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Abstract—The Distributed Gradient Projection (DGP) algo-
rithm was proposed in prior work to allow loads to provide
contingency service to the grid using local noisy frequency mea-
surements by varying their demand. Convergence of DGP was
established in prior work for a decaying step size. In this paper
we modify the algorithm to using a constant step size—constant
step size being much more useful for practical implementation.
We provide a convergence analysis of the modified algorithm,
which we call DGP-C (DGP with Constant step size) and perform
extensive simulations in the IEEE 39-bus test system. These
studies (i) demonstrate that the DGP-C algorithmis robust
to several assumptions made in the analysis and (ii) reveal
which factors among the many tested (measurement noise, loads’
response time, etc.) have significant effect on the algorithm’s
performance.

NOMENCLATURE
DGP Distributed Gradient Projection
DGP-C Distributed Gradient Projection with Constant
step-size
HVAC Heating, Ventilation and Air-Conditioning

I. INTRODUCTION

Many types of ancillary services are required for reliable op-
eration of a power grid [ 1]. Primary control (PC) is especially
important to maintain system stability [2].  Sometimes also
referred to as primary frequency control, frequency response
etc., primary control refers to actions taken to correct demand-
supply imbalance in the first few seconds after a contingency
event such as a generator or transmission-line trip. PC there-
fore must respond in the time scale of seconds. . Typically,
generators are tasked with providing this service.  Frequency
responsive loads such as induction machines always helped
with primary control in an passive manner. In the smart grid
paradigm, a complementary resource that can provide primary
control is active loads equipped with sensing, communication
and control algorithms.

Because of the need for speedy response, decentralized
control of such smart loads, with each load using a locally
obtained frequency measurement to determine its control, is
attractive. There is a long history of this line of research, going
back at least to the early 80°s and picking up interest ~ more
recently [3]-[8]. These works show that primary control can be
achieved by varying demand as a function of grid frequency.
Many of these works implement a droop-type control at the

loads, which varies the load in response to frequency but
does not consider the resulting loss to the consumers’ utility,
such as [6], [&]. Since consumers consume power to obtain
some service or utility, and any change to their nominal
power consumption to help the grid may cause a disutility.
Some works uses heuristics to prevent harm to the equipment,
such as limiting the minimum time between turning a load
onor off [6], [7]. . Similarly, in works related to control
of electric vehicle batteries for grid support, maintaining the
state of charge within certain bounds is usually enough to
maintain consumers utility [9], [10]. These works do not
provide a general framework for distributing the effort among
heterogeneous loads in a manner that minimizes the disutility
to consumers.

The problem considered in this  paper concerns hetero-
geneous consumers with distinct disutilities. The disutility
experienced by a  consumer is a function of the demand
deviation from the nominal demand. The references [ 1 1]-[15]
are highly relevant to this topic. The problem formulation in
these papers share a common feature: they design distributed
algorithms for loads to vary their demand to restore the grid-
level demand-supply balance, while apportioning the demand
changes so as to minimize the total ~ consumer disutility. In
[13] an additional layer is involved to coordinate the actions
of the distributed generators. In both [1 1] and [14], a load uses
local frequency measurement to estimate the demand supply
imbalance and use that information to solve the optimization
problem in a distributed manner. The consumer cost is required
to be strictly convex in [11]-[13], [15] for their algorithms to
be implementable.

A convex - but not necessarily strictly convex - cost is
a more realistic model of how most consumers experience
disutility, which is described in detail  in Section II-B. The
ref. [14] developed a distributed algorithm — called Dis-
tributed Gradient Projection (DGP) algorithm — that  was
also applicable to convex but not necessarily strictly convex
consumer disutility. It was proven in [ 14] that the distributed
decisions computed by the DGP algorithm converge to the
central optima almost surely (i.e., with probability 1). The
convergence analysis required the use of a decaying step-size.

In practice, the use of decaying step size suffers from severe
limitations. As time increases, step size decays, and control
effort decays as well. If a disturbance occurs at some large



time interval after the algorithm is turned on, the controllable
loads will not react. While in principle this slowing down of
the response can be ameliorated by “resetting” the step size,
that can lead to spikes in the control effort—and thus in the
grid frequency—at the resetting instants. This is unacceptable
to grid operators. A constant step size is therefore far more
desirable from a practical standpoint.

In this paper we propose a modification of the DGP algo-
rithm: relaxing the step size to be a user-specified constant.
The modified DGP algorithm -  with a constant ~ step size
- is referred to as the DGP algorithm with constant  step-
size (DGP-C) intherest of this paper. Just like the DGP
algorithm, the DGP-C algorithm too can handle non-strictly
convex consumer costs. We show that witha sufficiently
small step size, the algorithm behaves in a stable manner, and
establish a bound on the step size for  such stable behavior.
We also analyze the mean and variance for strictly convex
consumer cost functions. Numerical tests with the IEEE 39
bus systems shows that predictions are still accurate even when
consumer costs are non-convex.

A second contribution of this paper is extensive performance
evaluation of the DGP-C algorithm in the IEEE 39-bus test
system. Robustness to various simplifying assumptions made
in the analysis is tested through these studies.  These studies
identify the design parameters and features of sensors and
actuators that are needed for the algorithm to be successfully
used in a practical ~ setting. For instance, we find that the
algorithm is robust to model mismatch and time  delays.
However, its performance suffers if the dynamic response of
the loads is slow. For the factors that do have a significant
effect, such as measurement noise, the simulations provide
estimate of the ranges of the corresponding parameters needed
to achieve good performance.

A preliminary version of this paper was presented in
the conference paper [16]. Unlike this paper, no theoretical
performance guarantees were provided there. Additionally,
the numerical investigations carried out here are far more
comprehensive than those in [16]. In particular, the simulations
in [16] used three simplifying assumptions that are not likely
to hold in practice, = which are removed in this study: 1)
loads/aggregators measured the grid frequency and computed
new demand values continuously in time (i.e., sampling period
was neglected); ii) loads/aggregators were able to vary demand
continuously within their minimum and maximum values (i.e.,
there was no quantization of ~ changes in demand); and iii)
loads/aggregators were able to attain their computed demand
values instantaneously (i.e., dynamic response of loads was
neglected).

This paper is organized as follows. In Section II, we
summarize the DGP algorithm.  We present analytical and
numerical results in Sections III and IV, respectively. Finally,
Section V presents conclusions of this work.

II. ALGORITHM DESCRIPTION
A. Problem Formulation

There are N agents in the power grid with some flexible
demand. The change in demand for agent /, from its nominal
demand, is denoted by X;. The demand variation is limited to
arange [X;,Xi], which is denoted by :

Xi € Qi =[x, Xil.

For each agent /, there is a disutility function, fi(x), associ-
ated with agent /’s change in demand. There is a disturbance
to the grid in the form of  a sudden, uncontrollable change
in generation or load, denoted as g, and the global difference
between generation and demand (i.e., the demand-supply im-
balance, ignoring losses) is denoted asu = g—1 "X, where 1 is
a vector of all 1’s and X is the vector of X;. It is the objective of
the agents to change their demand from their nominal values to
obtain U = 0 while minimizing their total collective disutility.
Formally, the agents are to solve the following optimization
problem:

fi(xi), st
i=1 i=1

Xi=g, XieQi-

.. (M

.....

Each agent changes demand every s seconds, and at time
KTs, each agent I obtains a noisy measurement AW k] of the
grid frequency deviation W[k] — w" locally, where @ is the
nominal frequency (usually 60 Hz). Using a state estimator, the
agent infers the global power imbalance from the frequency
measurements. The power imbalance estimated by agent I at
time KTs is denoted Ui[k].

Additionally, there is a communication network among
the agents, whose graph is denoted G = (V, E) , where the
nodeset, V={1,2,...,n}, is theset of agents and the
edge set, E €V XV | denotes the pairs of agents that can
exchange information. The set of agents with whom agent
can exchange information is denoted N = {j|(i, j) € E}

a) Individual load vs. aggregator: In principle, each
agent can be a consumer load. However, in this paper we
assume that the agents are load aggregators, which are more
suitable for providing contingency services in deregulated
electricity markets since individual consumers are not well
suited to take part  in such markets [17]. Additionally, we
assume the aggregators act on the transmission level directly;
see Figure 1. The balancing authority has a model of the trans-
mission grid, which is supplied to the aggregators, especially
in the state estimator used to infer grid-wide demand-supply
imbalance from local frequency measurement.

Once the aggregator | computes its desired demand vari-
ation, Ui[K], control actions for the individual loads within
its territory need to be decided so that their combined effect
produces Ui[k]. We do not consider the problem of computing
actions for individual consumers within the aggregator in this
paper; methods such as those proposed in [ 18] can be used
for making such decisions.

It is important to note that the proposed algorithm is de-
signed for continuous-state loads, but most individual loads are



discrete-state, e.g., on/off. Therefore, even in aggregation, the
aggregate loads will still be discrete-state. We have imposed
this feature in this work by quantizing the state space of the
aggregators. That is, for the results presented in Section [V-D,
we round each agent’s power consumption to the closest bin, or
discrete state, and the effects of this quantization are discussed
more thoroughly in Section [V-H.
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Fig. 1. The architecture for DGP algorithm’s application.  The dashed lines

indicate communication links, solid lines indicate transmission lines ina
power grid. Each agent that applies the DGP algorithm is a load aggregator
that operates at the transmission-level.

B. Convex vs. strictly convex consumer cost

Consumers consume power in order to get some service, and
anominal demand profile provides the service they are used
to. To help the grid, the demand has to vary from this nominal
value, and any such variation can potentially cause consumers
to experience a disutility. The disutilty is usually modeled as
a strictly convex function of the deviation. However, a convex
but not necessarily strictly convex is a more realistic consumer
model. For example, small variations in power consumption of
a commercial heating ventilation and air-conditioning (HVAC)
system lead to no perceptible change in indoor climate [ 19],
but larger changes in demand can lead to a noticeable deviation
from the set point. A strictly convex disutility cannot capture
this phenomenon because every demand variation—no matter

how small—will have a nonzero cost. This difference is
illustrated in Figure 2. The same is true also for Aluminum
smelters; a small deviation from the nominal demand may
not affect the smelting process at all, but beyond a particular
threshold the cost is non negligible [20]. In fact one can
argue that this is generally true. For any load whose demand
can be varied in a continuous manner, variations below a
certain threshold cause no perceptible change to the QoS
experienced by the consumers. A grid operator can then sign
long term contracts with such consumers:  in return for the
service provided by the loads,  the consumer will be paid
a fixed monthly amount, simplifying the contract structure
and encouraging consumer participation. For variations beyond
that threshold, which might be occasionally needed to handle
large spikes in demand-supply imbalance, there will be a non-
zero disutility to the consumer, and in that case the payment
will be proportional to the disutility.
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Fig. 2. Two distinct models of consumer disutility, f > which is strictly convex
and f1 which is convex but not strictly so. The cost function f1 models a
consumer who does not experience any cost if the demand deviation from the
nominal is smaller than a threshold (in this case ~ +25).

C. The DGP Algorithm

The update law of the DGP algorithm consists of three main
parts: i) a generation-matching step, ii) a gradient-descent step,
and iii) a projection step. The generation-matching step is used
to drive the demand-supply imbalance, U, to 0. The gradient-
descent step utilizes agent-to-agent communication to equalize
the agents’ gradients. Finally, the projection step limits each
load aggregator /’s demand change to its feasible range, .

The DGP algorithm is summarized below [21].

DGP Algorithm (at load aggregator 1, time K):

1) Obtain an estimate U;[k] of the demand-supply imbal-
ance U from measurement AG[K] using a state esti-
mator. The generation-matching step is then y[K]Ui[K],
where y[Kk] is a step size.

2) Compute gradient aﬂ—,f i(xi[K]), transmit gradient value
to neighbors, and receive neighbors’ gradient values.
Compute the gmc)l(ient-descent step Axilk] as

AXi[K] VI (xj [KD) = VE i (xi[K]) -

JeN



3) Compute

Xilk +1]1= P o, Xi[K] + cy[K]Ax i[K] + y[K]VilK] »
(@)

where P, [-] denotes the standard projection operator,
yIK] is a step size, and C is a positive constant.

Note that any estimator may be used in step 1 that estimates
demand-supply imbalance from grid frequency. In the simula-
tions reported in this paper, we shall use the estimator in [ 16],

which is the one used in [11].  In the sequel, boldface small
letters will denote vectors obtained by stacking corresponding

scalar quantities. For instance, X[k] will refer to the vector of
Xi[K]’s.

III. PERFORMANCE ANALYSIS OF THE DGP-C
ALGORITHM

The DGP algorithm with a constant step-size Y is called the
DGP-C algorithm.

A. Convergence with a constant step size

In previous work [14], it was shown that with a decaying
stepsize (y[k] - 0 as K — © ) the DGP algorithm
converges almost surely to X *, the set of optimal solutions
of problem (1). In this paper, our focus is on the constant-
step-size case, i.e., y[kK] =y for some constant V.

We make the following assumptions for our analysis,

[14].

Assumption 1.

as in

1) Each f; is convex for each / witha (not necessarily
unique) minimum at X; = 0.

2) fi is continuously differentiable for each /.

3) Vf; is Lipschitz for each /.

4) The communication graph, G, is connected.

5) The solution set to (1) is contained within the strict
interior of Q.

6) The estimation error [K] := "Ui[k]-u[k] is a martingale
difference sequence for each 1.

Since f is adesign variable, the assumptions on f are
not restrictive. The assumption on the connectivity of the
communication graph means there is a path for information
flow from any agent to any other. It has been established
previously that [K] is a martingale difference sequence [11],
[14] if the estimator described in [22] is used;  however, the
results in this section hold for  any estimator that yields an
error sequence that is a martingale difference sequence.

We now present the convergence result.

Theorem 1. Let Assumption 1 hold. If y[k] =y >0 , then
for any & >0, the fraction of time that X[K] (vector of Xi[K]’s
in (2)) spends in the O-neighborhood of X * on [0, T ]goes to
1 in probabilityas y — 0 and T — © |

is known as the
], which involves

Proof. The proof invokes results from what
o.d.e. method of stochastic approximation [

analyzing a deterministic, continuous-time, o.d.e. analogue of
the discrete-time iterations (2). The o.d.e. analogue of (2) is

X =T ox [-cLVF(x(®) T +u(t)1], 3)

where L is the Laplacian matrix of the communication graph
G [24], oY@ [-] denotes the continuous-time projection
operator of y(f) e R " onto Q. That is, the /" component
of Mo ylz] is

J 0; Yi=minQi,» Z <0
Foyle] ; = | 0; YVi=max Qi Z >0
Zi; o.w.

Theorem 2.1 (Chapter 8) in [25] states that the fraction of
time that x[k] spends in the O-neighborhood of the limit set
of (3) goes to 1 in probability as y — 0. It was proved in [14]
that the solution to the ode (3) converges to the optimal  set:
x(t) - X *,i.e., the limit set of the ode is X *. Therefore, the
theorem follows from the two results from [25] and [14].

Although convergence of the DGP-C algorithm established
above is not as strong as the almost-sure convergence of the
DGP algorithm with decaying step size that  was established
in [14], Theorem 1 indicates that the DGP-C algorithm can
still “work well” provided the step size ¥ is small. The
numerical results presented later, and in [16], are consistent
with this prediction. Note that Theorem 1 merely states that
good performance can be expected if V is sufficiently small,
but does not provide an estimate of how small ¥ should be.
In contrast, the next result, Proposition 1, does provide such
an estimate.

B. Asymptotic Behavior for Quadratic Cost

The following proposition characterizes the asymptotic be-
havior of the DGP-C algorithm. For the convenience of
analysis, we limit ourselves to a quadratic model of consumer
disutility. Although this is arather strong assumption, the
numerical results in the next section show that the results
still predict the behavior of the DGP algorithm even when
the disutility is not quadratic.

Proposition 1. Let Qi =R and fi(xi)=qiX? forall i€V,
where G >0 foreach I. Let A be the eigenvalue of A =

I =y(cLQ + 11 T) with maximum real part, where | is the
identity matrix of size N, L is the graph Laplacian of ~ the
communication graph G [24], and Q = diag(q 1» & - - - » A).
Then the dynamics of the loads’ changes in demand are stable
if and only if 'y <2/| Al. Furthermore, the mean, k], and
covariance, Z[K], of the loads’ changes in demand are given

by
Hlk + 1] = Aplk] + Bg1,

Sk+1]=AZKIA T +BWIKB ",
respectively, where B =yl and W [k] = E [K][K] T,

The proposition assumes Qi = R for each/, i.e., that there is
no projection. The nonlinearity in the dynamics (2) due to the



projection operator makes analysis challenging [26]. However,
we can argue that for asymptotic analysis, the projection
operator is inactive “most of the time” as follows. Theorem 1
shows that the iterates spend almost all of their time close
to the optimal solution of problem (1) as long as the step
size is small. Since the solution set of problem (1) lies within
the strict interior of Q) by Assumption 1, forasmall Y, the
iterates of the DGP algorithm spend most of their time within
the strict interior of Q. Hence, asymptotically the projection is
inactive most of the time. Removing the projection altogether
is a strong assumption, but as we will see in Section [V-B,
Proposition 1 is still useful since it accurately predicts the
behavior of the DGP algorithm even when this assumption is
not satisfied.

Proof. For y[K] =y , we may rewrite the DGP update law (2):
x[k + 1] = x[k] + y(-cLQ - 11 T)X[k]

+y(g1 + [K])
= Ax[k] + B(g1 + [K]),

where A and B areas defined above. Hence, the power
consumption is a linear dynamical system under the DGP
algorithm. Therefore, stability is attained if all eigenvalues of
A lie strictly inside the unit circle. We begin by showing that
the eigenvalues of cLQ+11 T are real and positive. Because L
is a Laplacian matrix, each column of L sums to 0 [24]. Since
Q is diagonal, post-multiplication by @ scales the columns by
diagonal entries of Q. It follows that the columns of CLQ
also sumto 0, and CLQ has positive diagonal entries and
nonpositive off-diagonal entries, just like the graph Laplacian.
By applying Gershgorin’s circle theorem [27] to (cLQ) T
and utilizing the fact that a matrix and its transpose have the
same eigenvalues, we conclude that CLQ has eigenvalues with
nonnegative real parts. Because L and Q are real, symmetric
matrices and @ is positive definite, CLQ has real e%genvaluesl.
Now suppose (A, V) is an eigenpair of cLQ + 11 . That s,

cLO + 117 v = Av. )

We consider two possibilities: 17v6=0 and 1'v=0 . If
1"v6=0, then pre-multiplying (5) by 17 yields n’vs=
MV ==)A=n>0 If1v=0 , then (5) reduces to
cLQv =Av , so (A, V) is also an eigenpair of CLQ. Thus A is
real and nonnegative. ForA = 0, we find a contradiction. @ has
a trivial null space, which implies that @V is an eigenvector of
L associated with a zero eigenvalue. Because G is connected,
there is only one such eigenvalue, and any corresponding
eigenvector is parallel to the 1 vector, but each nonzero entry
of Q is positive, so each element of Q' 1 is also positive.
Therefore 1" v 6= 0 Thus we have a contradiction, so A 6=0
Therefore 11" + cLQ has strictly positive eigenvalues.

Q)

I'This fact must be well known, but we were unable to find a reference. It
can be proven as follows. Let (A, v) be an eigenpair of CLQ | so cLQv =Av .
Then CV*QLQV =Av “QV. where V* denotes the conjugate transpose of V.
Because L and Q are real, symmetric matrices, taking the conjugate transpose
yields CV*QLQv =A *V*QV. From this and the previous equation, it follows
that 0=(A—-A ")v"QV Since Q is positive definite, V*QV 6 0 , which
implies A=A *. Therefore A is real.

Now, let Ai bean eigenvalue of cLQ + 11 T_. Then the
eigenvalues of A are 1 —yA i. Thus, if y <2/ A, where A
is the maximum eigenvalue of cLQ+11 ", then |1 — yAi| < 1
for all Aj. Therefore, A is stable.

That pu[k +1] = Au[k]+Bg1  follows from (4) and the fact
that the estimator in [1 1], [22] is unbiased. To determine the
steady-state covariance, let X[Kk] , X[k] — p[k] , and note that
the expression for W [k] = E [K][K] isgivenin[11]. The
covariance at time kK + 1 is

Sk +11=E (xik+ 1] - plk + 1)(xlk + 1] - pik+1]) 7
=E (AX[k] + BIK)(A X[k]+BIK) "
=ASKIA T +BWIKB T,

where we have used that X[k] and [k] are uncorrelated.

IV. NUMERICAL RESULTS

A. Simulation setup

The DGP-C algorithm was tested in the IEEE 39-bus test
system, implemented in SimPowerSystems [28]. This system
has 10 synchronous machines, each with governor control and
PSS, and 19 load buses. We assume that at each load bus there
is an aggregator, which can modulate a small percentage ( 5%)
of the load’s consumption.

The gains used in the numerical tests are ¢ = 2 and y[k] =
0.06/(19 max{Bi}) forall K. The disutility at load bus / is

0, Ixil <a;
g-(xi —ai? xjza;
g-(xi+ai)? Xis-a;

fi(xi)= | (6)

where @& >0 and B; > 0. Note that if & >0, the function
fi is convex but not strictly convex, and if @& =0 then i is
a quadratic—and therefore strictly convex—function. To esti-
mate the power imbalance using the frequency measurements,
the load aggregators use a discrete-time, LTI model of the grid
identified from the 39-bus system [16] (see Figure 3).

S
=2
= 0.01 -
R) ¢ Identifiedlmodel
'§ =—EEEI139-buslsystem
5 0
B
5
_001 L L L 1 1
) 0 20 40 60 80 100 120
=

Timel(seconds)

Fig. 3. Step response of IEEE 39-bus system and of the identified LTI model
of the system that loads use in the DGP algorithm [16].

A note about the simulation results that will be presented
in the next sections. In Section [V-B, we relax some practical
constraints to show that the algorithm performs according to
the theoretical predictions presented earlier. In Section [V-D,
we evaluate the effects of anumber of practical limitations
present in real-life application.



B. Comparison with theory

Firstly, the DGP-C algorithm is tested in an ideal scenario,
i.e., assuming loads can continuously vary demand with no
constraints in terms of saturation, speed of actuation, or delay
in communications. The only non-ideal aspect considered is
the noise in frequency measurements, modeled as zero-mean
Gaussian noise with a standard deviation (O ) of 0.01% of the
value of the synchronous frequency G0 Hz). In this simulation,
Bi is chosen equal to 0.2 for all load aggregators.

The goal of this test is to observe if the system will behave
as predicted by theory when a disturbance in the form of a
150 MW increase in the nominal load in bus 27 is applied at
t=10 seconds. Two tests were run: i) & =0 MW and ii)
for @ =2 MW. The value 2 MW is roughly one quarter of
7.89 MW, which is the expected change in demand of all 19
load aggregators if they equally share the control  effort. The
resulting grid frequency deviation, Aw, is shown in Fig. 4(a),
and values of X; for the casesof @& =0 MWand & =
2 MW are depicted in Fig.  4(b) and4 (c), respectively. The
speed deviation, Aw, shown is the mean deviation of all 10
generators from the nominal frequency ( 60 Hz).

-3
IXIO

Aw [HZ]

Xi [MW]

X [MW]

Time [s]

()

Fig. 4. Simulation on the IEEE-39 bus test ~ system, with both strictly and
not-strictly convex disutilities, for a contingency eventat t =0 . The control
actions (demand variation) of all the load buses are shown (bottom two plots).
The mean and std. deviation u[k], g[k] are computed from Proposition 1.

In Fig. 4(a), we notice that the DGP-C algorithm quickly
reduces the frequency deviation of the system to zero in both
cases, in spite of the highly noisy frequency measurements.
Fig. 4(b) and 4(c) show that the demand changes remain
within three standard deviations ( £30[k] ) of the mean ( U[K]),

where p[K], olk] are computed from Proposition 1. These
results numerically confirm the accuracy of the predictions by
Proposition 1. This accuracy is achieved despite the strong as-
sumptions made in the proposition, that the projection operator
is not active. In fact, even the assumption that the optimal set,
X *, lies in the strict interior of  is violated for this scenario.

It is important to stress that even when a non-strictly convex
and non-quadratic disutility function was used ( @& =2 6 0),
the numerical results are consistent with the prediction of
Proposition 1 that assumed & =0 . We believe this is due
to the fact that the not-strictly convex disutility functions
used in the simulations were asymptotically quadratic. In the
remainder of the paper we use the non-strictly convex cost
function defined by (6) with & >0.

C. Constant vs. decaying step size

We now present numerical results to corroborate the
motivation for using a constant step size in DGP-C instead of
a decaying step size. Figure 5 shows a simulation comparison
between DGP-C (with constant  step size) and DGP with
decaying step size, with and without periodic reset.

For the decaying-step-size case, we use VY[K] =
004 Decaying y[k] with T =20s .
- o =
---------- Decaying y[k] without reset
002} memamm Constant y[K] S J
——— Without Smart Loads e —
T 0 O
= =~
'

3200 z —
004 Timer|reset Timer|reset Timer|reset i
0.06 i Load|decrease

0 10 20 30 40 50 60 70
Time [s]

Fig. 5. Comparison of performances of DGP with constant step size, decaying
step size with timer reset, and decaying step size without timer reset.

0.06/(19 max{Bi} - 1/(k- Ts)°8, for Ts = 2/60 s.
For the “decaying step size with reset” case, the timer is reset
every 20 seconds: Trss =20 s, when K isreset to 0. Two
contingency events were simulated: a sudden load increase
of 150 MW at bus 27 at t =10 sand a load decrease at
bus 27 of the same 150 MW at T =50 s. As we can see
from Figure 5, DGP’s performance is poorest without timer
reset. This is expected since beyond a certain value of the
time index K, the step size y[k] is too small for the loads
to respond. With decaying step size but ~ with timer reset,
performance is improved, but still poorer than that of DGP-C,
especially if the reset time and moment when the contingency
occurs are out of synchrony, which is what we would expect
in practice.

D. Evaluation of DGP-C algorithm under practical  limita-

tions
Real-life implementations of the DGP-C algorithm would

face a number of limitations whose model is not included in
the formulation of the proposed solution, such as: i) model



TABLE I
STANDARD VALUES FOR PARAMETRIC STUDIES

Parameter Nominal
Tg Delay in communication between aggregators 100 ms
Ts Sampling period of controller 2/60 s
|| Number of bins (discrete states) of loads 51
Of Standard deviation of frequency measurements 0.01%
g Standard deviation of noise in load demand 0.01%
fe Cutoff frequency of load dynamics 0.32 Hz

mismatch, ii) communication delay between load aggrega-
tors, 1ii) communication topology, iv) frequency measurement
noise, v) presence of uncertain, uncontrollable renewables and
stochastic loads, vi) sampling period of discrete controller and
measurements, vii) quantization of controller output, and viii)
bandwidth of the actuator. We did not evaluate analytically
these known effects in Section III,  but in Sections IV-D to
IV-H we present case studies that assess the effect of those
practical limitations.

The parameters related to the practical considerations, along
with their standard values used in the simulations, are pre-
sented in Table I,  and the definition of  all practical con-
siderations are provided along with the presentation of the
corresponding parametric study. When one parameter is varied
to study its effect, others are held constant at their nominal
values. The parameters of the cost function (6) are@ = 0.05X;
and B is chosen from a uniform distribution on [0.1, 0.3]for
each /. The nominal edge set for the communication graph is
E=A{G, Ili—jl =1}

We have studied two types of  disturbance. The first isa
disturbance in the form of a 150-MW increase in load at bus
27 applied to the system between 10 seconds and 50 seconds.
The second type of disturbance is the loss of generator 5 (508
MW) at t =5 seconds, which also represents the introduction
of a model error because the model used by the state estimator
(Fig. 3) that considers the original 10 generators does not
match the model of the 9-generator system under disturbance.
All parametric tests were performed for both disturbance types.
Because most of them showed analogous results, we will show
the results for the 150-MW load disturbance, except when
model mismatch is concerned.

E. Effect of Time Delay and Model Mismatch

To evaluate model mismatch and the effect of communica-
tion time delay, we disconnect generator 5 (508 MW) from the
system at 5 seconds; generator 5 accounts for nearly 10% of
the total generation in the system. There is a communication
delay (Ta) for each load aggregator, i.e., each aggregator only
has access to past values of its neighbors’ gradients. To assess
the effects of communication delay, we use three different
values for each scenario: T¢g = 0 ms (no delay), Ta = 100 ms,
and Tg = 1 second of communication latency between adjacent
nodes. Fig. 6 shows the results of the simulation where
generator 5 is disconnected from the grid. Results for nominal
operation (without smart loads) are shown for comparison. The

frequency deviation caused by the generator’s disconnection

is halved compared to the scenario without smart loads. The
DGP-C algorithm achieves this while using the original model,
which is no longer accurate due to changes caused by the
generator disconnection.
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Fig. 6. Effects of change in topology and communication delay: loss of

generator 5 (508 MW).

For this type of disturbance, the performance of the method
is only marginally affected by the time delay in communi-
cations, as shown in Fig. 6. For the 150-MW load-increase
disturbance (omitted in this  paper), a larger time delay in
communications has a more noticeable degradation in the
response time of the DGP-C algorithm. In particular, the longer
delay results in a longer time for the disutility to reach steady
state. This happens because the delay affects the gradient-
descent step in the algorithm, which corresponds to minimiz-
ing disutility. This difference between the response of  both
types of disturbance happens because the loss of the generator
creates a very large mismatch between load and generation,
thus resulting in a very high value for Ui[k] in (2). Therefore,
in the case of  alarge power imbalance, such as the case
where a generator is disconnected, the response of the DGP-
C algorithm is dominated by the generation-matching term
(VIKIUi[Kk]), whichis not affected by communication delay
because it only depends on local frequency measurements,
while the gradient-descent  term ( cy[k]Ax i[k]) has smaller
values. The same effect is not reproduced in the case of
load increase, where the generation-matching term is not  as
dominant.

F. Effect of Measurement Noise

From this section on, we will only consider the case where
a 150-MW increase in load occurs at bus 27 between 10 and
50 seconds. To evaluate the effect of frequency measurement
noise, we have set the standard deviation of the frequency
noise measurements to 0f =0.01%, 0.1% and 1%. Even
though the frequency measurements in this implementation
are supposed to be taken on the transmission side, where
measurements tend to be accurate, we test the performance
of the method with larger noise since the method is flexible
enough to be used in microgrids and distribution systems,
where robustness to noisy frequency measurements is more
important.



The results shown in Fig. 7 demonstrate that a very noisy
measurement can severely harm the performance of the DGP-
C algorithm in terms of reducing frequency deviation. When
compared to the performance of  the system without smart
loads, the results are superior for the cases where the standard
deviation of noise is 0.01% and 0.1%, and they are similar
when it is equal to 1%. We conclude that the quality of
frequency measurements is critical for this application. 1t is
important to note that the control systems of the synchronous
machines that keep the system stable do not  rely on noisy

measurements.
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Fig. 7. Effect of noise in frequency measurement: 150-MW load disturbance
at bus 27.

If we compare this result to Fig. 4, we notice that the prac-
tical limitations introduced from Section [V-D onwards have
greatly degraded the performance of the DGP-C algorithm,
which is not capable of returning the frequency of the system
to its nominal value.

G. Speed of Actuation

We consider that there is a phase lag between the control
action and the change in demand due to the dynamics of loads
and delay in communications (between aggregators and their
subordinate loads). Because loads cannot respond instanta-
neously, their dynamics were modeled as a low-pass filter. We
examine the performance with various cutoff frequencies (f¢),
including 0.032Hz and 0.32 Hz, which were inspired by the
cutoff frequencies experimentally obtained for commercial-
building HVAC fans [19] and variable-speed heat pumps [29],
respectively. We also tested for cutoff frequencies of 0.01 Hz
and 3.2 Hz to emulate loads with slower and faster responses,
respectively, as shown in Fig. 8.

The results show that good performance can be obtained
for all cases, when compared to the case without smart loads.
Tests for f¢ of 0.01 Hz and below, however, have shown that
the performance of smart loads whose response is very slow
(can only respond in tens of seconds) is less effective or even
ineffective for the time range studied in this simulation.
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Fig. 8. Effect of cutoff frequency of loads: 150-MW load disturbance at bus
27.

In practice, the control system and measurements would be
digital (therefore calculated in discrete time). Unless otherwise
noted, the values for sampling period ( Ts) of controller and
measurements is 2/60 seconds. Tests were performed for
sampling periods of Ts = 2/60 , 5/60, 10/60, and 0.5 seconds.
The results in Fig. 9 show that the performance of the
DGP -C algorithm is ~ harmed by increasing the =~ sampling
period beyond 2 cycles, and for Ts >10/60 seconds, large
excursions of all signals—especially total disutility—appear.
For Ts = 0.5 seconds, the method is no longer more efficient
than the baseline case without smart loads.
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Fig. 9. Effect of different sampling periods on the performance of DGP-C
under a 150-MW load increase at bus 27.

H. Other effects

Other parametric tests were performed and the results are
summarized below.
+ Graph topology. The scenario of disturbance by load in-
crease was re-examined using a different communication-
graph topology, having a connected graph with smaller



graph diameter. The results are similar to those to the
graph with the original topology. we believe the reason
is the use of local frequency measurements that provide
global information. As a result, change in the communi-
cation topology do not change the speed of convergence
much.

+ Number of bins. Suppose each agent can only change
its demand by discrete increments; that is, changes
in demand are placed into “bins.” Because the DGP-

C algorithm was  designed for continuous changes in
demand rather than discrete, for implementation with
such discrete loads, each load aggregator rounds its
calculated demand change to its closest bin. The effect of
changing the number of bins was studied by considering
(9] | =5, 9, and 51. The results demonstrate that the
DGP-C algorithm can function adequately for  all three
cases. However, the frequency deviation was larger for a
smaller number of bins.

+ Stochastic loads. The net load, which is nominal demand
minus renewable generation, is a stochastic process due to
the randomness in demand and renewable energy gener-
ation. The effect of intermittent and uncertain renewable
energy generation was modeled as an increase in the
fluctuation of the demand from loads. Those variations
can be decomposed into small- and large-scale deviations.
Large variations can be modeled as a step in consumption
of a given load, such as the 150MW increase disturbance
applied to bus 27. The random small-scale fluctuations
of both renewable generation and load are modeled as
Gaussian additive noise in demand of ~ each load with
zero-mean and standard deviation (0;) equal to 0.01% of
the nominal demand of the load. We have tested standard
deviation of each load from 0 =0.01% to 1%. The
results show that the DGP-C algorithm can compensate
for the 10-fold increase in the uncertainty of load, even
when O/ = 1%. In comparison to the case without smart
loads, frequency deviations are reduced by the DGP-C
algorithm.

V. CONCLUSION

We provided analytical and numerical results for the DGP-C
algorithm with measurement noise and other practical issues.
A bound on the step size was established for stability, and
the mean and variance of the demand changes were analyzed.
Despite the strong assumptions used in the analysis of mean
and variance, the theoretical results still accurately predict the
behavior of the DGP-C algorithm seen in the simulations, in
which those assumptions are not satisfied.

The DGP-C algorithm was ~ shown to successfully arrest

frequency deviations from the nominal value in most scenarios.

In particular, through simulations we examined the effects

of model mismatch, communication delay, communication
topology, frequency-measurement noise, presence of uncer-
tain, uncontrollable, stochastic renewable generation, sampling
period for discrete-time control and measurements, quanti-
zation of controller output, and speed of actuator response.

The simulations revealed that the DGP-C algorithm is robust
to most of these factors, but it is sensitive to noise in
frequency measurements and sampling rate of implementation.
Lower cutoff frequencies for actuator bandwidths significantly
degraded performance compared to higher cutoff frequencies.
This implies that only sufficiently fast loads can effectively
provide frequency control using the DGP-C algorithm, as
expected. A cutoff frequency corresponding to the bandwidth
of a commercial HVAC fan’s power deviation still significantly
improved performance compared to the scenario without smart
loads. This indicates that commercial HVAC systems are fast
enough to provide meaningful frequency control service to the
grid.

In this work network constraints such as line flow limits
were not taken into account in setting up the optimization
problem [15]. Thisis an area of future work. The analysis
in this paper assumes that feedback interconnection between
the smart loads and the rest of the power grid does not cause
instability. Another important direction of future work is the
analysis of closed-loop stability.
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