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Abstract Loads are expected to help the power grid of the future in balancing
the highs and lows caused by intermittent renewables such as solar and wind. With
appropriate intelligence, loads will be able manipulate demand around a nominal
baseline so that the increase and decrease of demand appears like charging and dis-
charging of a battery, thereby creating a virtual energy storage (VES) device. An
important question for the control systems community is: how to control these flex-
ible loads so that the apparently conflicting goal of maintaining consumers’ quality
of service (QoS) and providing reliable grid support are achieved? We advocate a
frequency domain thinking for handling both of these issues, along the lines of a
recent paper. In this article we discuss some of the challenges and opportunities in
designing appropriate control algorithms and coordination architectures in obtaining
reliable VES from flexible loads.

1 Introduction

A future power grid is likely to experience significant intermittency in generation
from renewable sources such as solar and wind. This intermittency is illustrated in
Fig. 1; the data comes from BPA (www.bpa.org), a balancing authority (BA) in the
Pacific Northwest. The net demand, which is the difference between demand for
power and renewable power generated, must be supplied by controllable genera-
tion resources. The sharp ramps and fast variations in the net demand are a cause
of concern for conventional generators. They are not designed to track such a fast
varying signal. Inability to track the net demand can seriously degrade reliability of
the power grid: if demand-supply imbalance becomes too large, the grid- frequency
deviates far from the nominal value of 60 Hz, and cascading blackouts can occur.
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Fig. 1 (Top) Total demand and renewable generation, and (bottom) net demand in BPA (Bonneville
Power Administration: www.bpa.gov), April 19-22, 2016.

Additional resources are needed to mitigate the volatility created by solar and
wind. One possibility is to employ sufficient standby generation that can ramp up
and down quickly, such as hydro and gas. Hydro is limited by geography, while
use of additional fossil plants as backup will negate the environmental benefits of
renewables, apart from increasing overall cost of energy. The business case for the
power plant owners is also questionable since the plants would not sell much energy,
which is already causing a few power plants to close [1]. Another possibility is to
employ sufficient energy storage resources such as batteries, flywheels, pumped hy-
dro, and compressed air systems. At present, this is a prohibitively expensive option.
We discuss the cost of batteries in Section 4. The third possibility is to equip loads
with intelligence so that their demand can be varied in such a way that mismatch
between demand and generation is reduced. In fact, with the help of appropriate
control algorithms, loads that have some flexibility in their power demand can be
made to provide the same service as that of a battery. We call this virtual energy stor-
age (VES) from flexible loads; see Figure 2 for a schematic. This is to be contrasted
with real energy storage (RES), which include batteries, pumped hydro, flywheels,
and compressed air, etc.

This paper describes some of the technological challenges and opportunities in
obtaining VES from flexible loads. Any technological solution to obtaining grid-
support from loads must consider its effect on consumers. After all, all loads are
used by consumers to provide a certain function, and they have certain expectation
of the quality of service (QoS) from those loads.

There is a fast growing literature on the control of flexible loads to provide grid-
support services. A dominant paradigm in this literature is control and coordination
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Fig. 2 Virtual Energy Storage
(VES) from flexible loads:
demand is varied around a
baseline with the help of
a control algorithm so that
the demand deviation from
the baseline is akin to the
charging and discharging of a
battery.
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of loads through real-time prices of electricity, or some other market based mecha-
nism; see [2, 3] and references therein. These viewpoints have several weaknesses.
One, real-time prices subject consumers to high levels of risk. Real time prices of
electricity are volatile even without high penetration of intermittent renewables; see
[4] for examples from around the world. In fact, [4] shows that these volatilities per-
sist even in an idealized market with participants having no market power (“price
takers”), but occur purely as a result of uncertainty and ramp rate constraints. Two,
they require consumers to assign a dollar value to a change in consumption with an
uncertain QoS loss, e.g. “how much payment is adequate to compensate for a 1 kW
decrease in power consumption?”, such as in [3]. However, the answer to this ques-
tion is likely to change frequently for the same consumer, depending on the context
(during a party, after a workout session), and also depending on how long the loss
of QoS will have to be endured. More recent work on market-based “demand re-
sponse” has sought to address some of these issues by moving away from real time
prices; but using price as a coordination signal meant to help reach an equilibrium;
such as [5]. However, these works also require complex information, such as spec-
ification of utility functions (utility of consumers as a function of consumption). If
deployed at scale, market-based mechanisms may not lead to a reliable service that
grid operators can rely on.

Evidence from existing demand response programs indicate that long term con-
tracts reduce the risk to consumers while providing a more reliable service to the
balancing authorities. Florida Power & Light has 760,000 residential consumers en-
rolled in their On Call demand response program [6]. In return for a monthly rebate,
these consumers allow FP&L to turn off their pool pumps and air conditioners a few
times in a year. This program has been in place for more than a decade, and has
been effective since consumers are getting a reliable return for a known loss of QoS.
We therefore argue that a control architecture based on long-term contracts between
consumers and BAs, with negotiated QoS bounds, offer a reliable consumer en-
gagement. The control system must ensure that QoS never deviates outside of the
pre-negotiated bounds. Although the rest of the paper is not dependent on long-term
contracts being the only form of payment, we use that assumption to remove market
considerations.

It was argued in [7] that Fourier decomposition provides a convenient framework
to assign grid’s needs to all supply side resources, including traditional generators,
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loads providing VES service, and batteries providing RES services. In this paper
we further explore the frequency-domain thinking. We emphasize that current grid
operation and planning already is based on a similar framework, by breaking down
the requirements by time scale. Base-load power generation is scheduled based on
predictions of the net demand at the slowest time scale (lowest frequency), load
following and and frequency regulation at intermediate and fast time scales is per-
formed by automatic generation control that adjusts generation set points [8]. How-
ever, current taxonomy of generation-side services, such as “frequency regulation”
and “load following” are inadequate in a renewable-rich power grid. In the future,
“renewable following” may be as important a service as load following. Therefore
we avoid using that taxonomy in the paper.

The rest of the paper is structured as follows. Section 2 describes the VES idea in
detail, and summarizes the main challenges in developing local control algorithms
for a load to deliver VES to the grid with guaranteed bounds on its QoS. Section 3
discusses the challenges in developing architectures for distributed coordination of
millions of loads to meet the VES service needed by the grid. Section 4 discusses
cost of battery-alone storage and what it means for cost targets of VES technology.

2 Virtual energy storage from flexible loads

A load’s power consumption can be varied around a baseline to provide a battery
like service. Let pb(t) be the baseline power demand of a load (or a collection of
loads). Suppose its (their) demand is varied through the use of appropriate control
software to be p(t) so that the demand deviation from the baseline:

pves(t) := p(t) − pb(t) (1)

is zero mean: limT→0
1
T

RT
0 pves(t)dt = 0; cf. Figure 2. We can then say that the load

is providing VES, or, that it is acting like a virtual battery. The demand deviation
pves(t) is the charging power consumption of the virtual battery. Positive p ves(t)
means the load is drawing more power from the grid than what it would have under
baseline conditions; so the virtual battery is charging. Conversely, negative  p ves(t)
means it is discharging. The zero mean nature of the demand deviation means the
net energy consumption/generation of the virtual battery is 0, just like a real battery.

Two questions arise:

• For a specific load and a bound on change of its QoS, what kind of demand
deviation (“virtual charge/discharge signal”) pves(t) is allowable that ensures the
QoS bound is satisfied? And, how does this vary from load to load?

• How is the net demand signal to be apportioned among the loads so that together
they can supply it, while each load maintains its QoS bound?
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2.1 Constraining loss of QoS via constraining bandwidth

QoS measures vary depending on load type. There are a large variety of flexible
loads, such as refrigeration systems, electric vehicles, pool pumps, water heaters,
data centers, municipal pumping systems, HVAC systems, etc. Each has their own
QoS metrics, and a distinct degree of flexibility. For HVAC, measures of QoS in-
clude indoor temperature and ventilation rate (as a surrogate for indoor air quality).
Hot water heaters - and pool pumps in some areas - are also large sources of de-
mand. A QoS measure for a pool pump is the average number of hours the pump
is on (as a surrogate for water cleanliness) [9, 10]. For hot water heaters, it is the
availability of hot water that is critical. For an aluminum plant, a measure of QoS is
the temperature of the smelter [11]. For all loads, whether commercial, residential
or industrial, QoS metrics include the cost of energy used1 and equipment lifetime.

The diversity of QoS metrics among distinct load types is a challenge in devel-
oping control algorithms to exploit their demand flexibility. We argue that in fact an
unifying framework can be developed based on the spectral content of the demand
variation, a viewpoint first expounded in [7]. For every load type, maintaining a spe-
cific bound on the QoS can be translated to maintaining a bound on the  bandwidth
of its demand deviation. For instance, a small and fast variation of power consump-
tion of a commercial HVAC system can be obtained by a small and fast variation
of airflow. The resulting temperature deviations will be small since the large ther-
mal inertia of the building will act like a low pass filter to such airflow variations.
However, even a small amplitude airflow variation can lead to large deviation in in-
door temperature if the variation persists for a long time, i.e., the frequency is small
enough. For a given amplitude, higher the frequency of airflow variation, the smaller
the effect on QoS metrics of indoor temperature and average ventilation rate. How-
ever, above a certain frequency, QoS will reduce since equipment life will degrade.
Figure 3 illustrates this idea. For loads that can only be turned on or off, such as
hot-water heaters, again limiting the frequency of turning on and off is needed to
reduce short cycling and ensure delivery of hot water.

In essence, the VES capacity of a load can be characterized in terms of the power
spectral density (PSD) Pves(ω) of the demand variation, pves(t). The PSD must lie
in a specific region to meet a given QoS constraint, which can be parameterized by,
say, a scalar q. For every value of q there is a curve cq(ω) so that that QoS will be
respected only if the PSD of pves lies under the curve cq(ω). The curve correspond-
ing to the minimum acceptable QoS q∗ determines the load’s VES capacity. We call
cq∗(ω) the load’s capacity curve.

An illustration of the curve c q(ω), for some q, is shown in Figure 3. For a spe-
cific load, or load-class, determination of the curve cq(ω) can be determined either
through modeling or experimental evaluation [12].

1 For some large consumers, “utility bill” is a better measure since their peak demand charges may
constitute a large part of the bill.
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Fig. 3 Constraint on QoS is a constraint on bandwidth of demand variation. The x-axis is frequency
and the y-axis is the PSD of demand variation. The PSD must lie in the region under the curve
cq(ω ) to meet the QoS measure q. For a different value of q, this curve would change. The low and
high limits of the frequency in which this particular load class can provide VES service are denoted
as ωL and ωH , respectively. The three signals shown in A,B, and C, have PSDs that have the same
total power (i.e., the integral of their PSDs are the same), but distinct bandwidths. The signals A
and C violate the QoS metric q, because their bandwidths are too low and too high, respectively.
The signal B satisfies the bandwidth requirement.

Challenges and opportunities A weakness of the frequency domain character-
ization of VES capacity is that variations over time, especially due to exogenous
factors such as weather are not conveniently captured. For instance, during after-
noon hours of very hot days, an HVAC system may have to run at peak power, and
in that case a zero-mean deviation from the baseline is not possible. An alternate
way of quantifying capacity that has been explored is a time-varying range (upper
and lower bound) of total power consumption so that as long as power consumption
stays within that bound, QoS metrics will be satisfied [13, 14]. These approaches
necessarily lead to conservative estimates since a constant power deviation from a
baseline that still maintains QoS constraints must be allowed in this framework. A
general framework that combines the advantage of frequency-based characteriza-
tion but is capable of modeling the effect of exogenous factors on VES capacity is
still lacking.

Another challenge in this approach is its dependence on baseline for its definition.
The baseline is not possible to measure if a load is providing VES services, only
the total power is, leading to the issues of estimating the baseline and associated
estimation errors [14, 15].

2.2 Matching VES resources to grid’s needs

The grid needs controllable resources to meet the net demand. The net demand2

pd(t) at time t is defined as

2 Usually called net-load, but we avoid that term since “load” in this paper refers to physical entities
that consume power.
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pd(t) := pb(t) − gr(t) (2)

where p b(t) is the baseline power demand (in MW) in the grid and g r(t) is the
uncontrollable renewable generation (in MW). The word baseline refers to the nom-
inal demand from all loads, when loads are operated without employing any of the
algorithms designed to extract flexibility. The net-demand is the signal the grid’s
remaining resources will have to provide, which include traditional generators, flex-
ible loads providing VES, and other energy storage (ES) devices such as pumped
hydro, flywheels, and batteries.

How to ensure that available resources together supply the total needs of the
grid, i.e., how do they together track the net demand? Our approach is based on a
spectral decomposition of the net demand into distinct frequency bands, by passing
it through a number of bandpass filters, as shown in Figure 4. The “C” block at the
BA computes/predicts the net demand pd , which serves as a reference command to
the aggregate controllable resources in the grid. Its low pass component, pLP

d (t), is
obtained by passing pd through a low pass filter (“LP” in Figure 4). As long as the
low pass filter LP is designed by keeping the ramping abilities of the controllable
generators in mind, the bandwidth of the signal pLP

d (t) will be low enough that
controllable generators will be able to track it. The remaining high-pass component
of the net demand is p HP

d (t) := pd(t) − pLP
d (t), which is zero mean. Because of

the zero-mean property, pHP
d (t) can be tracked by controllable storage resources

(whether real or virtual), by charging when pHP
d (t) is positive and discharging when

pHP
d (t) is negative. The bandpass filters (BPs in Figure 4) can be located either in a

centralized manner at the BA, or in a distributed manner at the resources, or in some
combination thereof, depending on the control architecture chosen.

Industrial
loads

Pool pumps,
water heaters,..

Commercial
HVAC

Batteries

LP

+-
BP

BP

BP

BP
BA

Grid

disturbance
(demand and renewable

generation)

pdpd

pd

pd

pves
HVAC

HP

LP
Controllable
Generation

C

Real and Virtual
Storage

Fig. 4 A potential control architecture for the smart grid with VES based on spectral decom-
position. The “Grid” block represents everything other than controllable generation and storage
resources, such as loads (baseline), transmission and distribution networks, etc.

To match to resources of appropriate ability, the zero-mean component of the net
demand is passed through a number of bandpass filters to create reference signals
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for various energy storage resources: the “BP”s in Figure 4. Each of the reference
signals is band-limited to a particular frequency band that is suitable for a distinct
class of resource. For instance, the highest frequency component of the net demand
can be the reference signal for batteries, while the one with a slightly lower fre-
quency can be the reference for HVAC loads providing VES. The sum of all these
reference signals is the net demand. Thus, the needs of the grid are met, and yet
no resource (including a conventional generator and a battery) is asked to provide
a service that is not appropriate for it. Figure 5 shows an example of the frequency
decomposition of the net demand based on data from BPA.
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Fig. 5 Frequency decomposition of the net-demand of Figure 1: each band-pass filtered component
is a reference for a distinct class of resource that is appropriate for that frequency band.

Challenges and opportunities

• VES capacity characterization Based on experiments in a commercial build-
ing in the University of Florida reported in [12], we know that variable speed
fans in HVAC systems can provide VES service in the frequency range of
[1/( 10min) 1/( 1min)] and upto 30% of their average power without any per-
ceptible change in indoor climate. Simulations with calibrated models show that
with both chillers and fans engaged, HVAC systems can provide VES service in
a slower frequency range of [1/( 1hr) ]; 1/( 10min)] and upto 50% of its rated
power, with an indoor temperature deviation of 2 0C [15]. Collection of pool
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pumps can provide VES in lower frequencies of hours[10], and so can residen-
tial air conditioners and heat pumps [16]. Industrial loads may be able to provide
much lower frequency VES - than, say, HVAC - by deferring production in a time
scale of days or weeks.
An important open question is to provide a complete characterization of the VES
capacity of various classes of loads -especially industrial and residential loads -
as a function of QoS within the frequency domain framework introduced here.
Even for HVAC, which has been more thoroughly examined, VES capacity is
likely to vary depending on the thermal load it experiences. A purely frequency
domain framework may not be suited to characterize these variations [14].
Information on VES capacity as a function of QoS constraints is essential for
loads to enter into contractual agreements with BAs. The appropriate payment
structure is not clear yet, but at the simplest form it can be a fixed monthly pay-
ment depending on the load’s QoS bound q. For more sophisticated loads such
as industrial loads or large commercial HVAC, the payment can also consist of a
“milage” payment depending on the actual VES service the load provided [17].

• Ensuring resource adequacy: The combined capacity of various resources (gen-
eration, VES, and RES resources) must be larger than the net-demand. The grid’s
needs can again be quantified by the PSD of the net demand. Figure 6 illustrates
a hypothetical scenario in which resources are adequate: the capacity curves of
each category of resources – limited to various frequency bands due to QoS con-
straints – including conventional generators, VES resources, and RES resources,
together cover the PSD at all frequencies. In this case, we can say that adequate
resources exist.

• Optimal allocation of VES and battery storage: The cost of various types of VES
resources are likely to be distinct. How much of each kind should a BA recruit to
meet its requirements with sufficient margin at the minimum cost? Methodolo-
gies for answering such questions are essential to the BAs for planning purposes.
Currently a bottleneck in answering this question is the lack of estimates of VES
cost. Section 4 discusses cost of battery-storage that provides an upper bound for
allowable cost of VES before VES becomes noncompetitive with battery-based
energy storage.

3 Coordination of loads to obtain required VES

To obtain VES service without violating QoS constraints, a two tier strategy is re-
quired: local control and coordinated control. The local controller ensures that the
load’s QoS constraints are respected. Each load can provide only a small amount of
VES, so a large number of loads need to act together to provide the desired VES
service, which is ensured by the coordination algorithm.

In this paper we consider loads with continuously variable demand (LCVD) such
as commercial HVAC systems with variable speed drives. The demand of such a
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Fig. 6 Power spectral density of the net demand vs. total capacity of the grid’s resources.

load can be varied to be any number within a range. In contrast, many residen-
tial loads can only be turned on or off; their demand cannot be continuously var-
ied. However, if a load aggregator is used, the aggregator becomes a LCVD from
the BA’s point of view even if the all loads managed by the aggregator are on/off
type [16]3.

3.1 Local intelligence

Here the task is for the power demand deviation (from the baseline) pves(t) of a load
to track an external reference. The external reference must satisfy the bandwidth
constraint described in Section 2 to maintain QoS, which can be ensured by locally
bandpass filtering a grid-level reference.

Challenges and opportunities

• Baseline uncertainty: The challenges in designing the local intelligence to en-
sure tracking is measuring the output, the power deviation from the baseline,
since the baseline, by definition, cannot be measured. In [12], this challenge was
addressed by exploiting time scale separation between the VES reference to be
tracked and the baseline. Since the baseline power consumption is dictated by the
normal climate control system, it is of lower frequency than the high frequency
VES reference the system was designed to track. As a result, the baseline can be
recovered by low pass filtering the power consumption measurement.
When the VES reference signal is of the same time-scale as the baseline, the
problem of separating the baseline becomes quite challenging. In our prior

3 The problem of controlling an aggregate of on/off loads so that the power consumption of the
collective tracks a smooth signal while respecting every load’s QoS constraints has a different set
of challenges that we do not go into in this paper; see [10].
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work [15] as well as in [14, 13], the baseline was pre-specified by solving an
optimization problem that ensured QoS (indoor climate) constraints were satis-
fied. The local controller was then tasked with tracking the total power : baseline
plus VES reference.

• Continuously variable demand from on/off actuators: Chillers in commercial
buildings are a much bigger load than fans, but they are predominantly on/off
actuators since their motors do not have variable speed drives. It is still possible
to vary their power demand continuously in a range by indirect means, such as
airflow rate, due to the inlet guide vane controls. However, models of appropri-
ate complexity that can be used to design and study local controllers for such
equipment are lacking. Existing dynamic models of chillers are too complex for
control design; e.g. [18]. A similar issue exists for packaged air conditioning
units used in small commercial buildings, which may have variable speed fans
but constant speed compressor motors. For chillers, especially larger ones, avoid-
ing short-cycling is a key QoS requirement.

• Round trip efficiency: For thermal loads such as air conditioners, it is not clear
if there is a loss of efficiency in varying their demand over a baseline instead of
running them at their baseline. In other words, what is the “round trip efficiency”
of the virtual battery? Work in this direction is preliminary [19].

3.2 Coordination

How does one break up the grid-level reference signal among many LCVD, each
with its own QoS constraints? For the purpose of exposition, let us limit our attention
to one particular frequency band, say, the component -  pHVAC

ves in Figure 4 - that will
be supplied by commercial HVAC systems.

One possibility is for the grid to broadcast pHVAC
ves and each load locally band-

pass filters it to compute its own VES reference signal. This architecture is shown in
Figure 7: the goal is to ensure y(t) = r(t), where r(t) is the grid supplied reference
signal for demand deviation. The bandpass filter Fi(s) at load i has to be designed so
that load i’s QoS is satisfied and the grid-level tracking goal, y= r, is also satisfied.
Load i’s QoS will be satisfied if the PSD of its local reference signal lies within its
capacity curve c i(ω). Recall that capacity curve was defined in Section 2.1. Note
that if P HVAC

ves (ω) is the PSD of the grid-level reference signal pHVAC
ves (t), then the

PSD of the i-th load’s local reference is |Fi( jω)|2PHVAC
ves (ω). The CLi block in Fig-

ure 7 represents the closed loop system consisting of a load and its local intelligence
that can track a reference signal for its demand deviation. The load belonging to the
LCVD class is crucial; only such a load can track a reference other than a square-
wave. Assuming the the local intelligence at each load i is such that it tracks the
local reference signal r i(t) perfectly, i.e., yi(t) = ri(t), the equation ∑i ri(t) = r(t)
must be satisfied for the grid-level tracking goal to be satisfied. That is, if there are
N loads supplying VES in the “high pass” category, then the following must hold to



12 Prabir Barooah

FN

r1

r2

rN

y1

y2

yN

r y
+

FN

F1 CL1

CL2

CLN

+

BA

Fig. 7 Part of an open-loop coordination architecture for an aggregate of LCVDs to track a grid-
level VES reference. Only the forward path between the BA and the loads are shown; the outer
loop feedback between the “Grid” block of Figure 4 and the BA is omitted.

ensure that the loads together track the grid-level reference:

N

∑
i

Fi( jω) = 1, ω ∈ [ω (HP)
L ω

(HP)
H ]. (3)

When the grid operator enters into an agreement with a load to obtain VES resource,
it obtains the load’s VES capacity curve ci(ω), either through modeling or through
a system identification test. The local bandpass filter Fi is mutually agreed upon at
that time. The grid operator must engage enough loads to ensure that (3) holds.

Even though this architecture satisfies the needs of both the grid and the loads, it
lacks robustness to uncertainty due to its open-loop nature. There are many sources
of uncertainty: the number of loads providing service at any given time, the capacity
of some of the loads, etc. are all likely to vary over time in less-than predictable
manner.

An alternate, more robust, architecture using feedback is proposed in [20], in
which load coordinate their actions by using a global feedback signal that can be
measured locally. Figure 8 shows this architecture. In particular, each load mea-
sures the grid frequency, which can be locally measured at loads [21, 22]. Since
the deviation of the grid frequency from its nominal value (60 Hz) is a measure of
demand-supply mismatch, it can estimate the demand-supply mismatch from this
measurement. Since total supply is conventional plus renewable generation, the de-
mand supply mismatch - total demand minus total supply - is precisely the net de-
mand minus conventional generation, so it is the zero mean component of the net
demand after the low pass component is removed. The load computes the appropri-
ate VES reference for itself by passing the estimated demand supply imbalance with
its local bandpass filter.

The control algorithm proposed in [20] goes one step further, and assumes that
the BA broadcasts a prediction (for the next hour) of the demand supply imbalance.
The BA is in a unique position to predict this signal, since it has statistical models
to predict grid-level baseline demand d b(t) and renewable generation g r(t), and it
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can predict the power generation by conventional generators gc(t) based on the con-
tracts in place. The VES controller at each load uses an MPC scheme to compute
appropriate power deviation (VES reference) subject to a QoS constraint expressed
in terms of the Fourier transform of its local reference. High gain feedback due to
the actions of other loads is avoided by estimating the VES supplied by other loads
from the estimating the grid-level demand-supply imbalance and its own VES sig-
nal. The grid-level demand-supply imbalance is estimated from locally measured
grid frequency.

An extremely simplified schematic representation of this architecture, with N
loads L1,L2, . . . ,LN , is shown in Figure 8. The goal is not for the aggregate response
y to track some BA-supplied reference. Rather, it is to determine y i’s so that the
aggregate response y minimizes demand-generation mismatch and each y i satisfies
the QoS constraint of load i.

The advantage of this architecture is that it is much more robust to uncertainty in
how many loads are providing VES service at a given time and what their capacities
are. In addition, distributed coordination among loads is achieved without any sort
of inter-load communication. Only one-way broadcast from the BA to the loads is
needed. Simulation studies reported in [20] shows the architecture is effective in
providing robust tracking in presence of uncertainty.

Resource adequacy can be ensured by the BA by signing enough contracts so
that the following holds:

|
N

∑
i

ci( jω)| > 1, ω ∈ [ω (HP)
L ω

(HP)
H ], (4)

where ci(ω) is the capacity curve of the i-th load. The subscript q∗ in cq∗(ω), which
was used in defining the capacity curve in Section 2.1 is suppressed here to avoid
clutter. The advantage is that the inequality (4) is far easier to ensure than the equal-
ity (3), especially when a large number of loads are involved.

y1

y2

yN

y
+

L1

L2

LN

+

BA Grid
pd(t)

fgrid

Fig. 8 A potential control architecture for coordination among VES resources by using local feed-
back (on grid frequency f grid ) and broadcast from BA on the predicted demand-supply imbalance
p̂d .
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Challenges and opportunities

• Communication architecture: A large body of literature exists on distributed con-
trol, and the architectures discussed above are not the only possible ones. Most of
the distributed coordination architectures proposed in the literature rely on inter-
agent communication within a neighborhood for meeting network-wide goals.
With the recent push toward an Internet of Things (IoT) paradigm, it is likely
that smart loads will be part of the IoT. In that case, it is not clear what an ap-
propriate notion of neighborhood is. All to all communication may be infeasible,
but there is no rationale for limiting to a geographically defined neighborhood.
Communicating with very far off (in a geographic sense) agents may be possible
over the Internet. That may help with certain performance metrics, but may in-
troduce larger delays. Determining these tradeoffs for distributed control in the
age of IoT remains an important open question, one that is particularly relevant
to the smart grid.

• Contract/mechanism design: A load may not provide the maximum capacity that
was used at the time of signing contracts. That may not be malicious; if all of
them provide maximum capacity at all times that may in fact cause demand-
supply mismatch. If some loads bear a much larger share of the burden of re-
quired storage, it is reasonable they should be incentivized more than others. It is
not clear what is an appropriate incentive to loads providing VES in such a sce-
nario. Currently generators in many ISOs are paid based on a two-part scheme
based on capacity and mileage, but such a scheme may not be scalable to millions
of loads.

• Characterizing loads on-line: The capacity of a load needs to be known to ensure
that the loads together have enough bandwidth to track the reference. This can
be done though a system identification experiment, as was done in [12] for the
fan motor of an HVAC system. However, such a method may not be scalable to
a large number of loads, and it may fail to identify slow variations in load’s VES
capacity over long time periods. Is it possible for the BA to be sure - without
examining every single load - that the loads together have enough capacity to
meets its need?

4 Cost

Without a cost advantage over real energy storage, virtual energy storage has little
justification. Cost of VES is hard to estimate. On one hand, VES involves a change
of software, with little change in hardware. Yet, the cost of large-scale deployment
of VES may vary a lot depending on the kind of communication infrastructure and
hardware retrofits needed. Cost of retrofitting existing consumer loads to make them
VES-friendly is likely to be prohibitive, but it is equally likely that the additional
cost of equipping loads with the required hardware and software at the factory will
be negligible. However, precise estimates are lacking at this point.
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Although cost of VES may be hard to estimate at this point, we can establish an
upper bound on the cost of VES beyond which VES loses its economic advantage.
This upper bound is the minimum cost of the main competitor of VES, that of battery
storage.

To estimate the cost of battery based storage, we examine how the levelized cost
of electricity (LCOE) will change if a battery is used to store the average daily
generation of energy from an intermittent renewable source, say solar. The LCOE
is the total cost incurred in the lifetime of the generator, divided by the total energy
generated over the same period.

Consider a renewable generator with peak generation capacity 1 kW. Suppose
the capacity factor of the generator is f , so that the average energy it produces in
a day is 24 f kWh. Let the lifespan of the generator be t lg years. The total energy
generated by the generator in its lifespan is 365tlg24 f kWh.

Suppose a battery is added to the generator so that it can store the average daily
energy produced. That is, the energy capacity of the battery is 24 f kWh. Let the
lifetime of the battery be tlb years, and its cost be c $/kWh. Then the cost of batteries
over the life of the renewable generator is 24 f ctlg / ttb $.

Since adding a battery does not change the energy generated, the additional
LCOE due to the battery is the total cost of battery over the lifetime of the gen-
erator divided by the total energy generated during the same period:

∆LCOEbattery =
24 fC

tlg
ttb

365tlg24 f
=

c
365tlb

. ($/kWh) (5)

Among the myriad types of batteries, Sodium Sulphur (NaS) batteries have had a
lead in terms of grid storage, but the cost of Li-ion batteries - used in mobile phones
and electric cars - is decreasing the fastest: at an annual rate of approximately 14%
per year during 2009-2014 [23]. The cheapest Li-ion batteries in 2015 cost about
$300/kWh (batteries used in Tesla’s model S electric car [23]), and they have a life-
time of approximately 5000 charge-discharge cycles [24]. If the battery undergoes
one charge-discharge cycle every day, its lifespan will be 5000 / 365 = 13.7 years.
Plugging c = 300 and tlb = 13.7, we see that the additional LCOE due to batteries
is ≈ 6 ¢/kWh. Since several important costs are ignored here, especially the cost
of balance of systems and the cost of capital, the true cost will be higher than this
estimate. A more thorough cost estimate can be performed using the methodology
in [24]. Even this low estimate of battery cost is quite high compared to the mean
retail electricity rate in the U.S., which in December 2016 was 12.2 ¢/kWh (from
https://www.eia.gov/electricity/). If we take the estimate, 6 ¢/kWh,
as the true cost of battery storage, the cost of VES must be less than 6 ¢/kWh for it
be competitive with battery-based energy storage.

In comparing batteries with VES, one should keep in mind that battery-based
energy storage is likely to be much more reliable than VES. Availability of VES may
depend on time of day, weather, etc., while batteries are a firm resource. Therefore,
an optimal solution will probably consist of expensive but highly reliable batteries
as well as inexpensive but less reliable VES.
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5 Summary

Loads can vary their power around a baseline in a zero-mean fashion to effectively
act like batteries, thereby providing virtual energy storage (VES) to help the grid.
A frequency domain framework for characterizing loads flexibility vis-a-vis con-
sumer’s QoS is advocated, following [7]. The framework is powerful enough to
handle not just flexible loads but also conventional generators and batteries. How-
ever, it is highly simplified: issues of transmission constraints, distribution network
and voltage support, contingency reserves are not considered yet, which are worth-
while avenues for further refinement. Some results on local control and distributed
coordination of loads within this framework, are mentioned. Challenges and oppor-
tunities in extending this framework to design reliable VES services, including some
of the open problems, are summarized.
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