based on local grid-frequency measurements. It is
envisioned that each load will sign a long-term contract with
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stricter bandwidth constraints than in Figure 2.

the balancing authority, during which its payment structure
is determined based on the bandwidth it  promises to make
available.

In this work, we presented preliminary analytical con-
vergence results under some idealized assumptions. Results
from simulations of more realistic scenarios indicate that
the algorithm performs well even in situations where those
assumptions do not hold. Several aspects have been ignored
in this preliminary study, especially the effect of the differ-
ential algebraic nature of power grid dynamics and its effect
on closed-loop behavior [17]. A more thorough analysis of
closed-loop stability is a subject of future study.
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