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Abstract
In this paper, we show the use of visualization and topological relaxation methods to analyze and understand the underlying
structure of mathematical surfaces embedded in 4D. When projected from 4D to 3D space, mathematical surfaces often
twist, turn, and fold back on themselves, leaving their underlying structures behind their 3D figures. Our approach combines
computer graphics, relaxation algorithm, and simulation to facilitate the modeling and depiction of 4D surfaces, and their
deformation toward the simplified representations. For our principal test case of surfaces in 4D, this for the first time permits
us to visualize a set of well-known topological phenomena beyond 3D that otherwise could only exist in the mathematician’s
mind. Understanding a fairly long mathematical deformation sequence can be aided by visual analysis and comparison over
the identified “key moments” where only critical changes occur in the sequence. Our interface is designed to summarize
the deformation sequence with a significantly reduced number of visual frames. All these combine to allow a much cleaner
exploratory interface for us to analyze and study mathematical surfaces and their deformation in topological space.

Keywords Visual mathematics · Relaxation · Optimization · Knot theory · Four dimensions

1 Introduction

We often use figures to help communication about geometric
objects [21], and our perception and understanding of geo-
metric properties can be strongly facilitated by drawing and
viewing these figures. However, it can be a far more chal-
lenging task to communicate about topology [15,31], which
studies geometrical objects under the equivalence relation of
homeomorphism, i.e., the geometric properties and spatial
relations unaffected by the continuous change of shape or size
of figures. Our paper is mainly concerned with the illustra-
tion of the topology ofmathematical surfaces (2-dimensional
objects) embedded in 4-space. The main properties of these
surfaces to be studied and visualized in ourwork are related to
their topology. In topology, a very small circle is the “same”
as a huge one, and a small sheet of surface is the “same” as a
big one, because we can stretch the small ones to make them
exactly like the big ones.More generally, two sheets are going
to be considered the “same” if it is possible to deform one
into the other without cutting. Therefore, we think of surface
as rubber sheet geometry—we can stretch or shrink them as
much as we want, without tearing or losing the “thinness.”

B Hui Zhang
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1 University of Louisville, Louisville, USA

Generating illustrative drawings to communicate such
topological properties are not trivial, and unique challenges
for this class of math visualization problems include:

– Length and area are of no concern in topology prob-
lems When relating surfaces under the equivalence
relation of homeomorphism, their geometric shapes are
relatively unimportant. We are going to think that sur-
faces are made of extremely flexible rubber materials,
able to shrink and expand at will. The length of the side
or the area of surface becomes no concern in their com-
puterized models and in their deformations.

– Long and compute-intensive deformation sequence is
often needed To study and visualize the unaffected geo-
metric properties and spatial relations between different-
looking objects, we need to model, reconstruct, and
inspect their topological evolution through the contin-
uous change of shape or size of figures. The evolution
is often a long deformation sequence, and every single
change in the sequence requires computation in order to
propose the change of shape (or size) while preserving
the underlying structures.

– Communicating the changes beyond 3D An important
special case of surfaces is the subject of knotted surfaces
studied in 4-space. While closed curves in knot theory

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-020-01895-5&domain=pdf
http://orcid.org/0000-0001-8366-8951


H. Zhang, H. Liu

are studied in 3-space, knotted surfaces are studied in 4-
space [27]. Some surfaces in 4-space appear to be knotted
but are really unknotted. They can be “untied” in prin-
ciple by a series of deformations developed by Dennis
Roseman [29] during which the surface does not develop
self-intersections; such deformations are examples of
isotopies, and visualizing the deformation sequence in
high-dimensional space with a series of impression in
our dimension is a fundamental problem of interest to
mathematical visualization applications.

Our task in this paper is to show the use of computer
graphics, computational algorithm, and simulation to fully
illustrate the topological evolution of mathematical surface
in 4-space. We propose a family of visual and computational
methods to depict and analyze mathematical surfaces in 4-
space under the equivalence relation of homeomorphism.
This paper starts from a familiar task of deforming and relat-
ing different-looking 3D strings, which we model as very
“thin and flexible” rubber strings that can preserve the under-
lying topology while being relaxed. Having established the
mechanisms and intuition of this artifice,weproceed to show-
ing how the methods can be extended to surfaces and their
deformations that occur beyond 3D—we think of surface as a
fabricwoven from those rubber strings, and extend the rubber
string’s dynamic model to move surfaces under topological
constraints in 4-space. We showcase interesting mathemati-
cal phenomena and their visual proofs that can be generated
from our visualization methods and interfaces, including the
topological refinement of mathematical curves, visual under-
standing of spatial relationship of surfaces in 4-space, the
study of knotted surfaces beyond 3D, and the transforma-
tion between the Klein bottle’s different maps. By exploiting
such visualization interfaces and methods, we feel that we
can make a novel contribution to building intuition about
classes of geometric and topological problems beyond our
dimensions, speculated on by ancient Greek philosophers
two millennia ago [1,2].

2 Background

Relating two fundamentally identical entities that appear to
very different has long been a fascinating challenge prob-
lem. For example, the idea of knot equivalence [19,22,32]
is to give a precise definition of when two knots should be
considered the same even when positioned quite differently
in space. More challenging is to move, deform, and relate
surfaces embedded, e.g., in 4D, and to respect a family of
problem-specific constraints about location, collisions, etc.
There is a fundamental need for methods in higher dimen-
sions to “play with a manifold” as though it were a lump of

stretchy clay being wrapped around other fixed objects in the
environment [8,20].

Surfaces in 4D play many roles analogues to those of
curves we are familiar with in 3D. For example, spheres
(2-spheres) in 4-space are the analogs of closed curves (1-
sphere) in 3-space, and 3D knots can be generalized to 4D
“knotted surfaces” (more generally, an N−sphere can be
tied in knots in N + 2 dimensions [4].) When examining
a particular geometric feature in 4D, one often relates it to
an equivalent geometric feature in our dimension and uses
strategies such as drawing analogous figures to model, illus-
trate, and analyze the problems. Furthermore, many spatially
extended shapes can be initially drawn and communicated
on paper and blackboard using curve analogies. In the past
decade, several articles and books have been published that
are such examples. One of these is Ralph Fox’s A Quick Trip
ThroughKnot Theory [14],whereFoxuses hand-drawn inter-
secting curves to reveal the underlying structures and spatial
relationships of 4D knotted surfaces (see, e.g., Fig. 1a).
George Francis is another expert at popularizing 4D mathe-
matical concepts. Francis’ book A Topological Picturebook
[15] includes a beautiful chapter that contains numerous
high-quality illustrations of 4D surfaces, considered as disks
interpolated by the motion of boundary curves (see, e.g.,
Fig. 1b). Equally beautiful is Scott Carter’sKnotted Surfaces
and Their Diagrams [20], a marvelous book of pictures to
establish the fundamental concepts of 4-dimensional geomet-
ric topology with movies—sequences of diagrams to depict
and analyze topological equivalence between 4D surfaces
(see, e.g., Fig. 1c).

We are thus inspired to consider how to progress from
the model and manipulation of a familiar but deformable
3D curve to a powerful but still simple paradigm for mod-
eling and visualizing surfaces in 4-space. Typical geometric
problems of interest in 4-space involve both static structures,
and changing structures requiring deformation in four dimen-
sions. Motivated by the understanding of how to deform and
relax a mathematical knot in our dimension, we in this work
bring the expressive power of curve analogies to themodeling
and illustration of unfamiliar 4D surfaces that are otherwise
beyond the experience accessible to us.

3 Relaxing a familiar 3D knot

In this section, we introduce the basic elements of the relax-
ation algorithm with a familiar 3D knot example, with the
assumption that the algorithm will be extended to treat sur-
faces in 4D in a later section. We start with the creation and
relaxation of a familiar curve piece in 3-space.We can shrink,
expand, slide curves along one another.We are not allowed to
cut them or slide them through others. Two curves are equiv-
alent (or, the “same” from the topological point of view) if
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Relaxing topological surfaces in four dimensions

Fig. 1 Examples of mathematical drawings to communicate geometry
and topology. a Fox’s hand-drawn equatorial cross sections to visualize
a knotted sphere in 4-space. b Francis’ book uses slice and shadow to
represent 4D surfaces. The crossings on the boundary curves depict how

the surfaces intersect in 4 dimensions. c Carter uses movies to analyze
the topological equivalence between two Klein bottles, which appear
very different in our dimension but represent the same embedding in
4-space

Fig. 2 a A sequence of screen images showing a seemly knotted curve relaxed into a trivial unknotted piece. b The curve’s energy reaches the
minimum value when fully untangled

one can be deformed into the other. Note that we will stick
with 2D diagrams to communicate the curve’s structure and
deformation in 3-space (see Fig. 2a), much like how you
read about knots in the printed books; there is a hope that
this experience of understanding 3-space with 2-dimensional
impression will help us to communicate the surface’s struc-
ture and deformation in 4-space using their 3D figures (with
color and shading) in our next section.

We first need to create a mathematical 3D knot (a closed
curve in 3-dimensional Euclidean space). This task can be
facilitated with a 2D drawing interface. One can construct
an initial configuration for an object while neglecting most
issues of geometric placement (see Fig. 2a). This is possible,
for example, when knot diagrams are drawn, only bare pro-

jections with relative depth ordering indicated at crossings
while precise 3D depth information is unimportant at this
step [30,39,40]. The next task is to refine the created initial
embedding, ideally in a way that most of the work can be
done automatically. Our method is largely based on force-
directed algorithms, also known as spring embedders, that
calculate and relax the layout of a graph (in our case, the
linked nodes embedded in 3-space) using only information
contained within the structure itself, rather than relying on
domain-specific knowledge (see, e.g., the 1984 algorithm of
Eades [10], and the use of spring embedders in 2D graph
drawing [17,23] and 3D graph visualization [5,24]).
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Fig. 3 Optimizing graph embedding through deformation. a, b The
vertices are replaced with electro-statically charged masses that move
the initial embedding to a relaxed and smooth configuration, ending at
a lower energy state

3.1 The basic force model

Tooptimize the embedding of a graph,we replace the vertices
with electro-statically charged masses and replace each edge
with a spring to form a mechanical system. The vertices are
placed in some initial layout and let go so that the spring
systems and electrical forces on the masses move the system
toward a reduced energy state.

As illustrated in Fig. 3, we use two basic forces in the
mechanical system, an attractive mechanical force applied
between adjacent masses on the same spring and a repulsive
electrical force applied between all other pairs of masses.
The mechanical force connects the masses and maintains the
mechanical system’s structure, and the electrical force tends
to untangle the shape and deform the system into simplified
shapes.

The mechanical force is a generalization of Hooke’s law,
allowing for an arbitrary power of the distance r between
masses,

Fm = Hrβ, (1)

where H is a constant. The mechanical force tends to attract
adjacent masses toward each other.

The electrical force also allows for a general power of the
distance,

Fe = Kr−α, (2)

where r again is the distance between the two masses and
K is a constant. The electrical force is applied to all pairs of
masses excluding those consisting of adjacent masses on the
same link. The electrical force repels all non-adjacent masses
away from each other. In most of the examples shown in this
paper, we use β = 1 and α = 2.

Fig. 4 Relaxation of a simple closed curve (a “DoubleOverhandKnot,”
also termed knot 51 in the Rolfsen Knot Table) with the proposed force
laws and collision avoidance mechanism

3.2 Relaxingmathematical knots

For this force-directed algorithms to be applicable to math-
ematical curves positioned in R

3, it is imperative that any
proposed evolution should respect topological constrains:
it does not involve cutting the curve or passing the curve
through itself. Parallel to the force laws previously specified,
the self-intersection problem is solved in our approach by
requiring that the position of each mass be updated one at a
time (no simultaneous updates), and collision avoidance is
strictly performed to determine if one is heading toward one
of the following two potential collisions:

– point–segment collision—a vertex of a 3D curve is going
toward a link of the curve and the distance is less than
the threshold

– segment–segment collision—a link of a 3D curve is going
toward another link and their distance is less than the
threshold

If either of these two states exists, the pair of closest points on
the colliding components are identified to define a 3D vector
passing through them. An equal (but opposite) displacement
along the 3D vector is then applied to each component to take
the component out of collision range.

Relaxing curves with dynamic model
We use a simple dynamical model that emulates a pseudo-
physical situation of curve evolution [30]. During the simula-
tion, each mass simply moves in the direction it is compelled
to by the forces that are applied to it. The links or edges in
the curves are not directly involved in the dynamics, although
they provide constraints on the movement of the masses.

The collision avoidance process modifies masses’ posi-
tions whenever necessary to ensure the entire evolution is
under topological constraint. Figure 4 shows the dynamic
model works to prevent unwanted intersections that might
change the closed curve’s topological features. Figure 2a
shows an example where a seemly knotted curve can be
relaxed into a trivial unknotted piece with our force model.
Figure 2b plots the embedded energy of the curve during the
entire deformation; the energy being calculated is the min-
imum distance or MD energy model defined in [32,36]: if
a polygonal knot K consists of several edges e1, ..., en , the
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Relaxing topological surfaces in four dimensions

Fig. 5 Screen images of the topological relaxation of a curve, with
masses turned off for the two end-points (much like we had two push
pins down on the end-points)

Fig. 6 We apply the attractive mechanical force between adjacent
masses on the same spring and the repulsive electrical force between
all other pairs of masses. For example, the node 22 on the fabric is
attracted by nodes (12, 21, 23, 32), and repelled by all others, i.e.,
nodes (11, 13, 14, 24, 31, 33, 34, 41, 42, 43, 44). a, b Optimizing the
surface’s embedding through relaxation: the vertices move to the new
locations and result in a smoother configuration

MD energy of K is defined as E(K ) = ∑ Li L j

D2
i j
, where Li

is the length of ei , Di j is the minimum distance between ei
and e j , and the sum is taken over all non-adjacent edges.

Deformingwith constrainedmotion In the current dynamic
model, we assign identical masses to all the vertices. With a
given force, eachmasswill respond in the sameway (ignoring
any topological constraints upon themovement).We can also
lift this restriction of identical masses, and allowmasses to be
turned on and off. In our model, the mass indeed provides a
scale factor on the amount of movement on each time step—
when a mass is turned off, no movement can be produced
for the corresponding vertex. In Fig. 5), a curve is relaxed
while the two end-points stay fixed, and the whole relaxation
appears much like a untwist Reidemeister move [26].

4 Relaxing surfaces in 4-space

In this section, our objects of interest have progressed from
curves (1-dimensional objects) to surfaces (2-dimensional
objects). Much like curve, surface is also infinitely malleable
and infinitesimally thin. It can be hammered into any shape
as desired; once shaped, it will retain its shape. The surface’s
size is of no concern—sometimes we need acres, and some-
times we need square inches. It has no thickness, and can be
shrunk and stretched at will; however, the surface does not
tear, nor does it puncture.

We think of surface as a fabric woven of those rubber
strings that we have used to model and deform mathematical

Fig. 7 Smooth 4D surfaces appear to intersect with each other in
our dimensions. a A hand-drawn illustration of two surface patches
embedded in 4D (by Carter in [6]). b, c A computer-generated 3D
representation of the two 4D surface patches, 4D depth color-coded,
corresponding to the diagram in a

curves. To define the structure and dynamics of the fabric, we
have again used two basic forces—the attractive mechanical
force applied between adjacent masses on the same spring
and the repulsive electrical force applied between all other
pairs of masses. Themechanical and electrical forces are still
the generalization of Hooke’s law as described in Eqs. 1 and
2. As illustrated in Fig. 6, each node on the fabric is attracted
by up to four adjacent masses, and repelled by all the other
masses in the fabric.

Our interest in this paper is surface embedded in 4-space
[18]—a class of entities that are of interest to many mathe-
matical problems. An important special case of surfaces in
4D is the subject of knotted surfaces. While closed curves
are knottable in 3D, smooth curves (whether or not they are
thickened) can always be untied without self-intersection in
4D. However, surfaces can be knotted in 4D. Some surfaces
in 4D appear to be knotted but are really unknotted. Next we
investigate methods to create, deform, and visualize surfaces
in four dimensions. Our earlier example of self-deformable
3D mathematical strings has set the stage for our new prob-
lem: a surface to be relaxed in four dimensions.

Let us first understand Fig. 7—a pair of 4D-embedded sur-
faces drawn in Carter’s book [6]. We have used 2D diagrams
earlier to represent curves in 3-space; here we also use the
similar scheme to describe a class of surfaces embedded in
4D with just their 3D figures. When a surface is embedded
in 4-space, each vertex has a 4D “eye-coordinate,” or depth
w, in addition to the coordinates (x,y,z) that we are already
familiar with.

Just as smooth 3D curves lose their structures when pro-
jected to 2D space, smooth 4D surfaces might appear to
intersect with each other in our dimension (see, e.g., Fig. 7a).
Wehaveused “cutaways” in 2Dknot diagram tovisually indi-
cate the string pieces’ relative 3D depth order, we now use
surface color coded for its 4D “eye-coordinate” to communi-
cate their 4D depth. In Fig. 7, the two surface patches indeed
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have no intersections of any kind in the fourth dimension,
since one has a negative 4D “eye-coordinate” (w = −1, and
colored in green) and the other one has a positive 4D “eye-
coordinate” (w = 1, in yellow.)

4.1 Constructing surfaces in 4-space

In our work, we have constructed concrete examples of sur-
faces embedded in 4-space. 3D figures of 4D mathematical
entities often look far more complicated than Fig. 7. They
often twist, turn, and fold back on themselves, creating many
important properties behind the surface sheet. Such self-
intersecting surfaces are difficult to be created to represent
the underlying 4D structures. Our methods to create concrete
4D embeddings are based on the following mathematicians’
expositions:

Stacking curves method In Carter’s book [6], a 4D embed-
ded surface can be thought of a collection of curves in
3-space, just as if we use a plane to cut the surface in 4-space,
andwe observe a resultant curve on every single cutting plane
(see Fig. 8a). The collection of the 3D curves becomes the
bare projective skeleton of the 4D-embedded surface, and
the relative depth order in the fourth dimension for patches
containing self-intersections are indicated by the “cutaways”
of the corresponding curves.

We continue to use Fig. 8 to showour proposedmethod for
depicting a 4D surface patch embedded in four dimensions.
The 4D surface, drawn on the book, appears to be a piece
of 3D surface that intersects with itself (see Fig. 7a). How-
ever, each vertex on the surface has a 4D “eye coordinate”
or depth w, and there are no real collisions in 4-space. The
crossing-diagram on the surface’s parametric domain, which
can be thought of as an unfolded view of the 4D surface (see
Fig. 7c), reveals the secret: we assign each vertex a 4D “eye-
coordinate,” or depth w: w = 1 for vertices on patches that
are “in front” in the fourth dimension, w = −1 for vertices
that are “behind.” (blue is “in front,” or nearer the projection
point; red is “behind,” or farther from the projection point;
and grey means w = 0.) Therefore, the “north” half of the
intersection line is “in front” or, nearer the 4D projection
point, and the south part of the intersection line is “behind”;
the two parts have no intersections of any kind in 4-space.
Figure 7d shows the resultant 4D-embedded surface corre-
sponding to Fig. 7a, with initial 4D depth values assigned to
the vertices on the curve stack.

Spinning knot method
More complicated and interesting is a class of knotted sur-
faces in 4-space—surfaces can be knotted in 4D; some
surfaces in 4D appear to be knotted but are actually unknot-
ted. The earliest construction of knotted surfaces in 4-space
was due to E. Artin in 1926 [3]. Friedman’s exposition in
[16] provides several more generalizations that introduce

Fig. 8 Creating 4D embedding usingCarter’s slicingmethod. a Surface
embedded in 4-dimensional space can be thought of as a sequence of
3D curves stacked together like the pages of a book. b–d The resultant
4D embedding we created

Fig. 9 a Schematic of knot spinning. b The 3D image of resultant 4D
spun trefoil knot, projected from 4 dimensions to xyz space. c The
4D spun trefoil knot, projected from 4-space to yzw space, reveals the
trefoil knot structure from which the knotted surface was spun

higher-dimensional knotted surfaces—embeddings of Sn−2

in Sn—through spinning constructions. The method of cre-
ating 4D spun surfaces is “simple”—our shoe laces, those
archetypal hand tools of knot theory in 3 dimensions, can be
spun and turned into knotted spheres in the higher dimension.

As shown in Fig. 9a, a 3D trefoil curve swings around the
globe with the north and south poles remaining fixed, and
the knotted arc gets spun into the image of a 2-sphere S2

embedded in 4-space. Although the image of the 2-sphere
(see Fig. 9b) appears to have massive self-intersections in
our dimensions, it has no collisions at all in the fourth dimen-
sion, and the relative 4D depth order of the resultant surface
patches is exactly the same as the knotted arc from which the
surface gets spun (see Fig. 9c).
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4.2 Relaxing surfaces in 4-space

Whenprogressing to self-deformable surfaces (2-dimensional
objects) in 4-space, we implement two types of extensions
from themechanismwe just established for deforming curves
(1-dimensional objects) in 3-space:

– string → fabric—we extend our force-directed algo-
rithms that calculate the layout of a 3D curve to a
topological surface, i.e., from rubber strings to rubber
fabric. The layout of our previous rubber string exam-
ple is indeed a special type of graph, i.e., 1-dimensional
linked nodes (see Fig. 3), and a topological surface is now
2-dimensional graph structure (see Fig. 6).

– 3-vector → 4-vector—the second extension concerns
the dimensions the masses are embedded in. We will still
calculate and use the two basic forces, i.e., an attractive
mechanical force applied between adjacent masses on
the same spring and a repulsive electrical force applied
between all other pairs of masses. The real difference
is that now these masses are embedded in dimensions
above three and the vector operations are performed in
dimensions above three. For the most part, vector oper-
ations in high dimensions are simple extensions of their
3D counterparts [38]. For example, computing the addi-
tion of two four-vectors is a matter of forming a resultant
vector whose components are the sum of the pairwise
coordinates of the two operand vectors. In the same
fashion, subtraction, scaling, and dot-products are all
simple extensions of their more common three-vector
counterparts. In addition, operations between four-space
points and vectors are also simple extensions of the more
common three-space points and vectors. Computing the
four-vector difference of four-space points is a simple
matter of subtracting pairwise coordinates of the two
points to yield the four coordinates of the resulting four-
vector.

Similar to 3D collision handling mechanisms, the space-
extended idea is to prevent 4D collisions before they happen
[37]. Let t0 be an instant when there is no inter-penetration
between the two polygons embedded in 4D. The basic idea
is to consider a time interval [t0, t0 + �t], and knowing the
positions and velocities of each node of the 4D surfacemodel
at time t0, we can compute its positions at time t0 + �t (we
predefined a threshold value δ for the thickness of the 4D
surface and any motion between two frames is clamped to
be no greater than δ.) Collision avoidance then consists of
determining if one is heading toward a potential collision.
Two cases are considered to have to be avoided:

1. point–triangle collision—a vertex of a triangle on a 4D
fabric is going toward another triangle and the distance is
less than δ.

2. edge–edge collision—the edges of a triangle are going
toward those of another triangle and their distance is less
than δ.

Wenext detail ourmath formulas to calculate the two types
of distances in our consideration above.
Distance between line segments in 4-space We first con-
sider two infinite linesL1:P(s) = P0+s(P1−P0) = P0+su
and L2: Q(t) = Q0 + t(Q1 − Q0) = Q0 + tv. Let
w(s, t) = P(s)−Q(t) be a vector between points on the two
lines. The goal here is to find the w(s, t) that has a minimum
length for all s and t . In any N -dimensional space, the two
lines L1 and L2 are closest at unique points P(sc) and Q(tc)
for which w(sc, tc) attains its minimum length. Also, if L1

and L2 are not parallel, then the line segment P(sc) ↔ Q(tc)
joining the closest points is uniquely perpendicular to both
lines at the same time. No other segment between L1 and
L2 has this property. That is, the vector wc = w(sc, tc) is
uniquely perpendicular to the line direction vectors u and v,
and thus it satisfies the equations:

u · wc = 0

v · wc = 0.
(3)

We can solve these two equations by substituting wc =
P(sc) −Q(tc) = w0 + scu− tcv, where w0 = P0 −Q0, into
each one to get two simultaneous linear equations. Then,
letting a = u · u, b = u · v, d = u · w0, and e = v · w0, we
solve for sc and tc as:

sc = be − cd

ac − b2
, tc = ae − bd

ac − b2
. (4)

Having solved for sc and tc, we have the points P(sc) and
Q(tc) where the two lines L1 and L2 are closest. Then the
distance between them is given by:

d(L1,L2) =
∣
∣
∣
∣(P0 − Q0) + (be − cd)u − (ae − bd)v

ac − b2

∣
∣
∣
∣ .(5)

Now we represent a segment S1 (between endpoints P0

and P1) as the points on L1 : P(s) = P0 + s(P1 − P0) =
P0+suwith 0 ≤ s ≤ 1. Similarly, the segmentS2 onL2 from
Q0 to Q1 is given by the points Q(t) with 0 ≤ t ≤ 1. The
distance between segment S1 and S2 may not be the same as
the distance between their extended linesL1 andL2. The first
step in computing a distance involving segments is to get the
closest points for the lines they lie on. So, we first compute
sc and tc for L1 and L2, and if these are in the range of the
involved segment, then they are also the closest points for
them. If they lie outside the range, only a fewmore boundary
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Fig. 10 a–e Applying our force-directed algorithms to the piece of 4D
surface patch we were creating in Fig. 7. Our result shows that the
smooth 4D-embedded surface patch evolves with the two basic forces
and eliminates its interruptions in our dimension, which were just an

artifact of projection from 4D to 3D. Among the 6 moves here, a and e
are two “keymoments” in that the surface’s frontal boundary curve goes
through a Type-I Reidemeister move. (note: we turned off the masses
on the four corners as we did in Fig. 5)

tests are needed to compute the closest points between the
line segments as suggested by [12].
Distance between point and triangle in 4-space The prob-
lem now is to compute the minimum distance between a
point P and a triangle T(s, t) = B + sE0 + tE1 for (s, t) ∈
D = (s, t) : s ∈ [0, 1], t ∈ [0, 1], s + t ≤ 1. The minimum
distance is computed by locating the value (s, t) ∈ D cor-
responding to the point on the triangle closest to P. Please
note our algorithm should be working for triangle and point
embedded in arbitrary dimensions.

The squared-distance function for any point on the triangle
to P is Q(s, t) = |T(s, t) − P|2 for (s, t) ∈ D. The function
is quadratic in s and t ,

Q(s, t) = as2 + 2bst + ct2 + 2ds + 2et + f , (6)

where a = E0 ·E0, b = E0 ·E1, c = E1 ·E1, d = E0 ·(B−P),
and f = (B − P) · (B − P). Quadratics are classified by the
sign of ac − b2. For function Q,

ac − b2 = (E0 · E0)(E1 · E1)

−(E0 · E1)
2 = |E0 × E1|2 > 0. (7)

The positivity is based on the assumption that the two
edges E0 and E1 of the triangle are linearly independent, so
their cross product is a nonzero vector. In calculus terms, the
goal is to minimize Q(s, t) over D. Since Q is a continu-
ously differentiable function, the minimum occurs either at
an interior point of D where the gradient ∇Q = 2(as+bt +
d, bs + ct + e) = (0, 0) or at a point on the boundary of D.

The distance calculation is performed during each iter-
ation to deform the 4D fabric. If either point–triangle or
edge–edge collision is to occur, the pair of closest points
on the colliding components are identified and l is defined
as the 4D vector passing through them. Then an equal (but

opposite) displacement along l is applied to each component
along l, the displacement is just enough to take the compo-
nent out of collision range.

Figure 10 shows the extended force models and dynamics
can work to refine the piece of 4D surface patch we were
creating in Fig. 7. The smooth 4D surface patch evolves with
the two basic forces and collision avoidance, and eliminates
its self-intersections in our dimension, which were just an
artifact of projection from 4D to 3D. This relaxation can be
thought of as 4D generalization of the 3DReidemeister move
in Fig. 5. In fact, Carter in [6,7] draws surfaces in 4-space
as disks bounded by curves, and uses the boundary curves
and their changes to define the surface’s evolution in 4-space.
Such changes can also be visualized in Fig. 7—(a) and (e)
are two “key moments” identified in the entire 4D evolution
since the surface’s frontal boundary curve undergoes aType-I
Reidemeister move.

4.3 A fewmotivating 4D use cases

Many mathematical phenomena in 4-space are documented
without formal visual representations. In this section, wewill
generate a fewmore pictures as experimental “visual proofs”
to accompany the process of non-visual thinking in the math
books and articles. Another value of generating these visu-
alization is to validate our proposed models and algorithms
in 4-space by applying them to these well-known and docu-
mented mathematical entities and phenomena.
Knots in 3-spaces and knotted surfaces in 4-space While
closed curves are knottable in 3D, smooth curves (whether
or not they are thickened) can always be untied without self
intersection in 4D [18,28]. In four dimensions, any closed
loop of one-dimensional string is equivalent to an unknot.We
can achieve the necessary deformation in two steps: the first
step is to “push” the loop into a three-dimensional subspace,
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Fig. 11 Deformation of a 4D spun trefoil knot. a–e left: The knotted sphere projected from 4-space to xyz space, 4D depth colored. a–e right:
Projection in yzw space, showing the trefoil knot structure from which the knotted surface was spun from

Fig. 12 Energy-based self-deformation turns the toroidal shape 3D
torus (a) into a 4D embedded torus (e), with pinch-points appearing
where the X-shaped fold-over occurs in the 3D projective image

which is always possible, though technical to explain; the
second step is changing crossings.

However, surfaces, e.g., the trefoil spun knotted surface
that we created in Fig. 9, can be knotted in 4D. As illustrated
in Fig. 11, when equipped with our 4D force model, the spun
knotted sphere is tightened by the repulsive electrical forces
between its north and south poles; however, it can’t be untied
at all—in 4-space, this 2-dimensional object is a truly knotted
one and cannot be untied by repelling the two poles apart.
Transforming 4D torus Figure 12 shows an interesting
result we have: the 4D forces and the dynamic model turn a
3D doughnut-like torus into a 4D embedded torus, an object
of fundamental interest, with a standard model given by
X(u,v) = (cosu, sinu, cosv, sinv).

The deformation starts with a regular (doughnut-like)
torus that we are familiar with (see Fig. 12a), except that
we are now embedding the torus in 4-space with w = 0
(thus it is colored in gray, indicating it is initially flat in the
fourth dimension). With a little jitter in the fourth dimen-
sion, the torus starts to deform to its optimal shape in the
full-dimensional space. The 3D image of the deforming 4D-
embedded torus starts be thin and flat in Fig. 12c–e contains

Fig. 13 a Cater’s hand-drawn images to related the two different-
looking Klein bottles. b Energy-based self-deformation turns the
standard map of the Klein bottle into the pinched torus map

self-intersections. The final stabled 4D torus shows an X-
shaped fold-over in its 3D image, which is color-coded for
4D depth. Although the orthogonal 3D graphics projection
of the 4D embedded torus has two lines of self-intersection,
the true surface, just as illustrated in this topology-preserving
evolution, is actually a smooth topological manifold in four
dimensions.

Transforming Klein bottle into pinched torus The exam-
ple in Fig. 13 is concerned with Klein bottle, first described
in 1882 by the German mathematician Felix Klein. The
Klein bottle is an example of a non-orientable surface —
a two-dimensional manifold against which a system for
determining a normal vector cannot be consistently defined.
Informally, it is a one-sided surface which, if traveled upon,
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could be followed back to the point of origin while flipping
the traveler upside down.

Figure 13a is from the hand-drawn diagrams by Carter [6]
showing how the surface transforms from a regular map of
Klein bottle (left) to a pinched torus map (right). Figure 13b
shows a few representative frames extracted from our defor-
mation sequence where the standard Klein bottle is shown
first, followed a series of relaxation leading to a more sym-
metric version, and finally the “pinched torus” Klein bottle.

5 Extracting representative frames from
relaxation

In this section, we introduce two different computations that
can further improve our experiences with curve deformation
in R

3 and surface deformation in R
4. The non-rigid defor-

mation of shapes into one another produces a long sequence
of intermediate shapes to allow a smooth visual effect. How-
ever, one interesting problem is that the deforming shapes
often scale and rotate in the full dimensional space, which
makes our observation and visual comparison of successive
changes difficult in our own three dimensions. Therefore, our
work here is particularly concerned with topology, while the
deformation sequence consists of a large number of inter-
mediate changes, what is mostly desired is a collection of
“key moments” extracted from the deformation where only
critical changes occurred.

5.1 Aligning intermediate shapes during relaxation

Under our proposed forcemodel, deforming curves inR3 and
surfaces in R

4 are translation and orientation independent.
Our improved deformation method takes advantage of this
property by computing the best-fitting rigid transformation
[?] [9,13,33] to provide alignment across intermediate shapes
in the least squares sense. Let p = {p1,p2, . . . ,pn} and
q = {q1,q2, . . . ,qn} be two intermediate geometric shapes
inRd . We can compute the optimal translation t and rotation
R that align successive shapes with the following steps.

1. Compute the centroids of points of both shapes

p =
∑

pi
n

,q =
∑

qi
n

.

2. Compute two centered vectors, x and y

xi := pi − p, yi := qi − q, i = 1, 2, . . . , n.

3. Compute the d × d covariance matrix

S = XWYT ,

where X and Y are the d × n matrices that have
xi and yi as their columns, respectively, and W =
diag(w1, w2, . . . , wn).

4. Compute the SVD (singular value decomposition): S =
U

∑
V T . The desired rotation matrix, R, can be defined

as follows,

R = V

⎛

⎜
⎜
⎜
⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . det(VUT )

⎞

⎟
⎟
⎟
⎠
UT .

5. Compute the optimal translation, t, as follows:

t = q − Rp.

With the computed t and R, we now can align interme-
diate shapes in curve deformation sequence (embedded in
R
3), as well as in surface deformation sequence (embedded

in R
4). This method allows us to perceive the topological

deformation by viewing and inspecting a series of smoothly
transitioning images.

5.2 Reducing relaxation sequences to“key
moments”

If we can select the most interesting viewpoints of the
intermediate shapes before we align them, we can further
improve the visual outcomes. This is possible, for example,
by using the so-called viewpoint entropy method (see, e.g.,
[11,25,35]). In the best views of mathematical knots, their
projected images will expose the least possible number of
intersections and the largest possible projected area/length
in the 2D view, and a fairly long deformation sequence can
thus be reduced to just a set of frames that can be thought of as
the “keymoments” recordedwhen a critical change occurs. If
we can align the “keymoments” in the least squares sense,we
then have a set of 2D impressions created to fully represent
the deformation sequence. Given a viewpoint, the goodness
is evaluated by the following three properties:

1. the projected length/area in the view I (S, p) =
−∑

pi log(pi ), where the logarithms are taken in base
two, and pi is the relative projected area Ai/At of face
i (Ai is the projected area of face i and At is the total
projected area). Here larger length/area will contribute to
a better viewpoint.
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2. the number of intersections in the view, less intersections
will contribute to a better viewpoint.

3. the square of the separation distance between the point
sets in current view and the previous “key moment,” less
separation distance will contribute to a better viewpoint.

In our method, we place a set of viewpoints around
deforming knots to select the best view for each moment,
and the collection of views presenting the entire deforma-
tion can be further reduced to “key moments” with critical
changes identified across successive terms (see, e.g., Figs. 2
and 12).

6 System environment and limitations

Our user interfaces (see Figs. 14, 15) are based on OpenGL
and QT. The software runs on Dell PC desktop with an Intel
i7 CPU and a high-performance graphics card supporting
OpenGL. Although our system creates effective visualiza-
tions for a class of mathematical curves and surfaces, our
approach does have the following limitations:

– This work leverages the energy-driven force model to
relax surfaces in 4-space to help us visualize and analyze
their underlying structures. The relaxation algorithm can
only ensure that the energy converges to a localminimum.
While our visual interface allows one to pull and drag the
knots (and surfaces) to help the system better escape local
minimum, full untangling a mathematical knot is not the
objective of this work.

– The topological relaxation algorithm behind the defor-
mation is energy-driven, and it moves the curves and
surfaces from higher energy state toward lower energy
state only. Choosing the right starting point is important
to trigger and understand the deformation. For example,
in Fig. 12 the deformation starts with the doughnut-like
torus, whichwe are familiar with but actually has a higher
energy than its X-shaped equivalent (many of us had
thought otherwise.)

– Our method to create concrete 4D-embedded surfaces is
mostly applicable to symmetric objects as illustrated in
this paper.More comprehensive sketching and computer-
aided geometric design interfaces will be needed to
support more complicated surfaces in 4-space.

– Finally, relaxing surfaces embedded in 4-space is very
compute-intensive, and currently we are only able to
achieve real-time visualization with relatively lower res-
olution meshes. Similarly the selection of best views in
our work is using the brute-force algorithm [34], and
production of “key moments” is not done in a real-time
fashion.

Fig. 14 a Typical screen image of relaxing mathematical knots. b–e A
few sketched and smooth mathematical links (links 613, 7

1
3, 8

2
3, and 8

5
3)

Fig. 15 Evolving a Klein bottle into a 4D pinched torus with topo-
logical relaxation. a The Klein bottle’s projected figure immersed in
three-dimensional (XY Z ) space. b–d The Klein bottle represented in
decomposed views: a curve skeleton described by v parametric space
and geometrically shaped to a stack of cylinder rings in b, a curve
bone that depicts the Klein bottle’s structure in c, and a curve skeleton
described by u parametric space and geometrically shaped to the con-
nected cylinder strips in d. e Critical steps traced in a time-elapse form
to visualize the entire topological relaxation process

7 Conclusion and future work

In this work, we adopt for the most part a computer scien-
tist’s perspective on the techniques and prospects of graph,
algorithm, and computing in geometric topology, emphasiz-
ing mathematical curve and surface deformation where we
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believe thinking in terms of figures could be valued as a
means of facilitating grasp of linguistic text and hand-drawn
analogies. Toward this goal, we have introduced a family of
models and algorithms to move these mathematical entities
embedded in 3- and 4-space, and user interfaces to visual-
ize and track the deformation sequence. We have showcased
the application of our methods and interfaces to a set of
well-known and documented mathematical phenomena in
high-dimensional space that otherwise is not accessible in
our dimension.

Starting from this basic framework, we plan to proceed
to attacking more geometric topology problems such as the
interactive manipulation of apparently knotted, but actually
unknotted spheres in 4D. Other planned future work will
optimize the current algorithms and computations to support
the real-time interactive manipulation of more complicated
mathematical entities in space.
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