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Abstract Mathematical knots are different from everyday ropes, in that they are infinitely stretchy and
flexible when being deformed into their ambient isotopic. For this reason, challenges of visualization and
computation arise when communicating mathematical knot’s static and changing structures during its
topological deformation. In this paper, we focus on visual and computational methods to facilitate the
communication of mathematical knot’ dynamics by simulating the topological deformation and capturing
the critical changes during the entire simulation. To improve our visual experience, we design and exploit
parallel functional units to accelerate both topological refinements in simulation phase and view selection in
presentation phase. To further allow a real-time keyframe-based communication of knot deformation, we
propose a fast and adaptive method to extract key moments where only critical changes occur to represent
and summarize the long deformation sequence in real-time fashion. We conduct performance study and
present the efficacy and efficiency of our methods.

Keywords Knot untanglement � View selection � Least squares fitting � Parallelization

1 Introduction

One of the fundamental problems in knot theory (Adams 2004) is to determine whether a closed mathe-
matical curve can be deformed into a ring (or ‘‘unknot’’) without cutting or passing through the curve itself.
The objects being studied, i.e., mathematical knots, are familiar and appear similar to the 3D ropes in our
everyday life, except that the mathematical ones are infinitely stretchy and flexible during deformation to
their topological equivalence.

The mathematical way of untangling a knot is to perform Reidemeister moves (Trace 1983), which
reduce all knot deformations to a sequence of three types of ‘‘moves’’ called the twist move, poke move, and
slide move. In principle, knot untanglement can be presented as a sequence of such simple (and powerful)
moves. However, choosing the right combination of the Reidemeister moves in the right order can be very
challenging. The whole procedure is often error-prone and thus requires technical expertise. Our goal in this
paper is to develop an interactive visual tool that requires minimal knot theory expertise to model and
present mathematical knots that can evolve and untangle by themselves into simplified structures. We start
with a family of interactive methods to sketch mathematical knots as closed node-link diagrams with
‘‘energy’’ charged at each node. In this way, mathematical knots untangle by themself from a higher energy
state to the lower. The complete untanglement can take a fairly long sequence of deformation to simulate.
We then proceed to develop an algorithm to capture the key visual frames from the entire simulation where
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successive terms in the sequence differ only by critical changes. The key frames become the ‘‘snapshots’’ of
the mathematical movies for us to visualize, explore, and track the entire deformation. The work presented
in this paper extends our prior work published in Lin and Zhang (2019) by exploiting parallel computing and
more efficient computational algorithm to extract the key visual frames in a much faster means.

The rest of our paper is organized as follows. In Sect. 2, we will review related work and existing
interfaces in mathematical knot visualization, as well as computational methods to identify ‘‘snapshots’’ to
represent a long sequence of visual frames. In Sects. 3 and 4, we describe the basic force models to untangle
knots and methods to identify key frames in our knot interface. In Sect. 5, we discuss the use of parallel
computing to accelerate the knot deformation and key frame selection to pursue performance improvement.
In Sect. 6, we propose an even faster approach to extracting key frames in real-time fashion for better
communicating knot deformation, and the conclusions section will follow.

2 Related work

The advent of interactive computer graphics and visualization has opened a new era for creating a tangible
experience with these mathematical objects and their topological phenomena (Liu et al. 2019). Several
researchers have devoted to facilitating mathematical knot understanding through various computer interfaces
and visualization tools. For example, Knotplot (Scharein 1998) is widely used in drawing and interacting to draw
and interact with mathematical knots. KnotApp (Carlen 2010) presents numerical algorithms to create knot
shapes from their Fourier representations. KnotSketch (Costagliola et al. 2016) adopts an enhanced version of
Gauss code to facilitate the manipulation of virtual knots. Zhang et al. develop a family of user interfaces to
visualize knots in 3D and 4D space (Zhang et al. 2007, 2014; Lin and Hui 2019).

There are a range of research efforts involving graph layout algorithms in knot visualization. Pach and
Tardos (2002) discuss the computational complexity needed to untangle polygons. Eades (1984) improves
graph layout with spring embedder algorithm, a method that only uses the graph’s structural information
rather than domain-specific knowledge (Kobourov 2012). Similar methods have been applied in large and
dynamic graphs (Harel and Koren 2000; Erten et al. 2004; Chen et al. 2019). How to minimize the number
of edge-crossings is an important research question in graph drawing, proved as NP-complete in Garey and
Johnson (1983). Schaefer (2013) surveys the rich variety of crossing number invariant, considered as a
popular tool in graph drawing and visualization. Along with these research efforts, several others have also
been focused on simulating mathematical knot’s dynamics and topological deformation. For example,
Snibble et al. merge springs and constrains with the study of geometric characteristics relevant to knots
(Snibbe et al. 1998). Zhang et al. suggest studying mathematical knot equivalence by making step-by-step
Reidemeister moves with a computer graphics interface (Zhang et al. 2012, 2016). Wu’s MING (XXXX) is
a knot drawing and refinement tool that utilizes energy-based minimization model and turns knot untan-
glement into a computational simulation.

In this paper, we are mainly concerned with how to computationally untangle mathematical knots and
visually communicate their topological phenomena by extracting the key moments from the deformation
sequence, which often consists of hundreds of thousands of visual frames. The energy model allows
complex knotted structures to evolve and untangle by themselves toward simplified structures, and the
evolution takes a large number of computational iterations to complete and track. We are motivated to
investigate how to computationally identify and capture the key moments when critical changes occur
during the deformation and integrate the most efficient and effective way of presenting these key visual
frames to our knot interface, in order to communicate, track, and navigate the mathematical knot’s evolution
in a clear and intuitive visual means. While our basic method for untangling mathematical knots is similar to
the energy-based minimization model in Wu (XXXX), the heart and soul of this work is how to untangle the
knots much faster and how to communicate this process with just a few visual frames we can extract from
the knot deformation.

3 Overall scenario

Figure 1 shows the overall visual communication scenario for our objects of interest, i.e., mathematical
knots. Our tool derives from the familiar pencil-and-paper process of drawing 2D knot diagrams, with visual
interfaces to allow the creation of mathematical knots, the exploration of the resultant geometric structures,
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and the multiple synchronized views to observe the knot untanglement rendered as continuous simulation in
3D and 2D, and a sequence of captured key frames to represent all the ‘‘critical changes’’ that have taken
place in the entire deformation. The four major user interface elements are listed as follows:

Central Panel—the major visual panel (see Fig. 1a) to create, edit, and visualize mathematical knots and
their continuous topological phenomena. One can import and export mathematical knot structures from the
File menu. Multiple data formats are supported including those from ‘‘Knot Zoo’’ (Scharein 1998). Various
knot operations can be enabled by using the Edit menu, such as edit knot, run simulation, undo and redo, etc.
From the Algorithm menu, we can choose to use the different simulation kernels for relaxing knots, which
we will detail in the next few sections.

Feature Windows—windows (see Fig. 1b, c) used to plot the changing knot’s energy and the resulting
crossing number in real time. Knot energy is calculated based on the minimum distance (MD) energy model
(Simon 1994). Deforming knots will tend to evolve to its simplified construction with minimal crossing
number and knot energy. The plotting of knot energy and crossing number is synchronized with the
rendering in central panel.

Property Grid—a window (see Fig. 1d) that provides access to the knot’s geometric information, i.e.,
each node’s x, y, z values.

Snapshot Viewer—the ‘‘snapshot’’ viewer (see Fig. 1e) on the bottom of our tool can summarize the
deformation sequence with a set of moments when only critical changes occur during the deformation. Each
snapshot can be selected to backtrack the corresponding moments in deformation.

Fig. 1 Visually communicating key moments of mathematical knot deformation: our tool generates, visualizes, and tracks the
dynamics of mathematical knot deformation. The tool’s user interface elements include: �a —the major visual panel to create,
edit, and visualize mathematical knot deformation that automatically simplifies and optimizes knot’s 3D structures; �b and
�c —panels to plot the changing knot’s energy and the resulting crossing number in real time;�d —a property grid that provides
access to the knot’s geometric information, and �e —the ‘‘snapshot’’ viewer that summarizes the deformation sequence with a
set of key moments when only critical changes occur during the deformation

Accelerating visual communication

Author's personal copy



4 Knot deformation and key moments

In this section, we introduce our basic user interfaces and methods to create and represent mathematical
knots, the algorithm to optimize knots’ construction, and our approaches to identifying and capturing the
critical changes from knot deformation.

4.1 Deforming knot as node-link diagram

Mathematical knots are represented as node-link diagrams in our work. An initial diagram of a 3D curve can
be obtained by projecting each vertex from R3 (xyz�space) to R2 (xy�space) (Fig. 2).

Let K ¼ ðV;EÞ represent this initial diagram of a given smooth curve in R3, where V ¼
v1; v2; ldots; vnf g is the finite set of vertices of the polygon and E is the set of edges. Our basic force model

is applied as follows: The vertices on the knot are replaced with electrostatically charged masses and each
segment linking between two vertices becomes a stretchy line to form a mechanical system (Scharein 1998).
The masses are placed in the initial layout, and the forces will move the system to a stable state. Two types
of forces are implemented—an attractive mechanical force applied between adjacent masses on the same
component,

FaðiÞ ¼Hajjviþ1 � vijjb dðviþ1 � viÞ

þ Hajjvi�1 � vijjb dðvi�1 � viÞ
ð1Þ

where i 2 ½1; n�, (if i ¼ 1, i� 1 ¼ n; if i ¼ n, iþ 1 ¼ 1); Ha is a constant;
dðviþ1 � viÞ represents the vector

pointing from vi to viþ1; similarly, a repulsiveelectricalforce is applied between all non-adjacent pairs of
masses,

FrðiÞ ¼
X

jji�jjj[ 1

Hrjjvi � vjjja dðvi � vjÞ ð2Þ

where i; j 2 ½1; n�, Hr is a constant. In our studies (Lin and Hui 2019), a=-6, b=2.
The knot deformation driven by the above two forces will update each node’s position with a distance up

to 0:2 � R at each iteration, where R is the predefined thickness of the knot. In this way, the knot deformation
will respect the topological constrains: The mathematical knots should stretch or move around without
cutting the or passing through itself. At each iteration, after the update of new position for each mass,
collision avoidance is strictly performed to detect potential collision between segments. If one segment is
going toward another and their distance is less than d\2 � R, the two components will be pulled out of the
collision range by moving an equal but opposite distance ( vj j ¼ R� d=2). Figure 3 shows an example
deformation where an initial knot diagram is being simplified into a smooth trefoil knot with our proposed
force model after iterations.

(a) (b)

Fig. 2 Deforming mathematical knot with an underlying node-link structure. a A smooth knotted structure represented with an
array of line segments, nodes, and interpolation splines. b The basic force model includes an attractive force applied between a
node (colored in yellow) and its adjacent masses on the same component (colored in green), and an repulsive force applied
between a node and its non-adjacent pairs of masses (colored in blue)
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4.2 Extracting key moments of deformation

Force-guided knot deformation usually involves a large number of computational iteration. For example, for
a ‘‘monster’’ knot with 86 vertices to be fully untangled (see, e.g., Fig. 4), it may take over 10,000 iterations
before it reaches its final structure. This poses a significant challenge to visualize and trace the entire knot
deformation. Furthermore, a large portion of the deformation are just about geometric updates that are not
relevant to the topological question. Communication about the deformation can potentially be improved if
we can just focus on those moments of the deformation where only critical changes have occurred.

4.2.1 Identifying critical changes

To extract key moments of the deformation, the first step is to identify the critical changes that occur in the
mathematical deformation. In the mathematical area of knot theory, the crossing number of a knot is the
smallest crossing number from all projective diagrams of the knot. It is a knot invariant—when the knot’s
crossing number changes, a critical change occurs. Calculating the crossing number is not trivial: To find
the best diagram with the minimal number of crossings, every single possible diagram (from different
projection) needs to be examined and the crossing number in that diagram needs to calculated before we
know the minimum crossing number of the knot.

Our approach to finding this best diagram (with minimal number of crossings) is based on the widely
used viewpoint entropy from Information Theory (Vázquez et al. 2001). A larger entropy value means more
desired information is included in the view (i.e., the projective diagram in our case). Our entropy formula
features the total length of the knot and the crossing number in the projective diagram:

IðKÞ ¼
X
N

i¼1

� Li

Lt
log

Li

Lt
þ VðiÞ

� �

ð3Þ

where Li represents the projected length of curve segment i, Lt is the total length of the knot projected curve,
V(i) is the visibility test function for curve segment i, VðiÞ ¼ �1 if the segment is crossed by another
segment, VðiÞ ¼ þ1 otherwise. Here, the larger length of projected curves will contribute to a larger entropy
value, and the number of crossings (collisions) in the projection contributes to the entropy value as a
penalty. In this way, the best diagram is identified as one that contains the maximal length of knot and the
minimal number of crossing in the diagram.

With the viewpoint entropy defined above, the knot during the deformation is examined with a huge
sampling space of projections, that is, the knot is rotated from 1 to 360 degree incrementally around x, y, and
z axis, respectively. The entropy value is then calculated upon each diagram to search for the best diagram
with the minimal crossing number and maximal projected knot length. During the knot deformation, when
the knot’s crossing number is changed, a critical change has occurred (see, e.g., Fig. 4 lists the nine critical
changes captured from the untanglement of the ‘‘monster’’ knot.)

(a)

⇒

(b)

⇒

(c)

⇒

(d)

Fig. 3 Deformation of a trefoil knot with the two forces and collision avoidance
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4.2.2 Retrieving key moments of critical changes

The viewpoint entropy method can help us identify the critical changes from the knot deformation. How-
ever, the diagrams representing the critical changes exhibit visual discontinuities from one diagram to
another. This is because the viewpoint entropy method searches for the best diagram with the minimal
crossing number from rotated knots with all possible angles in the three-dimensional space. The resultant
diagrams extracted from each critical changes do not preserve their orientations in the original deformation
(see, e.g., the visual discontinuities arise in the successive diagrams in Fig. 4).

(a)

⇒

(b)

⇒

(c)

⇒

(d)

⇒

(e)

⇒

(f)

⇒

(g)

⇒

(h)

⇒

(i)

Fig. 4 Extracted critical changes of a ‘‘monster’’ unknot being untangled. These frames do not preserve their original
orientations in the deformation. a Initial conformation with crossNum ¼ 10. b crossNum ¼ 9. c crossNum ¼ 8. d
crossNum ¼ 7. e crossNum ¼ 6. f crossNum ¼ 4. g crossNum ¼ 3. h crossNum ¼ 1. i Final conformation with crossNum ¼ 0
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To extract the original key moments where these critical changes occurred, we need to align the visual
frames of critical changes using the least squares method (see Eq. 4). When searching for the optimal
diagrams for critical changes, we choose the visual frame with the minimal number of crossing and the least
square distance from the previous key frame. This new searching criterion will ensure the extract key frames
to preserve the best visual continuity in the extracted sequence. In Algorithm 1, we describe the process of
finding the key moments in knot deformation. Algorithm 2 gives a framework for the complete knot
relaxation with the key moment finding. Figure 5 shows the sequence of such key moments obtained from
the ‘‘monster’’ unknot’s deformation. Compared to Fig. 4, the ‘‘aligned’’ key moments in Fig. 5 can provide
a better visual communication about the original mathematical deformation.

dðKp;KqÞ ¼
1

n

X
n

i¼1

vpi � vqi
�

�

�

� ð4Þ

In Figs. 6 and 7, we show another example of extracting key moments from the deformation of a Knot15.
Figure 6 shows the sequence of critical changes captured by our view entropy-based searching method.
Figure 7 is the result of visually continuous key moments to represent the entire deformation.

(a)

⇒

(b)

⇒

(c)

⇒

(d)

⇒

(e)

⇒

(f)

⇒

(g)

⇒

(h)

⇒

(i)

Fig. 5 Improved visual experience by aligning critical changes presented in Fig. 4
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5 Parallelizing knot deformation and key moment extraction

Thus far, we have proposed the basic framework that makes use of topological relaxation algorithm and key
moment extraction to guide and understand knot deformation in the configuration space. Both topological
relaxation and key moment extraction are compute-intensive and time-consuming. In this section, we first
exploit parallelization to accelerate the computation needed for knot deformation and key moment
extraction. We have chosen OpenMP (2020) as the parallel programming platform. Combined with the
single program multiple data (SPMD) processing model, OpenMP allows a straightforward conversion from
a serial process into a multi-threaded parallel manner, which is appropriate for accelerating the visual
communication of the knot deformations in our principal cases.

5.1 Accelerating the deformation

We now focus on the function units in Algorithm 2 for potential parallelization. In Algorithm 2, each
iteration consists of five main steps: (1) calculating the two forces for each vertex (line 2–5), (2) finding the
maximum magnitude f of all forces (line 6), (3) updating node position based on the calculated f (line 7–9),
(4) collision avoidance (line 10–12), and (5) key moment extraction (line 13). Among these five steps, the
computation needed for generating the deformation can be accelerated. For example, the force calculation
and the position update for each vertex are independent of those for another vertex, and we therefore can
parallelize the computing needed for force calculation and position update. Since the maximum magnitude
calculation only involves a magnitude comparison, a linear execution should be very efficient. Collision
avoidance is a very critical step: Each position update may introduce a new collision; thus, the state of each
vertex depends on all related elements, so collision avoidance and position renewal require one sequential
process and cannot be parallelized. In Fig. 8, we use a flowchart to show the function units in our parallel
relaxation execution. Within this framework, all data points are evenly distributed to the slave threads. Each
thread calculates the attractive force, the repulsive force, and the aggregated force for each single vertex.
After the calculation of the maximum magnitude of all forces through the master thread, each vertex’s
position is updated by the slave threads.

(a)

⇒

(b)

⇒

(c)

⇒

(d)

⇒

(e)

Fig. 6 Critical changes captured from the deformation of Knot15, with visual discontinuities in successive frames. a Initial
conformation with crossNum ¼ 12. b crossNum ¼ 9. c crossNum ¼ 7. d crossNum ¼ 6. e Final conformation with
crossNum ¼ 5

(a)

⇒

(b)

⇒

(c)

⇒

(d)

⇒

(e)

Fig. 7 Aligning critical changes to reconstruct the key moments in the original deformation of Knot15. The visual experience is
improved from Fig. 6
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5.2 Accelerating the key moment extraction

Our basic implementation of key moments extraction (presented in Sect. 4) was a brute-force searching
algorithm, which during the entire deformation has to examine every single possible diagram of the evolving
knot in order to find out the one diagram with the minimal number of crossings at each time point. Such
brute-force searching suffers from very heavy computational cost, at each time point, because it requires the
knot to be rotated at many angles in 3D space just to find out the knot’s crossing number (i.e., the invariant).
Since each such operation (rotation and calculation of crossings) is dependent to others, we can again
parallelize the key moment extraction with a multi-threaded parallel framework. In our implementation, two
lists named LV and LP are used to store each projection value and projection diagram, respectively. The
projection calculation is included within the parallel computation, and the projection value selection is
outside the process. This is because we are only interested in those projections with the maximum projection
value and compare them with others to identify the one with the minimal distance. The number of these
projections of interest is small, and the operation is lightweight. After generating the projection values, a
linear scan is used to yield a better performance.

In Algorithm 3, we describe the above-mentioned process. We generate a list of projections in a parallel
way at the beginning. After that, the distances between the last frame and the diagram projected by current
viewpoint are compared, and the resultant viewpoint is the one with the highest entropy value and lowest
distance value. Figure 9 shows the process for Knot36. We first rotate the knot to an arbitrary angle. Then, a
serial of projection values are examined in parallel and the best projection is generated as the resultant
diagram.

Fig. 8 Functional units in our parallelized topological relaxation
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Algorithm 3: Key moments extraction in parallel.

Input: Initial Layout
Output: Best projection presentation

1 Initialize a empty projection list LP , projection value list LV , minimum distance
dmin ;

2 Calculate all projection value and store the value and the structure in LV and LP
respectively in parallel. Sort the LV to find projections owns same max projection
value;

3 for each same projection P in LP do
4 if d < dmin then
5 Update Pmax with P ;
6 Update dmin with d ;
7 end
8 end

Our implementation is based on OpenGL and Windows Visual Studio C??. The algorithms run on a
Lenovo PC desktop with Intel 4-Core i7 CPU 1.8 GHz. As mentioned above, we adopt OpenMP as the
parallelizing implementation. We use speed-up= Ts=Tp as our performance metric, where Ts is the execution
time of the serial algorithm and Tp is the execution time of parallel execution. To validate the performance
improvement in our proposed parallel algorithm, we test a set of knots with different numbers of vertices
ranging from 46 to 1000. (We note that knots of our interest in real applications have less than 200 vertices.)
Figure 10 shows the speed-ups of relaxation and projection search for different numbers of vertices. As is
shown in the figure, both relaxation process and projection search are able to get around 3x speed-ups in
most scenarios in the execution supported by a 4-core processor. Overall, with parallelization, both
relaxation and projection search are processed in a faster way.

6 Communicating knot deformation with real-time key moment extraction

Although a parallel execution in the above section can accelerate knot deformation and key moments
extraction, the projection search itself is still compute-intensive and thus very time-consuming and nearly
impossible to be helpful in our real-time mathematical knot interface. In this section, we will focus on a even
more efficient approach to extracting key moments from long mathematical deformations. We propose an
adaptive view selection way to accelerate our core computation components. Our fundamental techniques

Fig. 9 Projection values generated by the parallel brute-force method. The knot incrementally rotates 1 degree along x, y, and
z axis, respectively, and examined in a parallel way
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are based on a wide variety of prior arts, including Vázquez’s the adaptive method to compute best views to
improve view selection performance by orders of magnitude (Vázquez and Sbert 2003), Colin’s best
viewpoint selection with octree for performance improvement (Colin 1988), Lee’s center-surround opera-
tion on Gaussian-weighted mean curvatures to capture the appealing regions automatically (Lee et al. 2005),
etc. Inspired by their view selection criterion, we design our distinct adaptive view selection method in real
time. The main different between Vázquez’s method (Vázquez and Sbert 2003) and our work is that we
sample the initial viewpoints on a regular icosahedron and narrow down the scale adaptively to ensure more
uniform search.

6.1 Identifying critical changes by adaptive view selection

The performance bottleneck in our original method lies in the function to identify critical changes at each
time point, which is very compute-intensive because it calculates the knot’s crossing number from all
possible rotation angles in 3D. It is possible to make the selection much faster. For example, instead of
rotating the knot, we can examine the viewpoint entropy values from multiple viewpoints. A number of
projection entropy values are generated initially; if these values can be compared and used to find the most
promising direction for the next round of searching, our method can be more efficient compared to the
original brute-force one. In this approach, our algorithm only focuses on the most promising searching area
throughout the entire process, by adaptively narrowing down to the best views using a coarse-to-fine
strategy.

Our new algorithm starts with a coarse-grained space to calculate the viewpoint entropy value at each
sampling vertex, and a fine-grained local search follows to find the best viewpoint recursively until a final
optimal viewpoint is reached. The main steps include:

1. Generate an initial set of viewpoints;
2. Evaluate each viewpoint and sort the viewpoint set sort in descending order and generate an initial

triangular mesh with the top three best positions;
3. Evaluate the middle points of each edge and generate a new triangle;
4. Apply last step (3) recursively until the terminal criteria is satisfied.

6.1.1 Initial viewpoints generation

There are several viewpoint sampling methods, including longitude and latitude sampling method (Liu et al.
2012), random sampling method (Johan et al. 2011), and pseudo uniform method (Cao et al. 2010). In order
to cover an effective searching area with a reasonable sampling distance, we start by sampling a set of points
on the surface of the sphere based on the subdivision of a regular icosahedron (see, e.g., Figure 11(a)). This
first-level subdivision will produce 12 sampling points around the sphere, which form our elementary
viewpoints. By applying the subdivision rule recursively, we are able to narrow down the searching space
gradually.

Fig. 10 Speed-ups of relaxation and projection search for different numbers of vertices
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6.1.2 Initial viewpoints evaluation

After obtaining the initial candidate viewpoints, it is essential to evaluate these viewpoints and find the next
‘‘good’’ starting point. Our proposed algorithm does not cover a full searching space; however, if the initial
searching point fails to provide the correct searching direction, the algorithm will correct it in the following
iterations. We next evaluate and compare all the viewpoints using Eq. 3 and sort the viewpoints by com-
paring their entropy values in descending order. If two viewpoints are associated with identical entropy
values, the comparison will continue to use their minimum distances and will generate an initial triangular
mesh with the three best viewpoints (i.e., with largest entropy value and minimum distance) from the last
diagram (see, e.g., Fig. 11b, f).

6.1.3 Adaptive viewpoints selection

Next we use the three mid-points at current view’s triangle edges to generate next three viewpoints to
continue viewpoint search (see Fig. 11c). By calculating the viewpoint entropy values for the three views,
we now choose the new best view (see the mid-points colored in yellow in Fig. 11d, g shows the corre-
sponding projection associated with this viewpoint), and this allows us to identify the next six adjacent
views (see the six colored in green in Fig. 11e). Our view search procedure is then recursively performed,
leading to a finer searching area in each iteration, until the terminating condition is satisfied (see Fig. 11h).

The description of this procedure is sketched in the following Algorithm 4. After the initial configuration
step, the process is executed iteratively until no higher projection value can be found or sampling points
have reached a threshold distance. With the adaptive viewpoint method defined above, the best diagram can
be identified in an efficient way.

(a)

⇒

(b)

⇒

(c)

⇒

(d)

⇒

(e)

Current Projection Current Projection

(f) (g)

Projection
=======⇒

Final

(h)

Fig. 11 Adaptive viewpoint selection. a The initial 12 sampling viewpoints on the icosahedron. b The current best viewpoint.
c The first viewing triangle around the current best viewpoint. d The first candidate viewpoints generated by midpoints from
edges. e The recursive generation of viewpoints. f The current projection presented by the viewpoint in b. g The current
projection presented by the viewpoint in d. h The final best projection
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6.2 Reconstructing key moments from identified best views

Compared to the brute-force best view searching strategy, the adaptive view selection method covers a much
smaller number of viewpoints and can still obtain an approximate optimal projection value globally. Since
the search does not cover the complete searching space, we cannot use the same comparison strategy to
select the one that is best aligned to the original diagram. In order to provide the desired visual continuity,
we apply a rigid transformation to ‘‘re-align’’ between the diagrams in the final visualization sequence.

We use a homogenous transform (Cashbaugh and Kitts 2018) method to align two resultant diagrams.
Given two diagrams PA and PB, a homogeneous transformation can be provided with an augmented
transformation matrix that contains the rotation and translation between two the coordinates of two pro-
jections (see Eq. 5).

PB

1

� �

¼
R T

0 1

� �

�
PA

1

� �

ð5Þ

where R ¼
rxx rxy rxz
ryx ryy ryz
rzx rzy rzz

2

4

3

5, T ¼ tx; ty; tz½ �t.

In the transformation matrix, R represents the rotations and T is the translation between the two frames.
The second row is an orthonormal perspective and homogeneous scaling factor.

With a linear regression to minimize the square of the residual, a volume matrix A is obtained (Eq. 6) to
generate each column of the transformation matrix (Eqs. 7–9).

A ¼

P

ðx2AiÞ
P

ðxAiyAiÞ
P

ðxAizAiÞ
P

ðxAiÞ
P

ðxAiyAiÞ
P
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P
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P

ðyAiÞ
P

ðxAizAiÞ
P
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P
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P
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P
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P

ðyAiÞ
P
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7

7

7

5
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where i 2 ½1; n�.
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rxy
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2

6

6

6
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3

7
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¼ ½A��1
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P
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P
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2

6

6

6

4

3

7

7

7

5
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We note that the best projections are all generated in xy plane. Since all data points are in the same plane,
A is not invertible. Here, the pseudo-inverse is used to replace the real inverse matrix. A general solution
called the Moore–Penrose method is used (Penrose 1955) and an approximate inverse is generated through
SVD procedure. When the valid transformation is acquired, an accurate transformation matrix can further
produce the rotation angle. More derivation and proof can be found in Cashbaugh and Kitts (2018).

With the best matching rotation angle, we find the optimal match between the current key moment and
last key frame and then rotate the current key moment in xy plane to approach the last key moment. In this
way, the sequence of visually continuous frames can provide a summary of the long knot deformation.
Figure 13 shows the improved key moment extraction where the least interruptions are introduced in each of
the snapshots with visual continuity maintained across snapshots. Figures 14 and 15 give the similar results
for Knot15.

6.3 Performance evaluation

In order to validate performance improvement, we have tested the same set of curves and make the
comparison between brute-force and the adaptive view selection method. Table 1 shows our results: The
searching space for the adaptive method is far less than the brute force; thus, it significantly reduces the time
complexity of the algorithm with significant speed-ups. We also observe that knot diagram with a large
number of vertices will gain better speed-ups with an adaptive view selection method, which means the
method will be particularly beneficial for large and complicated diagrams.

To further benchmark our algorithms, we introduce a complex knotted curve (which is an unknot if
untangled) and execute a complete topological relaxation with both parallel brute-force algorithm and
adaptive view selection method. The resultant key frames are presented in Figs. 16 and 17, respectively. The
result in these two figures shows that the adaptive view selection method only needs to examine a much
smaller number of viewpoints, while obtaining the same visual effects comparable with those from the
brute-force method and dramatically reducing the processing time to nearly real-time fashion.
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Fig. 12 Critical changes extracted from the ‘‘monster’’ unknot’s deformation, using the adaptive viewpoint selection method
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Fig. 13 Critical changes extracted and aligned from the ‘‘monster’’ unknot’s deformation, compared to Fig. 12
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Fig. 14 Relaxation for Knot15 with adaptive best projection presentation
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⇒
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(e)

Fig. 15 Relaxation for Knot15 with improved aligning adaptive best projection

Table 1 Performance comparison between parallel brute-force and the adaptive view selection method

Vertex number Parallel brute-force method execute time (s) Adaptive method execute time (s) Speed-up

46 6.031 0.219 27.54
65 10.391 0.25 41.56
87 16.969 0.766 22.15
96 21.031 0.578 36.39
200 68.641 2.078 33.03
300 145.688 3.5 41.63
400 253.063 6.032 41.95
500 427.187 9.281 46.03
600 603.922 13.422 44.99
700 804.61 19.719 40.8
800 1070 22.453 47.66
900 1370 29.281 46.79
1000 1680 36.703 45.77
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7 Conclusions and future work

Our ultimate goal is to facilitate our understanding of mathematical knots and their topological refinement.
In order to achieve this goal, we have proposed a family of interactive methods and their parallelized
counterparts to simulate and visualize mathematical knot deformation with an energy-based model. To
extract the critical changes and the moments associated with these changes from the long sequence of
deformation, we have proposed an innovative method to computationally identify the critical changes that
has occurred in knot deformation and capture them to visually communicate the entire deformation.

In this work, we use energy model-driven computational simulations to untangle mathematical knots in
three-dimensional space. This method is different from the mathematical way of untangling knots, i.e.,
studying knots with the Reidemeister moves (Trace 1983). While our interface is easy to understand and
requires minimal knot expertise for one to interact with, the underlying simulation-based method cannot
guarantee that only one Reidemeister move occurs between two successive key moments extracted by our
interface.

Our future direction includes integrating with high performance computing in the back-end to accelerate
the mathematical knot deformation and a user interface for end users to easily interact with high-perfor-
mance computing resources. Beginning with this primary framework, we plan to extend to attack more
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⇒
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⇒
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⇒
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Fig. 16 Relaxation for complex unknot with adaptive best projection presentation
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Fig. 17 Relaxation for complex unknot with improved aligning adaptive best projection presentation
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complicated mathematical entities such as surfaces and manifolds embedded in -dimensional space to
understand and visualize their deformation in a more effective parallelizing means.
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