A Suggestive Interface for Untangling Mathematical Knots

Huan Liu and Hui Zhang

File Setting Tools About

GaussCode: +2-3+4-2
+9+3-4-7+8 -9 +6
Suggestion:

o

AR
A

Untangle m with Suggestion

Suggestion Export Images

<

Fig. 1. Our suggestive knot diagram interface. Upper-left — the knot canvas for one to draw, edit, and deform knot diagrams. Upper-right — a visual
panel to suggest the Reidemeister moves necessary for one to continue untangling the knot; the knot portion is highlighted in red with text information
displayed at the bottom of the knot canvas to facilitate our understanding of the suggestion. Bottom-left — “key moments” captured to summarize all the
critical changes that have occurred during the entire deformation. Bottom-right — knot display window that supports 3D and planar knot diagram modes.

Abstract— In this paper we present a user-friendly sketching-based suggestive interface for untangling mathematical knots with
complicated structures. Rather than treating mathematical knots as if they were 3D ropes, our interface is designed to assist the user to
interact with knots with the right sequence of mathematically legal moves. Our knot interface allows one to sketch and untangle knots by
proposing the Reidemeister moves, and can guide the user to untangle mathematical knots to the fewest possible number of crossings
by suggesting the moves needed. The system highlights parts of the knot where the Reidemeister moves are applicable, suggests the
possible moves, and constrains the user’s drawing to legal moves only. This ongoing suggestion is based on a Reidemeister move
analyzer, that reads the evolving knot in its Gauss code and predicts the needed Reidemeister moves towards the fewest possible
number of crossings. For our principal test case of mathematical knot diagrams, this for the first time permits us to visualize, analyze,
and deform them in a mathematical visual interface. In addition, understanding of a fairly long mathematical deformation sequence in
our interface can be aided by visual analysis and comparison over the identified “key moments” where only critical changes occur in the
sequence. Our knot interface allows users to track and trace mathematical knot deformation with a significantly reduced number of
visual frames containing only the Reidemeister moves being applied. All these combine to allow a much cleaner exploratory interface

for us to analyze and study mathematical knots and their dynamics in topological space.

Index Terms—Knot theory, Reidemeister moves, Gauss code, Mathematical visualization, Suggestive interface

1 INTRODUCTION

Our work in this paper is mainly concerned with the illustration of the
topology of mathematical knots, i.e., 1-dimensional strings embedded
in 3-space. The main properties of these strings to be visualized and
studied in our work, are in their topological space. In topology, a very

* Huan Liu is with University of Louisville. E-mail: huan.liu@louisville.edu.
* Hui Zhang (corresponding author) is with University of Louisville. E-mail:
hui.zhang @louisville.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

small circle is the “same” as a huge one, because we can stretch the
small one to make it exactly like the big one. More generally, two
strings are going to be considered the “same” if we can deform one into
the other without cutting. When communicating about mathematical
knots, we often draw and view 3D figures to help our perception and
understanding of the knots’ geometric structures [10]. However, it can
be a far more challenging task to communicate about the knot’s topol-
ogy [5,22], which studies its geometric properties and spatial relations
unaffected by the continuous change of shape or size of figures.

Relating two fundamentally identical entities that appear to very
different has long been a fascinating challenge problem. For example,
the idea of knot equivalence [8, 11, 19,23] is to give a precise definition
of when two knots should be considered the same even when positioned
quite differently in space. Even more challenging is to mathematically

Gauss Code:
-1-2-3+4+42+1-443 1
12 3+442+1-443 4

R2 available!

Expected Gauss Code:
3+4-443

Gauss Code: -1 +2 -2 +1
Gap Code: -3 +1 -3 +1

Expected Gauss Code:
K\O 3+4-4+3
! Expected Gap Code:
B3+1-3+1

EDIT SUCCESS!

(a) (b) (©)

(d (e))

Fig. 2. Our core design idea is to equip the sketching based knot diagram interface ((a), (c), (d), and (e)) with a “mathematician’s brain” — a numerical analysis kernel to

suggest and validate every single move to apply to untangle the knot ((b) and (f)).

move and deform knots towards the fewest possible number of crossings
through a sequence of Reidemeister moves (see e.g., Fig. 3), the three
core moves necessary to fully untangle a knot [6, 18].

Our task in this paper is to show how the combination of computer
graphics, numerical methods, and suggestive visual interfaces can assist
us in untangling mathematical knots with the Reidemeister moves in
Fig.3. This paper starts from simple tasks such as drawing a mathemat-
ical knot in our canvas, and reconstructing a knot from a pre-rendered
knot diagram raster image. Having established the basic mechanisms
and intuition of this artifice, we proceed to showing how a numerical
method can be constructed to read the three-dimensional geometry of
a knot in its Gauss code notation and suggest the Reidemeister moves
required to untangle the knot to the fewest possible number of cross-
ings. We then translate the numerical results into a suggestive visual
interface that enables the intuitive and guided user experience with
mathematical knots. We showcase examples and their visual proofs
generated from our knot interface. By exploiting such a combination of
visual interface and mathematical analysis, we feel that we can make a
novel contribution to building intuition about classes of geometric and
topological problems in knot theory.

=) Dl KA

(@) Rl (b) R2 (c) R3

Fig. 3. The three Reidemeister Moves. (a) Twist and untwist. (b) Move one loop
over another. (c) Move a string over or under a crossing.

2 RELATED WORK

The idea of visualizing mathematical knots has developed in many
directions with the recent advances in computer graphics and com-
puter interfaces. Carter generates nicely rendered figures for many
complicated yet beautiful examples in modern topology [1]. Weeks’
SnapPea software displays and manipulates the over/under crossings
of mathematical knots [27]. Some combine haptic interfaces and 3D
graphics to represent mathematical curves in 3D and knotted surfaces
in 4-dimensional space (see, e.g., Phillips [17], Spillmann [24], and
Zhang [28,29]). Fish proposes a novel use of visual algebraic proofs
as a means of representing certain algebraic proofs for unknot detec-
tion [3]. Kurlin introduces simple codes and fast visualization tools for
knotted structures in molecules and neural networks [12].
Visualization efforts focused on untangling knots typically em-
ploy a physical or pseudo-physical relaxation approach. For example,
Scharein’s Knotplot has been widely used to construct and relax 3D
mathematical knots using an energy model [20]. Ladd makes combined
use of energy minimization and randomized tree-based planning [13].
These methods work completely in 3D scenario, which are different
from how mathematical knots are deformed and untangled with the
Reidemeister moves. A few other efforts have focused on the use of

a sketching interface for proposing knot deformation. For example,
Zhang’s KnotPad [30,31] proposes a knot diagram sketching interface
that only allows the Reidemeister moves that can be drawn by (mostly
expert) users. However, proposing the right sequence of Reidemeister
moves necessary to untangle a complex knot in the sketching interface
is very difficult for most non-expert users. We thus have been motivated
to investigate the possibility of building a suggestive interface that can
possibly understand how the knot is being changed, suggest and vali-
date the next mathematical moves towards the fewest possible number
of crossings. The paper aims at answering this question — “How can
we build a knot interface that can understand and communicate the
mathematical moves necessary to fully untangle a knot?”

3 OVERVIEW OF OUR SUGGESTIVE KNOT INTERFACE

The core idea driving the development of our system (Fig.2) is to al-
low the user to sketch and apply the Reidemeister moves to untangle
mathematical knots in a suggestive interface, where user’s sketching
process can be guided if desired. The implemented interface consists of
four major areas as shown in Fig.1: 1) a major sketching canvas on the
upper-left corner of the interface, 2) a Reidemeister move instruction
window on the upper-right corner, to suggest and validate users’ Reide-
meister moves while the sketching process evolves, 3) a “key moments”
window on the bottom-left corner, to capture and list all the critical
changes that have occurred during the entire knot deformation, and 4)
the bottom-right window for users to view knots in 2D/3D.

Our interface is a data-driven approach which automatically gen-
erates 3D mathematical knot structures while the sketching evolves.
In the sketching canvas, one can create and edit knot diagrams with
a “virtual pen” and the system automatically queries the user for an
explicit choice of over/under- crossing to ensure no part of the curve
runs into another in 3D. The user can push and pull part of the curve
for further geometry control, and the result can be rendered as a classic
knot-crossing diagram or a smooth 3D knot figure.

At each step when untangling the knot, our interface can suggest
the Reidemeister moves necessary to continue simplifying the knot
by utilizing a Reidemeister move analyzer behind the visual interface,
that reads the two-dimensional projection of the knot in its Gauss
code notation and determines how further Reidemeister moves may be
applied to fully untangle the knot. The user can apply the suggested
moves from the interface or propose his or her own Reidemeister
moves by explicitly editing the knot. Our interface is designed to
mathematically validate each move performed by the user and alert
the user when illegal attempts are recognized, and will only accept
legal and validated moves to change the knot. In addition, our interface
can recognize and “remember” each valid move to transform one knot
diagram to another, therefor one can take advantage of such a memory
system behind our interface to track and trace the sequence of the
Reidemeister moves generated during the entire interactions.

4 DETAILS OF IMPLEMENTATION MODELS

In this section, we describe the families of models used to implement
the interaction procedures, visual elements, and our Reidemeister move
kernel engine behind the suggestive interface. Our fundamental tech-
niques are based on a wide variety of prior art, including sketching

nots, their structure and properties, and with T
1g of a single loop with any number of crossing

ng as its strands never pass through each

3 undone or untied; however, any physical knot

:nds. A configuration of several knots winding

1 classify and distinguish knots and links. For

<not; these numbers are different for the trefoil

ot be moved into the other (without strands A TeR s o
mathematical version of
an overhand knot.

extended by Maddocks and Keller!'2] |t makes predictions that are \

1 has been developed for knots in general. e \\'
N
NS/
\ /
N SN
elp improve this section by adding citations to reliable S
(a)

(e)

&S D &

D~

© @

ﬁ\/ﬁ’\ﬁ
N /’ N

— / \

™ | N/ /]
y. /

) N S
—

® (€3]

Fig. 4. Reconstructing a Trefoil knot from a knot diagram raster image available at Wikipedia. (a) Crop the knot diagram image. (b) Resize the image. (c) Turn into a
gray-scale image. (d) Turn into a binary image. (e) Thinning — convert binary image into 1-pixel wide lines. (f) Crossing point identification and 3D reconstruction. (g) The

resultant 3D smooth knot with color and shading.

interfaces focusing on the creation of 3D objects [9, 15], the sugges-
tive interfaces used in 3D design and analysis [2, 14, 26], and other
variants on computer graphics and visual interfaces for mathematical
visualization including, e.g., the work of [7,21,25,30].

4.1 Knot Creation

We first focus on the creation of 2D knot diagrams of 3D mathematical
knots. The core methods and visual elements of our suggestive knot
diagram interface will be treated in later sections.

Constructing Knots From Raster Images. The diagram we
render to represent the knot in Fig.2 is called knot diagram, which is
the planar representation of the three-dimensional knot, with additional
information, i.e., over/under-crossing information, recorded by means
of visual breaks in the arcs. Such two-dimensional representations are
widely rendered in printed and digital media when mathematical knots
are described (see e.g., Fig.4(a), the trefoil knot diagram at Wikipedia).
It is possible to computationally recognize and reconstruct the three-
dimensional knot structure from a knot diagram raster image with the
following key steps:

Crop and Resize. For example, the user can crop down a knot
diagram from a larger raster image, and our system will then
re-scale it to the needed dimensions.

Gray-scale Image Conversion. While most knot diagrams consist
of only gray tones of colors, some are color images on purpose
(see e.g., Fig.4(a)). Knot diagrams are converted into gray-scale
images to reduce the inherent complexity (see Fig.4(c)).

Binary Image Conversion. This transformation is useful in de-
tecting our objects of interest — the mathematical curves, and it
further reduces the computational complexity (see e.g., Fig.4(d)).

Thinning. Thinning [32] is a morphological operation that is
used to remove selected foreground pixels from binary images,
somewhat like erosion or opening. In our scenario, we apply the
thinning operation particularly for skeletonization — to tidy up
the output of knot diagrams by reducing all line segments to just
single-pixel thickness. Fig.4(e) shows the resultant mathematical
trefoil knot diagram with lines of just one-pixel thickness.

3D Reconstruction. A 3D knot is represented by a sequence of
3D points sampled along the curve, and now the 3D points are

reconstructed from the foreground pixels in the knot diagram
figure. These foreground pixels are not fully connected, due to
the rendered “breaks” in the raster image. To reconstruct the
3D geometry, we need to identify where these “breaks” are in
the raster image. This can be done by scanning each pixel’s
8-connected neighbors, i.e., the eight neighboring pixels. As
Fig.4(f) shows, a foreground pixel inside a knot curve will find
two foreground pixels in their 8-connected pixels; those at the
end of a knot curve will only find one foreground pixel in its
8-connected pixels, and these foreground pixels can be paired and
3D points can be reconstructed between them to represent the
under-crossing arcs that correspond to the “breaks” in the knot
diagram. Fig.4 shows the sequence of intermediate outcomes and
the resultant 3D trefoil knot, reconstructed from a raster image
cropped from the knot gallery at Wikipedia.

2@

Fig. 5. (a)-(c) Drawing a knot in our sketching canvas via a sequences of under,
over, under ... (d) Rendering with light and material adds apparent 3D geometry,
depth, and shape to the 2D image.

Drawing a Knot. The user can also draw a knot diagram in our
knot sketching canvas. The drawing is done mainly in 2D — one can
construct an initial configuration for an object while neglecting most
issues of geometric placement. This is possible, for example, when
knot diagrams are drawn, it is just bare projections with relative depth
ordering indicated at crossings since precise 3D depth information is
unimportant. Fig.5 shows a sequence of screen images while the knot
sketching process is evolving. When a collision occurs between a piece
of an edited curve piece and an existing piece in canvas, users must
make explicit over and under choices, e.g., by using modifier keys. The
completed mathematical knot in R? can be represented as a linked node

list, K = (V,E), where V = {v{, v, ...,v, } is the finite set of vertices of
the list and E is the set of edges {e},e;...,en}.

4.2 Suggesting Mathematical Moves for Untangling Knots

We now turn to our main objective in this paper, which is to create
unique experience for one to interact with the mathematical knot and
untangle it to a simplified (but topologically equivalent) structure. This
problem has been approached in different ways. The widely-used
KnotPlot [21] relaxes and untangles knots in three-dimensional space
with a pseudo-physical model. KnotPad [30] is a sketching interface for
one to only propose the Reidemeister moves to deform mathematical
knots, which is only practical when working with knot diagrams with a
small number of crossings (for most non-expert users).

We first focus on the integration of numerical and visual approaches
to implement a suggestive knot interface that can read the mathematical
knot and suggest the moves to untangle complex knots step by step
to the fewest possible crossings. We of course exploit and customize
numerical approaches to knot deformation [4, 16] behind our suggestive
sketching interface. Before we detail the logical series of steps, several

terminologies are in order.
@3 |
2

Gauss code. The numerical approach
we are going to leverage is based on an ex-

tended knot notation called Gauss Code. It
is a sequence of labels for the crossings with
each label repeated twice to indicate a walk
along the diagram from a given starting point
and returning to that point. Take the trefoil
knot in Fig.6 as an example. First, we label
all crossings in the knot diagram. Then, we
traverse the knot from a given point and along
one direction (see the starting point and di-

rection indicated by the red arrow in Fig.6).

Once we encounter a crossing, write down the Fig. g, A trefoil knot and
crossing label with a “+” or *“-” for the head jts Gauss code generated
of each crossing, we will obtain a series of as “+1, -2, +3, -1, +2, -3".
signed number, called Gauss Code. In this

trefoil knot example, the Gauss Code will be generated as “+1, -2, +3,
-1,+2,-3”.

Visual Tangle. A visual tangle is a region of a knot where our
suggestive interface will highlight and guide the user to perform the
mathematical moves. The original definition of Tangle was proposed
by Foley in [4] to numerically untangle knots. A tangle is a closed
region of a knot, where the knot crosses the region exactly four times,
with the following two basic properties:

* Size — the number of crossings in a tangle. For example, Fig.7
shows three different tangles with sizes 0, 2, and 3.

* Parity — the parity of the tangle size. For example, the tangle
in Fig.7(b) is an even tangle and in Fig.7(c) is an odd tangle. As
defined, in each tangle, two knot segments will cross the tangle
boundary exactly four times. When the tangle parity is even, each
segment will leave two consecutive crossing points when crossing
the region (see e.g., Fig.7(a)(b)); when the tangle parity is odd,
crossing points generated by different segments will be neighbors
on the boundary (see e.g., Fig.7(c)).

U,
)

(a) Tangle with size 0

i

(b) Tangle with size 2 (c) Tangle with size 3

Fig. 7. Visual tangle examples in our suggestive interface, with sizes 0, 2, and 3.

4.2.1 Predicting the Moves and Tangles by Gauss Code

The Reidemeister moves have been proven to be the core moves nec-
essary to fully untangle a knot. In this section, we will detail models
and algorithms to suggest the Reidemeister moves in our knot interface.
The core prediction capability of our knot interface is based on the
numerical approach proposed by Foley in [4]. In Foley’s approach the
third Reidemeister move is replaced with two generalized translation
moves, and the proposed numerical method can read a knot in its Gauss
code notation and automatically fully untangle the knot in its Gauss
code notation corresponding to the four basic moves listed in Fig.8.
The key implementation steps in our implementation can be detailed as

%) X@L iitﬁ
@

(a) R1 ¢
@ T2

| (WX

(© Tl

(b) R2
Fig. 8. The four generalized Reidemeister moves in our interface. (a) R1: the first
Reidemeister move. (b) R2: the second Reidemeister move. (c) T'1: translation
move 1 to remove the original crossing and create one on the opposite side of the

tangle. (d) T2: translation move 2 to relocate the strand intersecting both tangle
segments to the opposite side of the tangle.

1. Read the knot’s Gauss code notation and identify how the Reide-
meister moves may be applied with rules detailed below.

2. Identify and perform R2 first — look for two adjacent crossings
with the same sign; then locate the negatives of these integers,
and determine if those numbers are also adjacent. R2 can be
performed if these conditions are true, and the four numbers will
be removed after R2 is performed (see e.g., Fig.9(b)).

3. Then identify and perform R1 — look for two adjacent integers
which are negatives of each other. When this condition is found,
the numbers can be removed after R1 is performed (see Fig.9(a)).

4. Look for all tangles with size greater than 0. A tangle can be
identified or combined from existing tangles with the following
three rules:

o The sum of the signed integers in a Tangle’s Gauss code is 0.
E.g., Tangle 1 in Fig.10 contains two crossing points and the
sum of all the Gauss codes is (—5) + (—4) + (+4) + (+5) =
0.

* A tangle’s Gauss code string can be divided into two Gauss
code strings belonging to two different knot segments. E.g.,
within tangle 2 in Fig.10 the Gauss code [—1,+-2] belongs
to one arc, and [—3,—2,+1,+3] belongs to a different arc.

e Two tangles can be combined if their Gauss code
strings are adjacent sub-strings in the knot’s Gauss
code. For example, in Fig.10 the knot’s Gauss code
is [-1,42,46,-5,—4,-3,-2,+1,43,4+4,+5,—6]. The
Gauss code of tangle 1 can be divided into two Gauss code
strings: [—5,—4] and [+4,+5] belonging to the two differ-
ent arcs in tangle 1. Similarly tangle 2 has two Gauss code
strings: [—1,+2] and [—3,-2,41,43]. Since [-5,—4]
from tangle 1 is adjacent to [—3,—2,+1,+3] from Tangle
2 in the knot’s Gauss code. Tangle 1 and tangle 2 can thus
be combined into a tangle of larger size, i.e., the tangle
3. Our program starts with all tangles with size 1, and

e

—_—
R1 MOVE
2
Gauss code:
1 +1+2-2 +2 -2 +2 -2
()

Gauss code: [7+5-6+7]-8

568807 o L A8 546 .

5 +6 -7.. +8[5+6 -7+5-6+7-8 ...
©

1
3 / 3
—_—
2 R2 MOVE
Gauss code:
+1+2-3-1-2+43 -3 +3 -3+3
(b)
8: 9 9 g
:-' 1 T2MovE %
P ;
: #4516 :°
Gauss code; -6(+4 5]
...#4-5-6..+6 +8 8[+9-4+5 -9 .-B6+4 -5 +6 +8
-89 -4+5-9.. +9-4+5.9.8 ..+9-4+5-9-6...
(d)

Fig. 9. The four generalized Reidemeister moves used in our interface and the corresponding Gauss code notations before and after the move.

recursively combine tangles to larger sizes until no more
combinations can be performed.

Fig. 10. Tangle 1 and Tangle 2 can be combined as Tangle 3.

5. Check if T'1 can be applied to any identified tangles. 7'1 should
be performed if the following two conditions are true:

* any two of the crossing integers beyond the ends of the tan-
gle are negations of each other. For example, in Fig.9(c) the
crossing immediately beyond the tangle has two crossing
integers negative of each other, i.e., “— 8" and “+ 8", so
we can perform a valid 7'1.

* R2 and/or R1 are available upon the execution of 7'1.

When a T'1 is performed against a tangle, we first negate the value
of every number composing the tangle, flipping it over. Next the
two numbers composing the crossing adjacent to the tangle are
removed from their original positions and inserted in the locations
on the opposite side of the tangle (see Fig.9(c)).

6. Check if T2 can be applied to any identified tangles. 72 should
be performed if the following two conditions are true:

* the two crossings immediately beyond two adjacent ends of
the tangle are both overpasses or underpasses. For example,
the two crossings, “-6” and “-8”, immediately beyond the

tangle in Fig.9(d), are both negative and adjacent to each
other in the knot’s Gauss code, so we can perform a valid
T2.

* R2 and/or R1 are available upon the execution of 72.

When a T2 is performed, all integers in the tangle’s Gauss code
stay unchanged, and the two adjacent integers immediately be-
yond the tangle will be relocated to the opposite side of the tangle
(see e.g., Fig.9(d)).

4.2.2 From Numerical Results To Suggestive Visual Interface

In this section we will focus on the translation of numerical results to
visual information in our interface to guide the user on fully untangling
mathematical knots.

System Suggestions on Tangles and Moves. Our objec-
tive here is to provide a suggestive visual interface rather than a numeri-
cal expression, and thus we have adopted a customized hybrid approach.
For example, we can utilize the numerical method behind our interface
that reads the knot diagram in its Gauss code and determines how to
continue untangling a knot in its Gauss code notation. Rather than
actually untangle the knot by just changing its Gauss code notation,
we will translate the numerical information into visual and geometric
information to suggest visual tangles where the next moves should
be made. As illustrated in Fig.11, our visual interface provides the
following elements to suggest tangles and moves during each action
performed by the user:

 Portions of the knot, where the R1 and/or R2 moves can be applied,
are highlighted as editable pieces in green.

* Visual tangles, where the 7'1 and 72 moves can be applied to
introduce more R1 and/or R2 moves, are highlighted in red; while
the editable pieces, immediately beyond the tangle for 7’1 and/or
T2 moves, are highlighted in green.

* For each suggested move, the interface provides a dialogue to
illustrate how to make the four moves (see e.g., Fig.11(e)-(h)).

A

—

& R2 Move Available!

' 1 Hoo

Do you want to do it?

YES NO

GaussCode: +1 +2 +3 +4-5-6 -2 -1 +7 +3+4-5-6 +7

-5+8-3-4+8+6-7

GaussCode:

-5+8-3 -4 +8 +6 -7
Suggestion:

R2 Move Available!

>

Do you want to do it?

R1 Move Available!

Sl

Do you want to do it?

YES NO YES NO

(e) ®

Finish Redraw
GaussCode: +3+4-5-6 +7
-548-3-4+8 46 -7

GaussCode: +1 +2 -3 -4 -5 +3 +6 -1 +4
+5-2-6

Edit SUCCESS!
() (d)

Suggestion:

- —
. — \
HORAO)

T2 Move Available!
ORI

Do you want to do it?

YES NO

T1 Move Available!

Do you want to do it?

YES NO

(® ()

Fig. 11. (a)-(d): Moves and tangles are translated to highlighted knot portions in our interface. (e)-(h): Dialogues to illustrate the four moves to end users.

User-Defined Visual Tangles. In addition to following the sys-
tem suggestion on the tangles and available moves, one can also explic-
itly define a tangle of interest, by “brushing” a portion of the mathemat-
ical knot in our interface. The knot portion where the user brushes will
be highlighted in green (see e.g., Fig.12), and the interface will match
the user-defined tangle with all tangles our system has numerically
identified and will suggest moves applicable to the user-defined tangle.
When the user decides to apply a suggested move, our system will erase
the portion to be edited and wait for the user to complete the sketching.
The system will validate the moves sketched by the user using methods
that we are going to treat in detail next. In Fig.12, the user brushes
a visual tangle and our system suggests a 72 move, and eventually
accepts the move sketched by the user following validation.

a
B Oy _oh
25 &b o

() (b) (©)

Fig. 12. One can explicitly define a visual tangle to edit a knot in our interface.
The interface will suggest all Reidemeister moves applicable to the user-defined
visual tangle through a pop-up menu.

Move Validation. As designed, our knot interface will constrain
the user’s knot drawing to the four mathematically legal moves, i.e., R1,
R2, T1, and T2 moves. To validate each move sketched by the user,
our system will first “generate” the expected move numerically, i.e.,
in the format of Gauss code notation. When a move is sketched and
committed by the user, our system will need to validate this potential
move. The validation performed by our system is based on the Gauss
code notation — ideally if the sketched move is “same” as what is

recommended by our numerical analysis, we should be looking at two
identical Gauss codes. However, depending on giving starting point and
traverse direction one knot could have different Gauss code notations.
To validate the proposed moves, we use a slightly different notation we
called Gap code, which is derived from Gauss code but can be helpful
to further determine if two different Gauss codes actually represent the
same mathematical knot.

PsEo
Cois
EEEE
EEN
EEEE
RS
EEEE
CGOZl;5+551+7+33+3

Fig. 13. Convert a knot's Gauss code to our Gap code.

The method to derive Gap code is explained in Fig.13. We start
from the first signed integer in the Gauss code string, and for each
such signed integer in the string, we measure its distance to its negated
integer by walking towards the end of the Gauss code string (if needed
Gauss code string is repeated). For each integer in the Gauss code string
we generate a corresponding signed integer in its Gap code string, by
taking the measured distance as its absolute value and keeping the sign
from the negated integer. When two Gap codes are identical or negated
of each other, the two knots are the “same”. For example, Fig.14(a)
and Fig.14(b) are showing two different Gauss code strings generated
from one knot with different starting point and the traverse direction.

The knot in Fig.14(c) looks slightly different but represents a totally
different topology. While the Gauss code in Fig.14(a) appears to be
totally different from that in Fig.14(b), their Gap codes are just negated
of each other. The Gauss code and Gap code in Fig.14(c) are totally
different from those in Fig.14(a) or Fig.14(b), and the knot should be
treated as a completely different topology.

(a) Gauss code:

1 42-3-4+44+1-243.
Gap code:
S545-5-14743-3+3

(b) Gauss code:
+1-5+2+8-8-1+45-2.
Gap code:
+5-5+5+1-7-3+43-3

(c) Gauss code:
-1-542+8-8+145-2.
Gap code:
S5-545+1-7+4343-3

Fig. 14. Comparing knot equivalence using Gauss code and Gap code.

Fig.15 shows the typical screen images of our suggestive interface
when validating every single move proposed by the user. Our system
will accept fully validated move before making actual change to the
underlying knot structure.

GaussCode: 1-2-34-5-16-78-9
103-4-89-107-625

GaussCode:1-23145-67-892
3-78-96-510-10-4

(a) Suggested move (b) Invalid move (c) Valid move

Fig. 15. Our interface validates every single move proposed by the user.

4.2.3 Smoothing the Knot

Upon the commit of each move proposed by the user, the system will
smooth the mathematical knot before the underlying numerical method
identifies a new tangle/move to be performed. The reason is twofold:

* Hand-sketched curves can be jittery especially when one keeps
editing portions of the diagrams. A smoothing operation can help
the knot diagram to maintain smooth and elegant.

To identify new translation moves, i.e., 7'l and 72, the numerical
method need to perform multiple-level recursive searching to look
for tangles and 7'1 and 72 moves, which significantly increases
our system’s run-time complexity. Smoothing the knot can po-
tentially help identify tangles and moves for the user to continue
untangling the knot diagram.

Smoothing in our system is performed with a relaxation algorithm.
The basic ideas is to use a force model that can improve the layout
of a mathematical knot’s linked nodes by re-positioning them at more
balanced locations in the space. The force model uses two forces [21]:

* Attractive force applied between all pairs of immediately adjacent
nodes in the knot diagram; the attractive force is a generalization
of Hooke’s law, allowing for an arbitrary power of the distance r
between nodes, Fy, = H(g) 148

* repulsive force applied between all pairs of non-adjacent nodes in
the knot diagram, defined by F, = K(5)*(2“’) ,

where r is the distance between two nodes, and d is the balanced
distance of two points, and H, K, ¢, and 3 are constants. We set @ =5,
B =2, and both H and K are 1. When performing smoothing, we
calculate the overall force at each node, and move the node along the
overall force’s direction while avoiding collisions between all pairs of
non-adjacent segments.

4.2.4 Key Moments of the Mathematical Deformation

To further improve our experience with mathematical knots, our system
“remembers” every mathematically legal move that has been applied
during the entire process. Each such move, i.e., R1/R2/T1/T2, is con-
sidered a critical change in the deformation. Our interface displays an
array of snapshots for one to track and trace the key moments where
these critical changes have occurred. Fig.16 shows the eight key mo-
ments to summarize how a string that appears to have ten crossings at
the beginning was fully untangled step by step in our interface.

SIS
589

(a) Gauss Codes:(1,-2, 3, -1,(b) Gauss Codes:(1,-2, 3, -1,(c) Gauss Codes:(-1,2,-3,4,
4,-5,6,-7,8,9,2,-3,10,-6,4,5,-6,7,-8,9,2,-3,-7,8,-2, 1,5,-6,7,-8,9, 3, -4, -7,
7,-8,5,-4,-9. -10) 29,6,-5, 10, -10, -4) 8,9, 6, 5)

Suggestion: T2 Suggestion: R1 Suggestion: R2

@ /\)3 \)
(d) Gauss Codes:(-1,2,-3,4,(e) Gauss Codes:(-1, 2, 3, -4, (f) Gauss Codes:(-1, 2,3, 1,

5,-6,-2,3,-4,1.7,-5,6,-7) 5,1,-2,-3,4,-5) R2 -2,-3)
Suggestion: R2 Suggestion: R2

)

(g) Gauss Codes:(-1. 1)
Suggestion: R1

O

(h) Gauss Codes:()
Suggestion: NO

Fig. 16. Displaying the 8 critical changes to turn an unknotted string of
10 crossings into a smooth circle.

5 IMPLEMENTATION ENVIRONMENT AND MORE USER INTER-
FACES

We have used C + + programming language for models and algorithms
detailed in this paper, and have used the Q¢ framework to build the
graphical user interface. Our core rending capability, including the
planar knot diagram and the 3D rendering for mathematical knots, is
based on OpenGL. The software currently runs on a MacBook Pro
with 2.2GHz 6-Core Intel Core i7 Processor and Radeon Pro 555X
graphic processor. The software was also migrated and tested on
windows platform workstations with NVDIA graphics card. Fig.18
shows representative views of mathematical knots rendered in our
interface.

D 9

(a) Gauss Codes:(1, -2, 3, -4, 5, 6,
7,-8,9,-3,4,-5,2,-1,-6.-9, 10, -7,
8,-10)

Suggestion: T2

-10, -4)
Suggestion: R1

S

(e) Gauss Codes:(-1,2,3,-4,5, 1,
-2,-3,4,-5)
Suggestion: R2

(f) Gauss Codes:(-1, 2, 3,1, -2, -3)
Suggestion: R2

(b) Gauss Codes:(1,-2,3,-1,4,5,
-6,7,-8,9,2,-3,-7,8,-9,6, -5, 10,

()
W%

N7

(c) Gauss Codes:(-1,2,-3,4,-2, 1,
5,-6,7,-8,9,3,-4,-7,8,-9,6,-5)
Suggestion: R2

@
N
(d) Gauss Codes:(-1, 2,-3,4,5, -6,

-2,3,-4,1,7,-5,6,-7)
Suggestion: R2

(h) Gauss Codes:()
Suggestion: NO

(g) Gauss Codes:(-1, 1)
Suggestion: R1

Fig. 17. Turning an unknotted string of 10 crossings into a trivial circle with just seven moves.

The user can load and draw a variety of mathematical knots and
links for investigation, and is also presented a wide selection of options.
Fig.19 shows one uses our system to fully reconstruct the Borromean
rings, a link with three components each equivalent to the unknot, by
“loading” a raster image available at the mathematical link Wikipedia
page. Fig.17 and Fig.20 show further screen images of fully untangling
mathematical curves that otherwise appear to have a large number of
crossings.

)

o

D
(a) (b) (c)

Fig. 18. Various rendering modes for visualizing knots in our interface. (a) Knot
Diagram. (b) Linked-Node Representation. (c) Smooth 3D Rendering.

6 PRELIMINARY USABILITY TEST

We have performed a preliminary usability test in the UofL VCL (Visual
Computing Lab) to evaluate our suggestive knot interface by inviting
a group of 10 non-expert participants to perform the three unknotting
tasks with the three complex knots shown in Fig.16, Fig.17, and Fig.20
respectively. Participants were asked to perform the tasks in three
different interfaces using as much time as they desired (until they either
completed the tasks or they no longer wished to work on the tasks):
1) the Knotplot software [21] which approaches unknotting problem

ﬁb_,&@

Fig. 19. Reconstructing a mathematical link from a raster image from Wikipedia.

using pseudo-physical simulations, 2) a sketching-only interface (by
turning off our software’s suggestive interface elements, essentially
the KnotPad [30]), and 3) our sketching based knot interface with the
system-generated suggestions for knot editing.

The usability test measured the task completion rate, average com-
pletion time, and average user interactions needed in the task. We
have also collected participants’ numeric rating (5-point scale, 5 for
strongly agree and 1 for strongly disagree) on the interfaces’ user
guidance, learnability, and overall rating. Table 1 summarizes the
results of this preliminary usability test. All the participants were able
to complete the tasks of untangling the three complicated knots with
Knotplot and our suggestive interface. However with Knotpad, only
one participant was able to complete one task successfully and another
participant nearly completed a task; other participants stopped work-
ing on the tasks after an average of 8 minutes. Interviews with them
revealed that it was nearly impossible for them to untangle knots with
complicated structures without system-generated suggestions.

The completion rate and completion time of the participants per-
forming the three tasks on our new knot interface shows the system-
generated suggestions can not only make it faster to untangle a knot, but
also make it possible to untangle a complicated knot. The participants
all agree that our suggestive interface can help them understand the

(a) Gauss Codes:(-1, 2, 3,
-4,-5,6,-7,1,8,-3,9, -10,
11, -9, 12, 5, -6, -13, 10, -
11,-2,-8,4,-12,13,7)

(L@B

(b) Gauss Codes:(-1, 2, 3,
-4,-5,6,-7,1,-2,8,9, -10,
-8, 11, ,-6,-13, 10, -9,
-11,-3,4,-12,13,7)

(c) Gauss Codes:(-1, 2, -3,
4,-5,6,-7,1,-2,8,9, -10,
-8, ,3,-6,-13, 10, -9,
-11,-12,-4,5,13,7)

)0

Cc

S

(d) Gauss Codes:(, 3,
-4,-5,6,2,7,-8,9,-10, 5,
-6,1,-7,8,-9,11,4,-3,-11,
10)

P

~/

(e) Gauss Codes:(1, -2, -3,
4,5,6,-7,8,-9, 3, s
10, 7, -8, 11, 2, -1, -11, 9,
-6, -10)

Suggestion: NO Suggestion: T2

&3

\

(f) Gauss Codes:(1, -2, (g) Gauss Codes:(1, 2, -3,

,5,6,-7,3,4,8,-6,9, 2, 4, -2, ,-7,-5,3, -4, -1,
-1,-9,7,-8,-5) 7,-6))
Suggestion: R2 Suggestion: T2

)

(k) Gauss Codes:(-1, 2, -3, (1) Gauss Codes:(1, -2, 2,
,3,-2,-4))
Suggestion: R2 Suggestion:R1

Fig. 20. Unknotting a mathematical curve that appears to have 13 crossings.

important theoretical results by allowing them to interact with the knots
step by step. Therefore they gave the highest numeric rating to our
interface on Learnability. These results suggest the new knot interface
is an improved interface that can enable and enrich one’s mathematical
experience with knots with complicated structures.

Table 1. Comparing three approaches to unknotting problems: physical simula-
tion (e.g., Knotplot), pure sketching interface (e.g., KnotPad), and our suggestive
interface.

Knot Interfaces Comparison
Physical Sketching-only Suggestive Sketching

Completion Rate 100% 5% 100%
Completion Time || ~51s) ~ 20s
User Interactions ~0 oo ~ 10times
User Guidance 1 1 5
Learnability 2 1 5
Overall Rating 3 2 4.5

7 CONCLUSION

In this paper we have presented how interactive graphics, numerical
methods, and visual interfaces can combine to enable one’s unique
and intuitive experience with mathematical knots. We have introduced
methods to create and model mathematical knots, interaction proce-
dures to approach sketching based unknotting tasks, and visual interface

Suggestion: R2

(h) Gauss Codes:(-1, -2,
-4,-5,-6,2,5,7,-3,4,-7

(m) Gauss Codes:()
Suggestion: R1

Suggestion: T2

Suggestion: R2

3 (i) Gauss Codes:(-1, -2, -3,
, 6, 4,2.5,-6,1,-5,3,-4,6)
Suggestion: T2

(j) Gauss Codes:(-1, -2,
,-5,1,-6,-3,-4,5,2,6)
Suggestion: R2

Suggestion: R1

(n) Gauss Code:()
Suggestion: NO

(0) Gauss Codes:()
Suggestion: NO

elements to allow suggestion and validation while the sketching process
is evolving to untangle a mathematical knot towards the fewest possible
number of crossings. Compared to other approaches and interfaces
to the unknotting problems, our interface has been designed to ap-
proach knots in the closest and most intuitive way to the mathematical
problem being studied. Our preliminary user study has suggested that
non-expert users interested in understanding knot theory can benefit
from the interface to gain intuition. The interface’s knot drawing and
editing suggestion capability also has the potential to assist knot theory
experts to illustrate geometric structures and Reidemeister moves of
knots to non-expert audience through graphics interaction with knots.

Starting from this basic framework, we plan to extend the range
of objects for which we can support to include more complex math-
ematical entities where only a suggestive interface can help to make
possible the mathematical experience. Other direction of future work
also includes migrating our suggestive interface to multi-touch interface
to allow even easier user interaction with mathematical entities. We
also plan to perform a more thorough user studies for the result to be
reported in a relevant venue.

ACKNOWLEDGMENTS

This work was supported by NSF award # 1651581.

REFERENCES

=

[10]

[11]
[12

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

J. S. Carter. Reidemeister/roseman-type moves to embedded foams in
4-dimensional space. 2012.

J. Dorsey, S. Xu, G. Smedresman, H. Rushmeier, and L. McMillan. The
mental canvas: A tool for conceptual architectural design and analysis. In
15th Pacific Conference on Computer Graphics and Applications (PG’07),
pp. 201-210. IEEE, 2007.

A. Fish, A. Lisitsa, and A. Vernitski. Visual algebraic proofs for unknot
detection. In International Conference on Theory and Application of
Diagrams, pp. 89-104. Springer, 2018.

D. Foley. Automated reidemeister moves: A numerical approach to the
unknotting problem. arXiv preprint arXiv:1501.05365, 2015.

G. K. Francis. A Topological Picturebook. Springer, 1987.

C. M. Gordon. Some aspects of classical knot theory. In Knot theory, pp.
1-60. Springer, 1978.

A. J. Hanson, T. Munzner, and G. Francis. Interactive methods for visual-
izable geometry. Computer, 27(7):73-83, 1994.

J. Hass, J. C. Lagarias, and N. Pippenger. The computational complexity
of knot and link problems. Journal of the ACM (JACM), 46(2):185-211,
1999.

T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketching interface for
3d freeform design. In ACM SIGGRAPH 2006 Courses, pp. 11-es. 2006.
K. Jordan, L. E. Miller, E. Moore, T. Peters, and A. Russell. Modeling
time and topology for animation and visualization with examples on
parametric geometry. Theoretical Computer Science, 405(1):41 — 49,
2008. Computational Structures for Modelling Space, Time and Causality.
A. Kawauchi. A survey of knot theory. Birkhduser, 2012.

V. Kurlin. A linear time algorithm for visualizing knotted structures in 3
pages. In IVAPP, 2015.

A. M. Ladd and L. E. Kavraki. Using motion planning for knot untangling.
The International Journal of Robotics Research, 23(7-8):797-808, 2004.
P. Lv, P. Wang, W. Xu, J. Chai, M. Zhang, Z. Pan, and M. Xu. A suggestive
interface for sketch-based character posing. In Computer Graphics Forum,
vol. 34, pp. 111-121. Wiley Online Library, 2015.

M. Masry, D. Kang, and H. Lipson. A freehand sketching interface for
progressive construction of 3d objects. In ACM SIGGRAPH 2007 courses,
pp- 30-es. 2007.

C. Petronio and A. Zanellati. Algorithmic simplification of knot dia-
grams: New moves and experiments. Journal of Knot Theory and Its
Ramifications, 25(10):1650059, 2016.

J. Phillips, A. M. Ladd, and L. E. Kavraki. Simulated knot tying. In ICRA,
pp. 841-846. IEEE, 2002.

K. Reidemeister. Knot theory. BCS Associates Moscow, Idaho, 1983.

D. Roseman. Motions of flexible objects. In T. L. Kunii and Y. Shina-
gawa, eds., Modern Geometric Computing for Visualization, pp. 91-120.
Springer Japan, Tokyo, 1992.

R. G. Scharein. Interactive Topological Drawing. PhD thesis, Department
of Computer Science, The University of British Columbia, 1998.

R. G. Scharein. Interactive topological drawing. PhD thesis, University
of British Columbia, 1998.

G. F. Simmons and J. K. Hammitt. Introduction to topology and modern
analysis. McGraw-Hill New York, 1963.

J. K. SIMON. Energy functions for polygonal knots. Journal of Knot
Theory and Its Ramifications, 03(03):299-320, 1994. doi: 10.1142/
5021821659400023X

J. Spillmann and M. Teschner. An adaptive contact model for the robust
simulation of knots. Comput. Graph. Forum, 27(2):497-506, 2008.

D. Terzopoulos and A. Witkin. Physically based models with rigid and
deformable components. /[EEE Comput. Graph. Appl., 8(6):41-51, 1988.
S. Tsang, R. Balakrishnan, K. Singh, and A. Ranjan. A suggestive interface
for image guided 3d sketching. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 04, p. 591-598. Asso-
ciation for Computing Machinery, New York, NY, USA, 2004. doi: 10.
1145/985692.985767

J. Weeks. Snappea: a computer program for creating and studying hyper-
bolic 3-manifolds, 2001.

H. Zhang and A. Hanson. Shadow-driven 4d haptic visualization. I[EEE
Transactions on Visualization and Computer Graphics, 13(6):1688—1695,
2007.

H. Zhang and A. J. Hanson. Physically interacting with four dimensions.
In G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, A. V. Nefian,
M. Gopi, V. Pascucci, J. Zara, J. Molineros, H. Theisel, and T. Malzbender,

[30

31

[32

eds., ISVC (1), vol. 4291 of Lecture Notes in Computer Science, pp. 232—
242. Springer, 2006.

H. Zhang, J. Weng, L. Jing, and Y. Zhong. Knotpad: Visualizing and
exploring knot theory with fluid reidemeister moves. IEEE transactions
on visualization and computer graphics, 18(12):2051-2060, 2012.

H. Zhang, J. Weng, and G. Ruan. Visualizing 2-dimensional manifolds
with curve handles in 4d. IEEE Transactions on Visualization and Com-
puter Graphics, 20(12):2575-2584, Dec 2014. doi: 10.1109/TVCG.2014.
2346425

T. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital
patterns. Communications of the ACM, 27(3):236-239, 1984.

