
TAFE: Thread Address Footprint Estimation for Capturing
Data/Thread Locality in GPU Systems

Kishore Punniyamurthy
The University of Texas at Austin

kishore.punniyamurthy@utexas.edu

Andreas Gerstlauer
The University of Texas at Austin

gerstl@ece.utexas.edu

Abstract
In multi-GPU and multi-chiplet GPU systems exhibiting NUMA

behavior, information about addresses accessed by threads is cru-
cial for various optimizations such as data/thread co-location and
cache/scratchpad memory management. To make optimal decisions
and avoid runtime overhead, knowledge about dynamic, potentially
data-dependent access patterns should be available before kernel
execution. Existing approaches require rewriting of applications or
can only capture static, data-independent patterns. In this paper, we
propose TAFE, a framework for accurate dynamic thread address
footprint estimation of GPU applications. TAFE combines minimal
static address pattern annotations with dynamic data dependency
tracking to compute threadblock-specific address footprints prior
to kernel launch. We propose a low-overhead software mechanism
to track dynamic data-dependencies and provide an optional light-
weight hardware extension to support transparent tracking.

We evaluate TAFE on different NUMA GPU system configura-
tions. TAFE achieves 91% estimation accuracy across a wide range
of access patterns while incurring less than 3% tracking and esti-
mation overhead. We further demonstrate benefits of using TAFE
for efficient data/compute co-location. A TAFE-optimized thread/-
page mapping, can reduce off-chip traffic by 23% (up to 62%) while
requiring only minimal, architecture-oblivious annotations from
programmer. Furthermore, a TAFE-optimized system achieves on
average 45% and 32% (up to 2x) higher performance compared
to an unoptimized baseline and 10% and 22% over existing static,
data-independent schemes across multiple system configurations.

CCS Concepts
• Computer systems organization → Parallel architectures.

Keywords
Data/thread locality, NUMA GPU, data and compute partitioning
ACM Reference Format:
Kishore Punniyamurthy and Andreas Gerstlauer. 2020. TAFE: Thread Ad-
dress Footprint Estimation for Capturing Data/Thread Locality in GPU
Systems. In Proceedings of the 2020 International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT ’20), October 3–7, 2020, Virtual
Event, GA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3410463.3414641

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’20, October 3–7, 2020, Virtual Event, GA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00
https://doi.org/10.1145/3410463.3414641

1 Introduction

General-purpose graphic processing units (GP-GPUs) have be-
come widely used as programmable accelerators for a wide range of
application domains. Driven by ever-growing application demands,
GPUs are increasingly deployed in multi-GPU and multi-chiplet
module (MCM) configurations. Such systems have been proposed
in research [9, 41, 45, 54] and industry roadmaps [5]. These types of
systems inherently exhibit non-uniform memory accesses (NUMA)
behavior and as such are prone to issues, such as exacerbated per-
formance impact of uncoalesced accesses [4] or high performance
and energy penalties for inter-module and off-chip accesses [27].

There are numerous prior works aimed at addressing access-
dependent bottlenecks, including access-pattern-aware prefetch-
ing [30], cache management [31] and page allocation [21, 40, 42, 52].
However, all these solutions require knowledge about data/thread
locality, which in turn depends on potentially data-dependent ap-
plication access patterns that traditionally have to be learnt or
predicted during kernel execution. Such online approaches inher-
ently have runtime overhead. Furthermore, since they can only
be applied after the kernel has been launched, their benefits are
limited and additionally incur costs of applying optimizations at
runtime. For instance, moving pages across modules in large sys-
tems incurs significant overhead due to resulting off-chip traffic
and TLB shootdowns [40].

Enabling spatial locality-based optimizations with low overhead
requires knowledge about the address ranges accessed by different
threads before the accesses are made, i.e. ideally prior to kernel
launch. Some solutions [15, 16, 22, 49] have provided language con-
structs to associate threads with data they access, but these require
the programmer to learn new languages and rewrite the application.
The work in [55] proposes extending commonly used languages
to capture and leverage data/thread locality using tile semantics.
However, it only supports static tiling that can not capture data-
dependent access patterns while also requiring the programmer
to determine and provide explicit tile dimensions, compute- and
data-tile mappings and data sharing information.

In this paper, we propose TAFE, a framework for accurately esti-
mating both static, data-independent and dynamic, data-dependent
thread address footprints (TAFs) prior to thread and kernel execution.
Data-dependent patterns require tracking of input data, which, if
not carefully done, can result in overhead proportional to the input
problem size. Our framework relies on a combination of easily-
derivable code annotations to capture regular, static access patterns
with dynamic tracking of input data dependencies. We propose
both pure software as well as hardware-assisted mechanisms for
lightweight dependency tracking with minimal overhead. We show
that with this information, the relation between thread IDs and ad-
dresses accessed (the TAFs) can be accurately estimated prior to the

https://doi.org/10.1145/3410463.3414641
https://doi.org/10.1145/3410463.3414641
https://doi.org/10.1145/3410463.3414641


Figure 1: TAFE overview.

launch of a GPU kernel. TAFs enable the OS/runtime to derive the
spatial sharing of data across threads/warps/threadblocks without
explicit input from user. As a case study, we demonstrate that using
this information, an OS/runtime can achieve better data/thread
co-location in NUMA GPU systems. Such TAFs can in turn also be
used for prefetching pages in unified, e.g. CUDA-managed mem-
ory systems, transformations of irregular (scatter/gather) patterns
into regular remote memory accesses via local page caching and
re-arrangement, or reducing coherency traffic [12, 55, 60].

We make the following specific contributions in this paper:
• We introduce the concept of thread address footprints (TAFs)
and propose TAF relations as a compact representation for
computing TAFs as a relation of thread IDs and input data
dependencies.

• We propose low-overhead software mechanisms and hard-
ware extensions to collect the information required for TAF
estimation just-in-time before launch of a kernel.

• We evaluate the estimation accuracy and demonstrate the
benefits of our TAFE framework using estimated TAFs for
improved data/thread co-location across multiple NUMA
GPU configurations.

The paper is organized as follows: We first introduce the concept
of TAFs in Section 3. Our TAFE framework and optimizations are
described in Sections 4 and 5, respectively. Section 6 discusses
evaluation, and the paper concludes with a discussion of the related
work followed by summary in Sections 7 and 8, respectively.

2 TAFE Overview
An overview of TAFE is shown in Fig. 1. We focus on arrays

as representation of arbitrary data structures contiguously laid
out in virtual memory, which are the pre-dominant types of data
structures in GPGPU applications. We distinguish between array
accesses that are either: 1) Thread ID-dependent, where final array
addresses are a function of the thread index only, or 2) Input data-
dependent, where addresses accessed depend on both the thread
ID and external input data passed into the thread by the host. The
TAFs for the former can be derived from the coefficients of thread
indices and offsets used to compute array indices. This information
is readily available in the code and can be easily annotated (via
static attributes). TAFE uses them to determine the exact addresses
accessed by each thread and thereby any spatial sharing of data
without needing the programmer to explicitly specify it.

For input-data-dependent accesses, the TAF is typically estab-
lished through one or more levels of nested and indirect accesses,

Figure 2: Generic array access patterns.

where an externally initialized primary array is accessed in a specific
pattern, and the result is used to compute the index into secondary
arrays. Obtaining the TAF for such accesses requires establishing
the relationships between 1) the thread ID and the primary array
index accessed, 2) the primary array index and the value stored in
it, and 3) the primary array value and the secondary array address
being accessed. The first and last can be obtained statically in the
same way as for purely thread ID-dependent accesses. Tracking
2), however, can only be done dynamically. In order to know the
primary array values before thread or kernel execution the primary
array values must be known before the thread or kernel launches.
We therefore track primary array values and relate primary in-
dices to values stored in them during their initialization. Directly
capturing this relationship is, however, infeasible. It would incur
overhead that is proportional to size of the primary array itself.
Our framework proposes mechanisms to capture data-dependent
TAFs and their required information with low overhead. Once a
primary array is initialized, TAFE uses the tracked primary array
values along with the static information from 1) and 2) to compute
the TAF for data-dependent accesses.

3 Thread Address Footprints
In order to capture data/thread locality, it is necessary to esti-

mate the address footprint of different threads. In general, threads
can access arrays with arbitrary levels of nesting as shown in
Fig. 2. In the first level (level 0), thread IDs are used to determine
the indices accessed in the first array. In each subsequent level,
values stored in primary arrays are used to compute the indices
into the next secondary array. At each level 𝑙 , the indices accessed
in different arrays can be captured and represented by relations
𝑅𝑙,𝑛 ⊆ (𝑣𝑎𝑙𝑢𝑒𝑠, 𝑖𝑛𝑑𝑒𝑥), 0 ≤ 𝑛 < 𝑁𝑙 that map thread IDs or one or
more primary array values to sets of secondary array indices. Each
relation is specific to one secondary array, where every array can
be accessed using one or more relation. Fig. 2 shows such relations
𝑅𝑙,𝑛 , where 𝑙 is the nesting level and 𝑛 is relation ID within level
𝑙 . The application-specific relations 𝑅𝑙,𝑛 determine the access pat-
terns and can range from simple identity functions to arbitrary
code. TAFs can be established by propagating thread IDs through
relations across nesting levels.

In TAFE, we estimate the TAFs of all threads accessing the same
data structure by capturing and successively evaluating individ-
ual relations throughout all nesting levels. If multiple relations are
associated with an array, we assume that all relations contribute
towards all nested accesses. In practice, for every thread and thread-
block we find their mapping into sets of array indices and use that



(a) Logical layout (b) Physical layout

Figure 3: Thread ID-dependent access.

to determine the addresses and pages accessed. In the following,
we identify the information and overhead required to capture TAF
relations for different access patterns. TAFE directly supports a re-
stricted set of commonly found relations and approximates others
as described further below.

3.1 Thread ID-Dependent Accesses
At first level (𝑙 = 0), the relations (𝑅0,𝑛) take thread IDs as in-

put and define a mapping to array indices for each thread. TAFE
natively supports capturing linear relations including iterative ac-
cesses within loop control structures of the following form:

𝑅0,𝑛 (𝑡𝑖𝑑) = {m · ID(𝑡𝑖𝑑) + 𝑐 + 𝑖 · ofs | 0 ≤ 𝑖 < 𝐼 },
where, 𝑅0,𝑛 (𝑡𝑖𝑑) is the set of all indices accessed by thread ID tid
for a given array,m is a coefficient vector, ID(𝑡𝑖𝑑) is a function that
maps a global thread ID into multi-dimensional block and thread
indices, 𝑐 is a constant, 𝐼 is the iteration count of the loop and ofs is
the offset added to the index in each loop iteration. In the simplest
case, the array index is computed as an affine function of the thread
ID (𝑁 and ofs are set to 0, i.e. each thread only accesses one array el-
ement). The above relation represents patterns where threadblocks
access sections of an array separated by an offset iteratively as
shown in Fig. 3. Such patterns are commonly seen in linear algebra,
dynamic programming or sliding window applications [48].

3.2 Input Data-Dependent Accesses
Nested array accesses (𝑙 > 0) use data stored in primary arrays

to determine the secondary indices accessed. There can be one or
more primary arrays supplying the input values. TAFE supports
two common variants of nested relations 𝑅𝑙,𝑛 :

Indirect In this variant, the result of one memory access (primary
access) is used to compute the address for the next memory access
(secondary access). TAFE can natively capture patterns with single
primary arrays of the form:

𝑅𝑙,𝑛 (𝑟 ) = {𝑚 · 𝑃 [𝑟 ] + 𝑐}.
Here, 𝑃 is the primary array, 𝑟 is the primary array index,𝑚 is a
coefficient, 𝑐 is a constant, and 𝑅𝑙,𝑛 (𝑟 ) maps indices of 𝑃 into the
set of secondary array indices indirectly accessed. Indices 𝑟 are in
turn determined by relations 𝑅l-1,q attached to 𝑃 in nesting level
𝑙 − 1, going recursively back all the way to original thread IDs. This
captures patterns like B[A[i]] (scatter/gather operations), where
the value stored in array 𝐴 is used to index into array 𝐵 as shown
in Fig. 4a. Such patterns can be seen in algorithms such as link-list
traversals, hash search [25], radix sort [24] and COO format-based
sparse matrix vector multiplication [20].

(a) Indirect (b) Indirect range

Figure 4: Data-dependent access.

Indirect Range Alternatively, primary arrays can provide bounds
of a continuous range of indices accessed in a nested array. TAFE
natively supports patterns where two primary arrays provide the
start and end indices for accessing a secondary array as follows:

𝑅𝑙,𝑛 (𝑟𝑠 , 𝑟𝑒 ) = {𝑘 | 𝑃𝑠 [𝑟𝑠 ] + 𝑐𝑠 ≤ 𝑘 < 𝑃𝑒 [𝑟𝑒 ] + 𝑐𝑒 }.

Here, 𝑃𝑠 and 𝑃𝑒 are the primary arrays containing starting and end-
ing indices (can be identical), 𝑟𝑠 and 𝑟𝑒 are indices of corresponding
start and end elements, 𝑐𝑠 , and 𝑐𝑒 are constants, and 𝑅𝑙,𝑛 (𝑟𝑠 , 𝑟𝑒 )
is the set of secondary indices at level 𝑙 spanned by the values
of start and end elements in 𝑃𝑠 and 𝑃𝑒 . Fig. 4b shows a specific
case in which start and end indices are represented by adjacent
values in a single primary array as commonly seen in compact ad-
jacency list representations of graphs [23] and compressed sparse
row (CSR) formats [6, 56]. Such patterns are seen in quadratic par-
allelization based graph traversal algorithms [39], sparse matrix
multiplications [8] and shortest path graph algorithm (SSSP, APSP)
implementations [23].

While not exhaustive, the relations presented above cover com-
monly seen access patterns [48]. In general, accesses can have
non-linear relations, nested accesses with multiple primary arrays
or with specific dependencies across nesting levels, more complex
control flow, etc. However, patterns that cannot be directly repre-
sented can always be over- or under-approximated by finding the
closest match using supported relations (or a combination thereof).

4 TAFE Framework
In this section, we explain our framework for estimation of TAFs

in detail. In heterogeneous systems involving CPUs and GPUs, the
host usually prepares (and/or initializes) data and then launches ker-
nels across SMs. The required memory for data structures is usually
dynamically allocated by the host. Our framework constructs the
TAF relations for different data structures before their initialization
and passes the information to the OS/runtime, which then use them
to estimate TAFs and make optimization decisions before kernel
launch. Thread ID-based patterns can be represented using few
coefficients and can be statically evaluated to obtain the addresses
accessed by threads. Data-dependent access patterns, by contrast
require dynamic information (primary array values) to be estimated.
Tracking primary arrays can incur overhead proportional to array
size if not done carefully.

We use a simplified example derived from the Bfs benchmark
in [17] to demonstrate the working of TAFE throughout this section.
The example accesses data stored in CSR format, which is widely
used to represent sparse matrices [3, 6] and graphs [7, 56]. A snippet



Table 1: TAFE API.
API Description
taf_paramSetup ( BlkDim,
GridDim )

Passes the kernel launch parameters to the framework. The launch parameters passed are stored in the APD header. BlkDim, GridDim:
block and grid dimensions of the application kernel.

taf_register ( Base, size,
TID_DEP, T,m, c, ofs, N, Pri )

This registers a thread ID-dependent TAF relation for an array with our framework. The arguments passed are stored within the APD
entry. Base: array starting address, Size: array size, TID_DEP: thread ID-dependent access pattern, T : element size, m: pattern coefficients,
c: constant, ofs: loop offset, N : loop iteration count, Pri: Primary array

taf_register ( Base, size, INDIR,
T, PBase, m, c, Pri )

Same as above but for Indirect access patterns. Base: array starting address, Size: array size, INDIR: Indirect access pattern, PBase: primary
array base address, m: pattern coefficient, c: constant added to primary array values.

taf_register ( Base, size, IN-
DIR_RANGE, T, 𝑃𝐵𝑎𝑠𝑒𝑠 , 𝑐𝑠 ,
𝑃𝐵𝑎𝑠𝑒𝑒 , 𝑐𝑒 , Pri )

Same as above but for Indirect range access patterns. Base: array starting address, size: array size, INDIR_RANGE: Indirect range access
pattern, 𝑃𝐵𝑎𝑠𝑒𝑠 : base address of primary array with starting indices, 𝑐𝑠 : constant added to starting array values. 𝑃𝐵𝑎𝑠𝑒𝑒 : base address of
primary array with ending indices, 𝑐𝑒 : constant added to ending array values.

taf_setRdy ( Base ) Indicate that all the information required to evaluate the TAF for an array is available. For a data-dependent pattern, this call needs to be
made after the last store to its primary array. This API stalls until all pending stores are completed before marking the array as ready. Base:
array starting address.

taf_reset ( Base ) Remove registered array and reset APD and extent table entries. Base: array starting address.

(a) Kernel code (b) Data dependent accesses

Figure 5: CSR example (Bfs).

of the example Bfs kernel code is shown in Fig. 5a. Array Nodes con-
tains source offsets and is accessed in thread ID-dependent manner.
Edges contains destination indices, which have data-dependent
(indirect range) access patterns dependent on Nodes. Finally, the
Cost array also exhibits data-dependent (indirect) access patterns,
but in turn dependent on Edges. In the example in Fig. 5b, thread
ID 0 accesses Nodes[0], Edges[0-1] and Cost[2-3].

4.1 Static Code Annotations
TAFE provides APIs to collect static attributes about arrays from

the application and store them in an access pattern directory (APD)
within OS memory. API calls can be annotated in the host code by
the programmer. Alternatively, profiling tools or static compiler
analysis can also be used to identify simple patterns and collect
the required attributes, e.g. obtaining coefficients, constant loop
bounds or offsets. We use manual annotations in our evaluation
for simplicity. Note that the programmer does not need to have
any knowledge about the architecture of the system on which the
application will be executed. Annotated TAFs and TAF relations
represent application-specific but architecture-independent infor-
mation. Therefore, the compiled code can be ported to different
systems without further modifications.

API The complete list of TAFE APIs with their parameters is
described in Table 1. The snippet of host code corresponding to the
Bfs kernel launch with TAFE API calls is shown in Listing 1. The ap-
plication allocates memory for arrays, initializes them and launches
the kernel which operates on them. The annotated code required
for TAFE is shown in bold. We first setup the kernel parameters for
the framework using a taf_paramSetup() call. Each of the arrays
are then registered with the framework along with the attributes of
their access patterns. Nodes is registered as an array with its base
address, size (numNodes+1), thread ID-dependent access (TID_DEP),
element-size (sizeof(int)) and coefficient vector. The constant,
loop offset and loop iteration count are set to 0. Edges and Cost are
similarly registered, except that the base address of their primary

taf_paramSetup ( dimBlock , dimGrid ) ;
in t ∗Nodes = ma l l o c ( numNodes +1 )
t a f _ r e g i s t e r ( Nodes , numNodes +1 , TID_DEP , s i z eo f ( in t ) ,

[ 1 , 0 , 0 , THREADBLOCK_SIZE , 0 , 0 ] , 0 , 0 , 0 , 1 ) ;
taf_setRdy ( Nodes ) ;
in t ∗ Edges = ma l l o c ( numEdges ) ;
t a f _ r e g i s t e r ( Edges , numEdges , INDIR_RANGE ,

s i z eo f ( in t ) , Nodes , 0 , Nodes , 0 , 1 ) ;
for ( in t i = 0 ; i < numNodes +1 ; i ++) {
/ ∗ I n i t i a l i z e " Nodes " a r r ay ∗ /

Nodes [ i ] = prepNodeData ( i ) ;
}
taf_setRdy ( Edges ) ;
in t ∗ Cost = ma l l o c ( numNodes ) ;
t a f _ r e g i s t e r ( Cost , numNodes , INDIR , s i z eo f ( in t ) ,

Edges , 1 , 0 , 0 ) ;
for ( in t i = 0 ; i < numEdges ; i ++) {

/ ∗ I n i t i a l i z e " Edge s " a r r ay ∗ /
Edges [ i ] = prepEdgeData ( i ) ;

}
taf_setRdy ( Cost ) ;
for ( in t i = 0 ; i < numNodes ; i ++) {

Cost [ i ] = prepCos tData ( i ) ;
}
k e rne l <<<dimGrid , dimBlock >>>(Nodes , Edges , Cost ) ;

Listing 1: CSR example: host code with TAFE APIs.

Figure 6: Access pattern directory (APD) and entries.

array is also provided. Edges is registered with Nodes as both its
starting and ending primary arrays to indicate a CSR like format.
Nodes and Edges are set as primary arrays during registration. The
taf_setRdy() call is used to mark the arrays ready. Unlike thread
ID-dependent arrays, data-dependent arrays are marked ready only
after its primary array is initialized, as can be seen for Edge and
Cost. Nodes and Edges are assigned values within the loop, details
of which have been omitted for simplicity. The values stored to pri-
mary arrays (Nodes and Edges) are tracked before kernel launch as
explained later. Once the entire primary array has been initialized
and tracked, the TAF of the dependent arrays can be estimated.

Access Pattern Directory Our frameworkmaintains API-annotated
information pertaining to individual access patterns and their TAF
relations within APD entries. Fig. 6 shows the APD organization
and fields within each entry are described in Table 2. The APD first
stores kernel launch parameters (grid and threadblock size) to be



Table 2: APD Entries.
Field Description
V Valid bit.

Base Addr Starting virtual address.
Limit Addr Ending virtual address.
Data Size Array element size (8b/16b/32b/64b).
Type Access pattern. (TID_DEP/INDIR/INDIR_RANGE).
R Bit indicating information is ready to estimate TAF.

Idx Coeff Coefficientsm.
Extnt Ptr Pointer to Extent table.
S-Pri Entry Index of APD entry of primary array with starting indices.
E-Pri Entry Index of APD entry of primary array with ending indices.

Const Constant 𝑐 .
Loop Count Iteration count 𝑁 .
Loop Offset Iteration offset ofs.

Pri Bit indicating if the array is primary array.

Figure 7: CSR example: populated APD table.

used as inputs to TAF relations. It further consists of multiple en-
tries, where each entry is used to capture a specific access pattern
of a data structure. If a data structure is accessed with multiple
patterns, it can be registered multiple times for different patterns.
The APD is stored in memory (where the APD start address, for
example, is contained in the Process Control Block), such that it can
be accessed during API calls. Each APD entry fits into one cacheline
allowing for efficient access.

The populated APD table after array registration for the Bfs
example is shown in Fig. 7. In addition to the dimBlock and dim-
Grid dimensions stored in the header, the APD contains 3 entries,
one for each array (Nodes, Edges and Cost), which are popu-
lated with the information provided during their corresponding
(taf_regsiter()) calls. In addition, all R bits are set (through
taf_setRdy() calls), indicating that information required to eval-
uate their TAF is ready.

4.2 Dynamic Data Dependency Tracking
Data-dependent access patterns use values stored in primary

arrays to compute the indices for secondary arrays. This requires
capturing the relationship between thread indices and primary
array values. However, if not carefully done, the overhead involved
in tracking primary array values can grow proportional to the
array size, E.g. consider a data-dependent access B[A[tid]]. Here,
the index of array B accessed by thread tid is A[tid]. To track
the indices of B accessed by a given threadblock 𝑇𝐵, all A[𝑡𝑖𝑑],
𝑡𝑖𝑑 ∈ 𝑇𝐵 need to be tracked. This overhead exacerbates in case of
nested data-dependent accesses.

Instead of tracking the relation between primary array values
and their indices and later relating thread IDs to these indices, we
can reformulate the problem as directly tracking the primary array
values referenced by every threadblock or group of threadblocks.
This problem is similar to the one faced in file systems. A file
system directory also faces the challenge of tracking disk block IDs
pertaining to individual files while keeping the overhead small to
reduce file system wastage. The XFS file system [50] specifically
uses extents for managing space. An extent corresponds to one or

more adjacent blocks on the disk. Instead of tracking each individual
block using bitmaps or a linked allocation, a B+ tree of extents is
maintained to indicate which blocks belong to a file or the free list.

Extent Table We propose an extent-based mechanism inspired
by XFS to capture the values stored in primary arrays without
enduring overhead proportional to the array size. Instead of a tree,
we use an extent table (ET) per primary array, organized as list of
extents stored in memory as shown in Fig 8a. Since GPUs perform
scheduling and mapping at threadblock granularity, we track the
primary array values for each threadblock or threadblock group. An
extent captures the range of values in the primary array accessed
by the threads in one threadblock or threadblock group. Extents
contain a valid byte and the tuple of minimum andmaximum values
stored. To limit storage overhead, we track primary array values
using a single extent per threadblock. Stored value is inserted into
the extent corresponding to the threadblock which will access the
index into which the value is being stored. There is an extent table
for every primary array to track the values stored, allowing TAFE
to support nested input-data dependent access patterns, since the
extent table of immediate primary array is sufficient for estimating
the address footprint.

Primary Array Tracking The values stored in primary arrays
have to be processed to populate the extent table appropriately. This
can be done either by re-reading the primary arrays prior to kernel
launch or by overloading their initialization and avoiding additional
loads. The approach involving re-reading primary arrays requires 1)
iterating across all the thread IDs in the GPU kernel, 2) computing
the TAF relations to obtain the indices accessed by each thread, and
3) loading the elements from the indices and inserting them into
their corresponding extent. In case of thread ID-dependent primary
array, the range of array indices accessed by every threadblock (or
threadblock group) is calculated using the attributes from the APD
entry and kernel launch parameters. For data-dependent primary
arrays, the mapping between threadblock IDs and range of indices
accessed by them is present in the extent entries of their nested
primary array. Re-reading of primary arrays can be performed
as part of taf_setRdy() calls before the secondary array is even
initialized. Re-reading of primary arrays can be done on the host
CPU or by exploiting parallelism (using an additional kernel) on
the GPU itself. The latter also supports cases when primary arrays
are initialized on the GPU.

Alternatively, primary array stores can be overloaded to track
the stored values without the need for re-reading values from mem-
ory. On every overloaded store, this will require 1) computing the
array element index into which the value is stored, 2) computing
the inverse TAF relation to obtain the index to threadblock map-
ping, and 3) inserting the value into the corresponding threadblock
extent. Array element indices can be computed using their base
address and element size (from APD entries). Inverse TAF computa-
tion, by contrast, is more complex and can only be evaluated if the
TAF relation is invertible, i.e. each primary array index is accessed
by a single threadblock. If the TAF relation is non-invertible, we
track only one of the threadblocks and other accesses will be false
negatives when using overloading. Inverse TAF computation other-
wise depends on the access pattern of the primary array. On every
store, the element offset (primary array index) is compared against



(a) Layout. (b) CSR example.

Figure 8: Extent table.

the range of array indices corresponding to each threadblock. For
thread ID-dependent primary arrays, the range of array indices
accessed can be computed from attributes in the APD entry. By con-
trast for data-dependent primary arrays, the required indices are
present in the nested extent entries. On a match, the threadblock
ID is selected. This approach works, but results in considerable
overhead since the array indices for each threadblock or group
need to be computed and compared against the element offset. This
penalty scales with the number of threadblocks or groups.

In either case of re-reading or overloading, the stored values are
inserted by checking against the extent corresponding to the deter-
mined threadblock (or threadblock group) to see if its range already
encompasses the value. If not, the extent is expanded accordingly.
APD entries of primary arrays contain the starting address of the
corresponding extent table (Extnt Ptr). ETs for different primary
arrays are aligned at cacheline boundaries. The address of the cache-
line containing extent for threadblock TB can thus be computed as
Extnt Ptr + ((TB / #extents per cacheline) x cacheline size). If the
primary array values inserted are not continuous, it can potentially
result in over-estimation. INDIR_RANGE patterns access contigu-
ous indices, so a single extent is sufficient to perfectly capture them.
However, the same is not true for INDIR patterns and may result in
false positives. For the benchmarks evaluated, we find that 1 extent
per threadblock is sufficient and results in only 1.5% average error
in TAF estimation. Considering 1 extent per threadblock, a 64B
cacheline can hold extents for 7 threadblocks. Each threadblock
takes 1 + 2 × 4 = 9 bytes of space to store its extent and validity
information. For a kernel with 64k threadblocks, each primary ar-
ray would thus require 0.57MB of memory. Alternatively, stores
pertaining to threadblocks assigned to same SM or module can be
tracked together reducing the extent table size.

Populated extent tables after initialization of Nodes and Edges
arrays in the Bfs example are shown in Fig. 8b, assuming each
threadblock consists of 2 threads accessing 2 elements of Nodes (i.e.,
THREADBLOCK_SIZE in Listing 1 is 2). Since threadblock 0 will ac-
cess Nodes[0-1], its first extent in the Nodes table covers the value
range (0, 2). Similarly, threadblock 1 accesses Nodes[2-3] with
extent (4, 6). Values in Nodes in turn determine the starting indices
of the indirect ranges that threadblocks access in Edges, where the
end of a threadblock’s range is determined by the start of the next
threadblock’s range. Threadblocks 0 and 1 will access Edges[0-3]
and Edges[4-7] resulting in extents (0, 3) and (4, 9), respectively.
Indices for Cost are determined by the minimum and maximum
value of the corresponding threadblock’s extent, e.g. threadblock 0
and 1 will be assumed to access Cost[0-3] and Cost[4-9]. Since
the values stored in Edges[4-7] are not continuous (see Fig. 5), it
results in false positives (Cost[6] and Cost[7]).

Figure 9: TAFE hardware for tracking primary arrays.

4.3 TAFE Hardware Support
As described previously, primary array values can be tracked

purely in software in the host CPU or GPU. This, however, requires
software modifications and incurs overhead. We propose an op-
tional lightweight hardware extension to support transparent track-
ing of primary array stores and reduce software overhead. Arrays
are transparently tracked while they are being initialized avoiding
additional loads. Optional TAFE hardware extensions are inserted
between the cache and core as shown in Fig. 9. They can be poten-
tially combined with prefetchers by sharing logic and functional
units [18, 59]. TAFE hardware extension consist of components for
comparison, inverse TAF computation and ET insertion.

Comparator Table The comparator table is responsible for de-
tecting stores to primary arrays and computing the element index.
As part of registration (taf_register()) calls for primary arrays,
the framework populates the primary array’s base and limit ad-
dress, element size, access type and a pointer (APD entry pointer
for TID_DEP or extent pointer otherwise) into a hardware compara-
tor table. If the primary array itself has a nested data-dependent
access pattern, the Extnt Ptr of the nested, second-level primary
array is also stored. APD entries of primary arrays can be pinned
into the cache until kernel launch as part of array registrations
for faster access. A single table entry can be reused for tracking
multiple primary arrays as long as their initialization is not inter-
leaved, i.e. sequential. An entry is reserved during the registration
call of primary array and freed again as a part of the secondary
array’s taf_setRdy() call. If initializations are not sequential, the
size of the comparator table determines the maximum number of
primary arrays that can be tracked simultaneously in the system.
Our results show that tracking 2 primary arrays is sufficient for the
benchmarks evaluated.

Every time a store reaches L1 cache, the address is then compared
against the address ranges in the comparator table 1 . An address
within a tracked range indicates a store to a primary array, and the
element offset is computed using the base address and element size.
The element offset, value to be stored, access type, pointer (APD
entry/extent pointer) and optional nested extent pointer are then
passed to an inverse TAF block 2 .

Inverse TAF Computation This block computes the inverse TAF
to determine the correct ET entry to be updated. As described previ-
ously, this requires computing the index ranges for each threadblock
and matching them against the primary array index. In order to
reduce the overhead, we exploit the fact that primary array ini-
tialization is mostly performed sequentially (within a loop). This
means that the threadblock accessing the index on which a store is
performed will mostly be same as that of the previous store. Further,



i f ( t h r e a d I d x . x >= i +1 && th r e a d I d x . x <= BLOCKSIZE−i −2 ) ) {
i d x = b l o c k I d x . x ∗ s b c o l s + t h r e a d I d x . x + c o l s ∗ ( s t a r t + i ) ;
r e s u l t [ t h r e a d I d x . x ] = s h o r t e s t + gpuWall [ i dx − b ] ; }

Listing 2: Control divergence example (Pathfinder).

we assume that the subsequent primary array indices are accessed
by threadblocks in incremental order, i.e. the indices accessed by
a threadblock are larger than those accessed by preceding thread-
blocks (e.g. in TID_DEP, INDIR_RANGE primary access patterns).
This avoids the need of iterating across all threadblocks. We use a
single-entry history buffer capable of storing one range of array
indices (extent) and its corresponding threadblock ID. On the first
store to a primary array, the range of array indices are computed
for the first threadblock (or threadblock group). In case of a thread
ID-dependent primary array, its APD entry is first loaded 3 and
the attributes from the APD entry are used to calculate the range
indices 4 . For a data-dependent array, the extent of its nested
primary array is loaded (using the extent pointer from comparator
metadata) to obtain the indices. The range of indices and the thread-
block ID are inserted into the history buffer. On subsequent stores,
the primary index is compared against the entry in the history
buffer 5 . If it is a hit, the matching overhead is avoided. On a miss,
the threadblock ID is incremented and a new range of indices is
computed and compared against the element offset 6 before being
updated in history buffer. In our experiments, we observe a >99%
history buffer hit rate thereby significantly reducing the overhead.

Extent Table Insertion Finally, the threadblock ID, primary ar-
ray extent pointer along with value being stored are passed to an
extent table insertion block, where the value is inserted into the
appropriate entry within the extent table of the primary array. A
write-combining buffer is used to merge writes to the same extent
reducing the cache transactions.

4.4 Discussion
Benchmarks often have unique access patterns that will lead to

estimation inaccuracies when capturing them with our framework.
In the following, we discuss some of such application characteris-
tics. While modifying source code is always a solution, we present
possible approximations.

Section 3 describes access patterns directly supported by our
current TAFE framework. As mentioned there, other patterns can
be approximated using a combination of supported patterns to
achieve the tightest possible fit. Patterns can be over- or under-
approximated depending on the use-case requirements, e.g. to
capture non-linear relations in linear form. Consider an access
pattern A[tid*4 + j + i*N], 0 ≤ 𝑗 < 4, 0 ≤ 𝑖 < 𝐼 . The tight-
est fit can be achieved by under-approximating this relation as
{𝑡𝑖𝑑 ·4+𝑖 ·𝑁 | 0 ≤ 𝑖 < 𝑁 }. Patterns like A[tid % N], where 𝑁𝑡 > 𝑁

is the total threads in the kernel, can be represented as thread ID
dependent relation of the form {𝑡𝑖𝑑 + 𝑖 · (−𝑁 ) | 0 ≤ 𝑖 < (𝑁𝑡/𝑁 )}.
Evaluating this relationwill result in underflow of indices/addresses,
which are filtered by TAFE using Base and Limit APD entries.

Our current implementation supports loop structures, but only
in thread-ID dependent accesses at level 0. Branching behavior with
control divergence can be over-approximated by capturing relations
for all possible branches. Listing 2 shows an example from the
Pathfinder benchmark, where result and gpuWall are only accessed

by some threads. We over-estimate this access by registering the
TID_DEP patterns in the branch unconditionally for all threads.

In the worst case, unsupported patterns require marking the
entire array as part of the footprint. To achieve higher accuracy,
TAFE APIs can be extended to natively incorporate additional pat-
terns, including non-linear and multi-input relations, more complex
nesting dependencies or loop control structures in nested levels.

Applications with multiple kernels are currently supported in
TAFE by tracking the access patterns of the entire application as a
whole in a single APD. This can accurately capture the individual
kernel patterns if they have the same threadblock and grid dimen-
sions. Applications consisting of kernels with varying dimensions
(e.g. Lud) can be approximated by either identifying a threadblock
and grid dimension that allows non-contradictory mappings across
kernels or using the dominant kernel dimensions. Alternatively,
TAFE can be extended to support kernels with different dimensions
by tracking each kernel separately (requires an APD per kernel).

Our current TAFE implementation also has some limitations
beyond accuracy effects. Obtaining TAFs requires primary arrays
to be initialized before and not modified during kernel execution.
Furthermore, our proposed optional hardware tracking currently
only supports nested primary array accesses with a single TID_DEP
pattern or INDIR_RANGE pattern using the same starting and
ending arrays and hence cannot support arbitrary nested accesses.

5 Optimizations using TAFs
The OS/runtime takes the APD and ET information to evaluate

the TAF relations and compute the TAFs for different kernel data
structures. Given the estimated TAFs, the OS/runtime can deter-
mine the set of array indices (in other words, addresses) accessed by
each threadblock during the memory allocation phase itself. Based
on this information, the runtime or hardware can perform opti-
mizations, e.g. data/compute co-location, cache/scratchpadmemory
management. In this paper, we evaluate the benefit of using TAFs
for co-locating threadblocks/pages in NUMA GPU systems.

5.1 Threadblock Mapping
Prior work has shown that mapping contiguous threadblocks

within SMs benefits locality [41]. However, for multi-dimensional
kernel grids, to capture maximum locality, threadblocks accessing
the closest array elements should bemapped together. For thread ID-
dependent arrays, we map threadblocks in row-, column- or depth-
major order depending on the relative step size defined by block ID
coefficients along x, y and z dimensions. Threadblocks are equally
divided across SMs for load-balancing. Since most applications have
similar trends across different arrays, the decision can be made
based on the array registered first. Data is later mapped/allocated
to complement the determined threadblock mapping.

If data is already mapped before threadblock mapping is decided
(e.g. threadblock remapping across multiple kernel calls), thread-
blocks should be mapped to the module containing pages accessed
by them. The module to which a page is mapped can be identified
from its physical address, requiring a address translation per page
or OS support as done in [51]. Using the page mapping and TAFs,
appropriate threadblocks can be co-located with their data-pages.

For kernels with data-dependent arrays, extent entries provide
the range of indices accessed by each threadblock. This information



Figure 10: Simulated exascale node configuration.

can be used to find groups of threadblocks with maximum local-
ity. However, this incurs higher extent table size (proportional to
threadblock count). Alternatively, a specific order (e.g. x-dimension
first) can be selected, allowing the runtime to determine the exact
threadblocks mapped to each module. The primary array values
now can be tracked per module instead of every threadblock, reduc-
ing the extent table size overhead (proportional to the number of
modules). However, using such coarse grain tracking would mean
relying solely on data mapping to reduce off-chip accesses.

5.2 Data Allocation and Mapping
Once the threadblock mapping has been determined (coefficient-

based or pre-selected), the runtime uses estimated TAFs to allocate
memory to modules while reducing off-chip data movement. This
requires computing TAFs and performing page allocation before
arrays are initialized on the host CPU as doing otherwise would re-
quire remapping of pages, which defeats the purpose of optimizing
the mapping before kernel launch. TAFE supports TAF estimation
and optimal page mapping prior to host initialization as all the
required information is available during taf_setRdy() calls.

Since the focus of this work is not on data partitioning heuristic,
we use a straightforward allocation algorithm: If a page is accessed
by only one module, it is allocated in that specific module. If a
page is accessed by multiple modules, it is mapped to the module
with the shortest distance to all other accessing modules. All page
mappings are subject to memory capacity restrictions. A qualitative
measure of temporal locality can easily be passed to TAFE by the
user as in [55]. Since the mapping and allocation is done during a
runtime call, it allows different partitioning and mapping schemes
of varying complexity to be employed [19, 28, 29, 33].

6 Evaluation
We evaluate TAFE for 2 different NUMA GPU system configura-

tions: 1) A multi-GPU/-chiplet system with identical modules inter-
connected by off-chip links and 2) a heterogeneous multi-chiplet
module (MCM) configuration representing recently proposed exas-
cale node architectures (Fig. 10) [38, 47, 54]. The configurations con-
sist of a host CPU and GPU with unified memory distributed across
interconnected modules. Details of our simulated configurations
are provided in Table 3. We use gem5-gpu [46] (VI_hammer_fusion)
for simulating our system. We augmented the CUDA runtime to
include APIs required by TAFE. Support for the new APIs and for
TAFE hardware modifications are made in the simulator. We model
an APD with 16 entries, extent tables with 1 extent per threadblock,
and a comparator table with 2 entries. The memory allocated by
the application is uniformly distributed across HMC stacks.

We evaluated TAFE for 12 applications mostly from the Rodinia-
nocopy [17] benchmark suite. The list of applications including lines
of code (LOC) added for TAFE annotations and storage overhead of

Table 3: Simulation parameters.
Configuration 1: Multi-GPU/-chiplet

NUMA modules 8 (all identical)
SM count 64 (8 per module)

Memory stacks 8 (1 per module)
Topology Tree

Configuration 2: Exascale node
NUMA modules 25

SM count 64 (16 in M0, 2 each in others)
Memory stacks 32 (8 in M0, 1 each in others)

Topology Ext: Tree, Central pkg: Fully connected
Memory

Bandwidth Local: 160 GB/s, off-chip: 80 GB/s [26]
Memory model HMC_2500 [11, 57]

Core Configuration
CPU OOO model, 2Ghz
SM 1.4Ghz, 48kB shared memory [2]

Cache L1:16kB, 4-way (pvt.), L2:1MB, 16-way (shared)

Table 4: Benchmarks.
Benchmark Input Access Pattern TAFE

Storage
TAFE
LOC

Backprop (BP) [17] 256k TID_DEP 256 B 25
Lud [17] 2048 TID_DEP 192 B 26
NN [17] 640k TID_DEP 128 B 13

Pathfinder (PF) [17] Default [46] TID_DEP 192 B 19
Srad [17] Default [46] TID_DEP 768 B 32

Hotspot (HS) [17] 4096 TID_DEP 192 B 13
Bfs-1M [17] 1M nodes TID_DEP, INDIR &

INDIR_RANGE
1136 B 40

Bfs-4M [17] 4M nodes TID_DEP, INDIR &
INDIR_RANGE

2.8 kB 40

Cfd [17] 0.2M TID_DEP & INDIR 942 B 52
Spmv-in [8] inline [1] TID_DEP, INDIR &

INDIR_RANGE
4.7 kB 42

Spmv-ser [8] serena [1] TID_DEP, INDIR &
INDIR_RANGE

12.4 kB 42

Radix Sort (RD) [24] 256k TID_DEP & INDIR 1098 B 27

TAFE metadata (APD and extent tables) are shown in Table 4. The
applications are written/compiled in CUDA v3.2. Radix sort [24] is
executes the prefix sum in the host machine instead of the GPU. The
applications are annotated with the TAFE API calls to obtain the
required information while maintaining the original functionality.
Except for over-approximations to capture control divergence in
Hotspot, Lud and Pathfinder (with 1, 4 and 1 instances, respectively),
all patterns encountered in benchmarks are directly supported by
TAFE. Results are obtained by running each application (in addition
to all host CPU instructions prior to first kernel launch) for 1B GPU
instructions or to completion, whichever occurs first.

6.1 Address Footprint Accuracy
The primary purpose of TAFE is to estimate address footprints

accurately prior to kernel launch. We begin by studying the accu-
racy with which TAFE is able to estimate the address footprints for
different benchmarks. Evaluated benchmarks are not affected by
limitations of hardware-assisted tracking. As such, software- and
hardware-based tracking have the same accuracy. Fig. 11 shows
TAFE accuracy in form of a color map for Exascale node configu-
ration. NN has a very similar color map as Backprop, Bfs-4M and
Spmv-ser have similar characteristics as Bfs-1M and Spmv-in respec-
tively and are omitted for space reasons. For every combination of
page and module, we showwhen TAFE correctly estimated whether
a page is actually accessed by a module (true-pos, shown in black)
or not (true-neg, shown in white). We also show pages that were ac-
cessed but that TAFE captured otherwise (false-neg, shown in red),



(a) BP (b) Lud (c) PF

(d) Srad (e) HS (f) Bfs-1M

(g) Cfd (h) Spmv-in (i) RD

Figure 11: TAF tracking accuracy.

Figure 12: TAF estimation accuracy.

and pages not accessed but tracked by TAFE as accessed (false-pos,
shown in yellow). The first 2 categories indicate correct tracking
by TAFE, while the latter 2 indicate wrong tracking.

It can be seen that for most benchmarks, TAFE is able to track the
address footprint accurately, including those with data-dependent
accesses. The quantitative distribution of TAFE’s estimation accu-
racy by access patterns for configuration 1 is further summarized
in Fig. 12. TAFE has on average 91% accurate estimations across
all benchmarks. In data-dependent benchmarks, TAFE can esti-
mate TAFs with on average 1.5% (and up to 8%) error. Most errors
are due to conservative over-estimation under control divergence
(Pathfinder, Hotspot) or limits of extent-based data tracking (Cfd,
Spmv-in). Lud has a significant incorrect estimations because it has
multiple kernel calls with varying launch parameters and control
divergence over memory accesses, which does not accurately map
to the patterns currently supported by TAFE.

Wemeasured the average value sparsity across indirectly (INDIR)
accessed array indices for irregular graph and sparse matrix bench-
marks. The value sparsity 1 − 𝑁𝑢𝑚. 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑

(𝑀𝑎𝑥. 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒−𝑀𝑖𝑛. 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒)
for Bfs-1M, Bfs-4M, Spmv-in and Spmv-ser is 0.98, 0.99, 0.95 and
0.99, respectively. Note that TAFE accuracy ultimately depends on
the granularity at which TAFs are requested. TAFE achieves high
accuracy at page/module granularity for sparse applications since

the probability that at least one word from each page within the
range will be accessed is high, resulting in a near-contiguous range.

6.2 TAFE Overhead

In this section, we discuss the overhead of implementing TAFE.
Estimating TAFs for thread ID-dependent access patterns can be
done using static annotations and incurs overhead of API calls and
memory space to store the APD table. Data-dependent access pat-
terns can be tracked either in software or using optional hardware
as described in Section 4. For software, we use re-reading of imme-
diate primary arrays to process the values stored. This approach is
more flexible and avoids limitations of inverse TAF computations.
We evaluate overhead of software tracking in the host CPU or GPU
and hardware-assisted tracking in the CPU.

Table 5 summarizes the cost for TAFE hardware support. We use
McPAT [35] to estimate the area overhead to be 2% of an Alpha21364
reference host core. Existing prefetcher components can be shared
with TAFE tracking logic to further reduce the hardware overhead.
CPU prefetchers [18, 59] already include hardware for tracking
cache accesses, functional units for computing prefetch addresses
and issue loads. Note that TAFE hardware overhead is independent
of the number of SMs and data size, and the information obtained
can be reused for different optimizations. The 3 stages for tracking
stores (comparator table, inverse TAF and ET insertion) can happen
in parallel to cache accesses and can be pipelined to support best-
case throughput of 1 store per cycle on history buffer hits. Only one
extra arbiter delay is added on the critical path of cache accesses. In
rare cases of history buffer misses, the tracking pipeline and cache
accesses need to be stalled until the miss is served. We assume an
inverse TAF miss delay of 20 cycles for our evaluations.



Table 5: TAFE hardware costs.
Component Storage Logic Delay
Comparator

Table
68 B 4 CMP, 1 ADD,

1 SHFT
1 cyc. (2 pipeline stages)

Inverse TAF 133 B 2 MUL, 2 ADD,
1 counter, 1 CMP

Hit: 1 cyc., Miss: 8 cyc. +
load

ET Insertion 34 B 2 CMP, 1 ADD 1 cyc.
Pipeline 76 B control/stall logic -

Figure 13: TAFE runtime overhead.

Fig. 13 compares the TAFE overhead when implemented in
software within the host CPU (TAFE-SW-CPU) or GPU (TAFE-
SW-GPU) and when using optional hardware support in the host
CPU (TAFE-HW-CPU) for exascale node configuration. Overhead is
compared against host CPU runtime without TAFE. For thread ID-
dependent benchmarks that do not require primary array tracking,
both hardware and software versions of TAFE incur the same small
overhead for API calls. For data-dependent benchmarks, TAFE-SW-
CPU in experiences larger overhead (up to 43%) for many bench-
marks (Bfs-1M, Cfd, RD) due to the inability of the host CPU to hide
the latency. TAFE-SW-GPU has low overhead (3% on average and
max. of 10%) for most cases, indicating that TAFE-SW-GPU is an
efficient and also more flexible approach to track primary array
values. TAFE-HW-CPU allows transparent tracking and incurs the
lowest overhead (2% on average), but requires extra hardware.

6.3 TAFE-Based Optimizations
We further study the benefits of utilizing TAFE for data/thread co-

location for both system configurations. We model page co-location
with compute by swapping pages prior to writing data rather than
modifying memory allocation to ensure all untracked pages are in
their default locations. We compare our framework against a Base
configuration that has no knowledge about data/thread locality
and uses the default threadblock scheduling and page mapping.
Furthermore, we evaluate the benefits of tracking data-dependent
access patterns (Bfs-1M, Cfd, Spmv-in, Radix, Bfs-4M and Spmv-
ser) by comparing against a TAFE-TID scheme, which only tracks
static, thread ID-dependent access patterns. This is similar to prior
work [55]. In TAFE-TID, data-dependent data structures are treated
as being accessed by all modules.

Off-Chip Link Traffic Fig. 14 shows the off-chip link traffic across
different benchmarks normalized against Base for both configura-
tions. The off-chip link traffic is the total amount of data moved
across all off-chip (inter-module) links during the course of the ap-
plication. As expected, the overall traffic decreases due to improved
mapping. On average, TAFE reduces the off-chip link traffic by by
33% (up to 80%) for the multi-GPU/-chiplet and 23% (and up to 62%)
for exascale node configuration. In data-dependent benchmarks,
TAFE reduces traffic by 34% and 24% on average while TAFE-TID
reduces it by 13% and 10%, respectively.

Warp Memory-Load Latency Fig. 15 compares the average time
taken by a warp-instruction reading global memory to complete

(all 32 thread requests must complete) for both configurations. For
the multi-GPU/-chiplet case, both TAFE and TAFE-TID achieve
similar reduction in warp memory-load latency (on average 21%),
but in some cases TAFE-TID achieves higher reduction than TAFE
(e.g. Bfs-1M, Cfd). This is because the latency is dominated by on-
chip accesses for such cases. For exascale node system, TAFE-TID
reduces warp memory-load latency by 29% on average while TAFE
reduces it by 36%. In data-dependent benchmarks, TAFE-TID and
TAFE achieve 16% and 30% reduction, respectively.

Performance Fig. 16 shows the average SM IPC across different
benchmarks normalized against the Base case for both configu-
rations. On an average, TAFE provides 45% (up to 2.1x) and 32%
(and up to 2x) IPC improvement for multi-GPU/-chiplet and exas-
cale node cases, respectively. This improvement is both because of
fewer off-chip accesses and lower off-chip link congestion. In multi-
GPU/-chiplet case, TAFE achieves on avg. 10% (up to 32%) higher
performance than TAFE-TID for data-dependent benchmarks, while
it performs 22% (up to 31%) better than TAFE-TID in exascale node
case. The improvement is lower in multi-GPU/-chiplet system be-
cause the off-chip accesses have lower performance impact due to
the smaller number of distributed modules.

7 Related work
Many prior works have investigated data/thread co-location,

shared memory management, compiler analysis or programmer
annotations to optimize data/thread locality.

A wide range of programming languages have been proposed
to allow explicit expression of locality [13, 15, 16, 22, 36, 49, 53, 58].
Such approaches require the programmers to be familiar with a new
language and re-write the application. By contrast, TAFE can be
applied over existing programming models, requiring programmers
to only provide simple hints on how existing data structures are
accessed without affecting the functionality of the application.

Several works have proposed means to allow programmers to
provide hints about access patterns. [55] presents a way to express
data locality within applications. The authors propose descriptors
consisting of C-tiles and D-tiles to let programmers explicitly spec-
ify the inter- and intra-thread locality, which is then utilized to
perform data and compute mapping for NUMA systems. Similarly,
[14] presents user-level APIs allowing the programmer to spec-
ify access patterns. These works are able to capture static, thread
ID-dependent accesses, but they do not support complex dynamic,
data-dependent accesses. While TAFE also relies on programmer an-
notated APIs, it does not require explicit mapping and data sharing
information from programmer like[55] and can capture dynamic
data-dependent access patterns. [48] handles specific complex ac-
cess patterns using an index mapper that performs analyses by
re-reading the entire primary data structure. This solution was
proposed for discrete GPU systems, where reloading primary ar-
ray by the host will result only in local accesses. However, such
an approach will incur significant overhead in systems with uni-
fied memory architectures, limiting scalability. TAFE can handle a
wider range of access patterns precisely with little overhead even
for unified memory architecture systems.

Many prior works [21, 40, 42, 44, 52] use compiler annotations or
hardware profiling to dynamically move pages in NUMA systems.
Re-mapping pages at kernel execution time becomes infeasible as



Figure 14: Off-chip traffic. Left: Multi-GPU/-chiplet, Right: Exascale node

Figure 15: Warp memory load latency. Left: Multi-GPU/-chiplet, Right: Exascale node

Figure 16: IPC. Left: Multi-GPU/-chiplet, Right: Exascale node

the system size scales. TAFE allows appropriately mapping pages
during data allocation and does not rely on dynamic re-mapping of
pages. [26] proposes a data mapping solution for discrete memory
systems where the access patterns are profiled to identify the map-
ping, and data copy to device memory is delayed for that duration.
Such a solution cannot be applied in systems with unified memory
between host and device (like in [54]). TAF enables deciding the
optimal/near-optimal mapping just-in-time during data allocation,
and is therefore applicable to systems with both unified and dis-
crete memory. Similarly, compiler and runtime support to allow
thread remapping at runtime has been proposed [10, 32, 51]. But like
dynamic page re-mapping, re-mapping GPU threadblocks during
kernel execution incurs overhead and will limit the scalability.

Prior works [34, 37, 43] have proposed compiler analysis but
unlike TAFE they don’t support data-dependent accesses.

8 Summary and Conclusions
In this paper, we target the problem of estimating, in a scalable

manner, the relationship between threads and both static, data-
independent and dynamic, data-dependent addresses accessed by
them prior to kernel launches in GPGPU systems. We introduce
the concept of thread address footprints (TAFs) and TAF relations
as a means to concisely represent this relationship. We propose
TAFE, a framework for evaluating TAF relations and estimating
TAFs. Our framework constructs TAF relations using a combina-
tion of static attributes and dynamic data dependencies collected

through application code and dependency tracking. We show that
dynamic data dependencies can be tracked in GPU software with
low overhead and further provide an optional hardware extention
to capture data-dependencies. The TAFs can be used by a OS/run-
time to compute TAFs prior to kernel launch. We evaluate TAFE’s
accuracy and demonstrate its benefits by using TAF information
for data/threadblock co-location for multiple NUMA GPU system
configurations. However, TAFE’s benefits are not limited to afore-
mentioned optimizations. Address footprints can also be used for
other optimizations like prefetching pages in unified, e.g. CUDA-
managed memory systems, transformations of irregular patterns
into regular remote memory accesses via local page caching, or
reducing coherency traffic [12, 55, 60]. Our evaluations show that
TAFE achieves 91% estimation accuracy across all benchmarks.
Moreover, TAFE can accurately track data-dependent access pat-
terns (only 1.5% average error) while incurring low (3%) overhead.
Performing page/threadblocking mapping using TAFE improves
performance by 45% and 32%. For data-dependent applications,
TAFE assisted mapping can achieve 10% and 22% speedup compared
to data-independent schemes across different configurations.

Acknowledgments
The authors would like to thank the reviewers for their com-

ments. This work was partially supported by the National Science
Foundation (NSF) under grant CCF-1725743.



References
[1] [n.d.]. SuiteSparse Matrix Collection. https://sparse.tamu.edu/.
[2] 2009. GPGPUSim v3.2.2. GTX 480 Configuration.
[3] 2016. clSPARSE documentation. http://clmathlibraries.github.io/clSPARSE/index.

html.
[4] 2017. CUDA OPTIMIZATION TIPS, TRICKS AND TECHNIQUES. http://on-

demand.gputechconf.com/gtc/2017/presentation/s7122-stephen-jones-cuda-
optimization-tips-tricks-and-techniques.pdf.

[5] 2019. Intel’s Xe for HPC: Ponte Vecchio with Chiplets, EMIB, and Foveros on
7nm. https://www.anandtech.com/show/15119/intels-xe-for-hpc-ponte-vecchio-
with-chiplets-emib-and-foveros-on-7nm-coming-2021.

[6] 2019. NVIDIA cuSPARSE CUDA Toolkit documentation. https://docs.nvidia.com/
cuda/cusparse/index.html.

[7] 2019. NVIDIA nvGRAPH CUDA Toolkit documentation. https://docs.nvidia.
com/cuda/nvgraph/index.html.

[8] A. Aithal and S. Bharadwaj. 2018. Sparse-Matrix-Vector-Multiplication documen-
tation. https://github.com/aneesh297/Sparse-Matrix-Vector-Multiplication.

[9] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel, C. J.
Wu, and D. Nellans. 2017. MCM-GPU: Multi-Chip-Module GPUs for Continued
Performance Scalability. In International Symposium on Computer Architecture
(ISCA). 320–332.

[10] S. Augonnet, C.and Thibault and R. Namyst. 2010. Automatic Calibration of
Performance Models on Heterogeneous Multicore Architectures. In International
Conference on Parallel Processing (ICPP). 56–65.

[11] E. Azarkhish, C Pfister, D. Rossi, I. Loi, and L. Benini. 2017. Logic-Base Inter-
connect Design for Near Memory Computing in the Smart Memory Cube. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25, 1 (Jan. 2017).

[12] A. Basu, S. Puthoor, S. Che, and B. M. Beckmann. 2016. Software Assisted Hard-
ware Cache Coherence for Heterogeneous Processors. In International Symposium
on Memory Systems (MEMSYS). 279–288.

[13] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. 2012. Legion: Expressing
Locality and Independence with Logical Regions. In International Conference on
High Performance Computing, Networking, Storage and Analysis (SC). 1–11.

[14] T. Ben-Nun, E. Levy, A. Barak, and E. Rubin. 2015. Memory Access Patterns:
The Missing Piece of the Multi-GPU Puzzle. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). 1–12.

[15] B. L. Chamberlain, D. Callahan, and H. P. Zima. 2007. Parallel Programmability
and the Chapel Language. International Journal of High Performance Computing
Applications 21, 3 (Aug. 2007), 291–312. https://doi.org/10.1177/1094342007078442

[16] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. 2005. X10: An Object-oriented Approach to Non-uniform
Cluster Computing. InACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA). 519–538.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
2009. Rodinia: A Benchmark Suite for Heterogeneous Computing. In International
Symposium on Workload Characterization (IISWC). 44–54.

[18] Seungryul Choi, Nicholas Kohout, Sumit Pamnani, Dongkeun Kim, and Donald
Yeung. 2004. A General Framework for Prefetch Scheduling in Linked Data
Structures and Its Application to Multi-Chain Prefetching. ACM Trans. Comput.
Syst. 22, 2 (May 2004), 214–280. https://doi.org/10.1145/986533.986536

[19] A. T. Chronopoulos, D. Grosu, A. M. Wissink, M. Benche, and J. Liu. 2003. An
efficient 3D grid based scheduling for heterogeneous systems. J. Parallel Distrib.
Comput. 63, 9 (Sept. 2003), 827–837. https://doi.org/10.1016/S0743-7315(03)00112-
6

[20] Hoang-Vu Dang and Bertil Schmidt. 2012. The Sliced COO Format for Sparse
Matrix-Vector Multiplication on CUDA-enabled GPUs. In International Conference
on Computational Science (ICCS).

[21] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013. Traffic Man-
agement: A Holistic Approach to Memory Placement on NUMA Systems. In
International Conference on Architectural Support for Programming Languages and
Operating Systems. 381–394.

[22] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez,
M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. 2006. Sequoia: Programming the
Memory Hierarchy. In ACM/IEEE Conference on Supercomputing (SC). 4–4.

[23] PawanHarish and P. J. Narayanan. 2007. Accelerating Large Graph Algorithms on
the GPUUsing CUDA. In International Conference on High Performance Computing
(HiPC). 197–208.

[24] M. Harris, S. Sengupta, and J. D. Owens. [n.d.]. CUDA-based Parallel Radix
Sort. http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/
lecture_notes/radix_sort_cuda.cc.

[25] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. 2007. Efficient
Gather and Scatter Operations on Graphics Processors. In ACM/IEEE Conference
on Supercomputing (SC). 1–12.

[26] K. Hseih, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, O.
Mutlu, and S. W. Keckler. 2016. Transparent Offloading and Mapping (TOM):
Enabling Programmer-transparent Near-data Processing in GPU Systems. In
International Symposium on Computer Architecture (ISCA). 204–216.

[27] X. Jian, P. K. Hanumolu, and R. Kumar. 2017. Understanding and Optimizing
Power Consumption in Memory Networks. In International Symposium on High
Performance Computer Architecture (HPCA). 229–240.

[28] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (Dec. 1998),
359–392.

[29] H. Khaleghzadeh, H. Deldari, R. Reddy, and A. Lastovetsky. 2018. Hierarchical
Multicore Thread Mapping via Estimation of Remote Communication. J. Super-
comput. 74, 3 (March 2018), 1321–1340. https://doi.org/10.1007/s11227-017-2176-
6

[30] G. Koo, H. Jeon, Z. Liu, N. S. Kim, and M. Annavaram. 2018. CTA-Aware Prefetch-
ing and Scheduling for GPU. In International Parallel and Distributed Processing
Symposium (IPDPS). 137–148.

[31] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram. 2017. Access pattern-aware cache
management for improving data utilization in GPU. In International Symposium
on Computer Architecture (ISCA). 307–319.

[32] K. Kyriakopoulos, A. T. Chronopoulos, and L. Ni. 2007. An optimal scheduling
scheme for tiling in distributed systems. In International Conference on Cluster
Computing. 267–274.

[33] A. L. Lastovetsky and R. Reddy. 2007. Data Partitioning with a Functional
Performance Model of Heterogeneous Processors. The International Journal of
High Performance Computing Applications 21, 1 (2007), 76–90. https://doi.org/10.
1177/1094342006074864

[34] C. Li, Y. Yang, Z. Lin, and H. Zhou. 2015. Automatic data placement into GPU
on-chip memory resources. In International Symposium on Code Generation and
Optimization (CGO). 23–33.

[35] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman a nd Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In International
Symposium on Microarchitecture. 469–480.

[36] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. 2008. Merge: A
Programming Model for Heterogeneous Multi-core Systems. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 287–296.

[37] W. Ma and G. Agrawal. 2010. An integer programming framework for optimizing
shared memory use on GPUs. In International Conference on High Performance
Computing. 1–10.

[38] NNSA ASC 2014 PI MEETING. 2014. The AMD FASTFORWARD Project.
https://asc.llnl.gov/fastforward/AMD-FF.pdf.

[39] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
Graph Traversal. In Symposium on Principles and Practice of Parallel Programming
(PPOPP). 117–128.

[40] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H.
Loh. 2015. Heterogeneous memory architectures: A HW/SW approach for mix-
ing die-stacked and off-package memories. In International Symposium on High
Performance Computer Architecture (HPCA). 126–136.

[41] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel, A. Ramirez,
and D. Nellans. 2017. Beyond the Socket: NUMA-aware GPUs. In International
Symposium on Microarchitecture (MICRO). 123–135.

[42] M. Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach to Die-
Stacked DRAM. In International Conference on Parallel Architecture and Compila-
tion (PACT). 188–200.

[43] Yunheung Paek, Jay Hoeflinger, and David Padua. 2002. Efficient and precise
array access analysis. ACM Transactions on Programming Languages and Systems
(TOPLAS) 24, 1 (Jan. 2002), 65–109. https://doi.org/10.1145/509705.509708

[44] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, E. Borin, and F. M. Quintão
Pereira. 2014. Compiler Support for Selective Page Migration in NUMA Archi-
tectures. In International Conference on Parallel Architectures and Compilation
(PACT). 369–380.

[45] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G.H. Loh. 2017. There
and Back Again: Optimizing the Interconnect in Networks of Memory Cubes. In
International Symposium on Computer Architecture (ISCA). 678–690.

[46] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood. [n.d.]. gem5-gpu: A
Heterogeneous CPU-GPU Simulator. IEEE Computer Architecture Letters 14, 1
([n. d.]), 34–36.

[47] K. Punniyamurthy and A. Gerstlauer. 2020. Off-Chip Congestion Management
for GPU-based Non-Uniform Processing-in-Memory Networks. In International
Conference on Parallel, Distributed and Network-Based Processing (PDP). 282–289.

[48] E. Rubin, E. Levy, A. Barak, and T. Ben-Nun. 2014. MAPS: Optimizing Massively
Parallel Applications Using Device-Level Memory Abstraction. ACM Trans.
Archit. Code Optim. 11, 4, Article 44 (Dec. 2014). https://doi.org/10.1145/2680544

[49] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken. 2015. Regent: A
High-productivity Programming Language for HPC with Logical Regions. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 1–12.

[50] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. 1996.
Scalability in the XFS File System. In Conference on USENIX Annual Technical
Conference.

https://sparse.tamu.edu/
http://clmathlibraries.github.io/clSPARSE/index.html
http://clmathlibraries.github.io/clSPARSE/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/nvgraph/index.html
https://docs.nvidia.com/cuda/nvgraph/index.html
https://github.com/aneesh297/Sparse-Matrix-Vector-Multiplication
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/986533.986536
https://doi.org/10.1016/S0743-7315(03)00112-6
https://doi.org/10.1016/S0743-7315(03)00112-6
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/lecture_notes/radix_sort_cuda.cc
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/lecture_notes/radix_sort_cuda.cc
https://doi.org/10.1007/s11227-017-2176-6
https://doi.org/10.1007/s11227-017-2176-6
https://doi.org/10.1177/1094342006074864
https://doi.org/10.1177/1094342006074864
https://doi.org/10.1145/509705.509708
https://doi.org/10.1145/2680544


[51] X. Tang, O. Kislal, M. Kandemir, and M. Karakoy. 2017. Data Movement Aware
Computation Partitioning. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO).

[52] P. Tsai, C. Chen, and D. Sánchez. 2018. Adaptive Scheduling for Systems with
Asymmetric Memory Hierarchies. International Symposium on Microarchitecture
(MICRO) (2018), 641–654.

[53] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michelogiannakis,
Ann S. Almgren, and John Shalf. 2016. TiDA: High-Level Programming Abstrac-
tions for Data Locality Management. In International Supercomputing Conference
(ISC). 116,135.

[54] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Ignatowski, B. B. Beck-
mann, W. C. Brantley, J. L. Greathouse, W. Huang, A. Karunanithi, O. Kayiran,
M. Mesani, I. Paul, M. Poremba, S. Raasch, S. K. Reinhardt, G. Sadowski, and V.
Sridharan. 2017. Design and Analysis of an APU for Exascale Computing. In
International Symposium on High Performance Computer Architecture (HPCA).
85–96.

[55] N. Vijaykumar, E. Ebrihami, K. Hseih, P. B. Gibbons, and O. Mutlu. 2018. The
Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality
In GPUs. In International Symposium on Computer Architecture (ISCA). 829–842.

[56] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama, C. Yuan, W.
Liu, A. T. Riffel, and J. D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM
Trans. Parallel Comput. 4, 1 (Aug. 2017). https://doi.org/10.1145/3108140

[57] C. Weis, A. Mutaal, O. Naji, M. Jung, A. Hansson, and N. Wehn. 2017. DRAMSpec:
A High-Level DRAM Timing, Power and Area Exploration Tool. Int. J. Parallel
Program. 45, 6 (Dec. 2017).

[58] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. 2009. Hierarchical Place Trees: A Portable
Abstraction for Task Parallelism and Data Movement. In International Conference
on Languages and Compilers for Parallel Computing (LCPC). 172–187.

[59] Chia-Lin Yang and Alvin R. Lebeck. 2001. The Push Architecture: a Prefetching
Framework for Linked-Data Structure. Ph.D. Dissertation. USA. AAI3095642.

[60] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S.W. Keckler. 2016. Towards
high performance paged memory for GPUs. In International Symposium on High
Performance Computer Architecture (HPCA). 345–357.

https://doi.org/10.1145/3108140

	Abstract
	1 Introduction
	2 TAFE Overview
	3 Thread Address Footprints
	3.1 Thread ID-Dependent Accesses
	3.2 Input Data-Dependent Accesses

	4 TAFE Framework
	4.1 Static Code Annotations
	4.2 Dynamic Data Dependency Tracking
	4.3 TAFE Hardware Support
	4.4 Discussion

	5 Optimizations using TAFs
	5.1 Threadblock Mapping
	5.2 Data Allocation and Mapping

	6 Evaluation
	6.1 Address Footprint Accuracy
	6.2 TAFE Overhead
	6.3 TAFE-Based Optimizations

	7 Related work
	8 Summary and Conclusions
	Acknowledgments
	References

