Hardware Accelerator Integration Tradeoffs for
High-Performance Computing: A Case Study of
GEMM Acceleration in N-Body Methods

Mochamad Asri*, Dhairya Malhotra, Jiajun Wang*, George Biros?, Lizy K. John* and Andreas Gerstlauer*
*Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
fCourant Institute, New York University, New York, NY, USA
tInstitute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
asri@utexas.edu, malhotra@cims.nyu.edu, jiajunwang@utexas.edu, gbiros@acm.org, {ljohn,gerstl}@ece.utexas.edu

Abstract—In this paper, we study performance and energy saving ben-
efits of hardware acceleration under different hardware configurations
and usage scenarios for a state-of-the-art Fast Multipole Method (FMM),
which is a popular N-body method. We use a dedicated Application
Specific Integrated Circuit (ASIC) to accelerate General Matrix-Matrix
Multiply (GEMM) operations. FMM is widely used in applications and
is representative example of the workload for many HPC applications.
We compare architectures that integrate the GEMM ASIC next to, in
or near main memory with an on-chip coupling aimed at minimizing or
avoiding repeated round-trip transfers through DRAM for communication
between accelerator and CPU. We study tradeoffs using detailed and
accurately calibrated x86 CPU, accelerator and DRAM simulations.

Our results show that simply moving accelerators closer to the chip
does not necessarily lead to performance/energy gains. We demon-
strate that, while careful software blocking and on-chip placement op-
timizations can reduce DRAM accesses by 2X over a naive on-chip
integration, these dramatic savings in DRAM traffic do not automatically
translate into significant total energy or runtime savings. This is chiefly
due to the application characteristics, the high idle power and effective
hiding of memory latencies in modern systems. Only when more aggres-
sive co-optimizations such as software pipelining and overlapping are
applied, additional performance and energy savings can be unlocked
by 37% and 35% respectively over baseline acceleration. When similar
optimizations (pipelining and overlapping) are applied with an off-chip
integration, on-chip integration delivers up to 20% better performance
and 17% less total energy consumption than off-chip integration

1 INTRODUCTION

The end of Moore’s law era means that single-socket,
general-purpose hardware is quickly approaching its limits.
A possible path to increasing single-socket performance is
to consider ASIC-based special-purpose hardware (hereby
an “accelerator”). By sacrificing programmability, accelera-
tors provide the best performance with respect to time-to-
solution and energy consumption.

However, most of the existing research on ASIC-based
accelerators has focused on individual computational ker-
nels [12], [11], [42], [41], [27], [35]. In practice, many appli-
cations comprise several compute and data transformation
kernels (e.g., scatter/gather, transpose, and permutation
operations), out of which selected kernels such as General
Matrix-Matrix Multiplies (GEMMs) and Fast Fourier Trans-
forms (FFTs) are offloaded to an accelerator.

A key concern in system-level design is the architec-
tural integration of the accelerator with the host system.
Where in the memory hierarchy do we place the accelerator
in order to reduce data movement and communication

overhead? Traditionally, accelerators have been integrated
as off-chip devices placed near DRAM. This requires all
data to be exchanged through DRAM. Such off-chip data
movement can negate performance benefits of acceleration
and can account for up to 50% of dynamic access energy
in HPC applications [14]. More recently, accelerators have
been moved in or near main memory [3], [50], but this
only affects how efficiently the accelerator itself can access
memory. To minimize or completely avoid off-chip DRAM
transfers, accelerators can instead be integrated on the same
die and coupled by sharing the last-level cache (LLC) with
CPUs [32], [48], [1]. However, such a design also has its own
shortcomings. If data exceeds LLC capacity, expensive spills
to DRAM will still take place—depending on application
locality patterns. Overall, deciding on whether on-chip or
off-chip placement is better depends strongly on application
and architecture interactions.

In this paper, we present a comprehensive algo-
rithm/architecture co-design case study for a complex
HPC application consisting of multiple interdependent
kernels executing on a host CPU assisted by a cus-
tom hardware accelerator. We quantify, analyze, and ex-
plain the impact of joint accelerator integration and place-
ment, algorithm/architecture and hardware/software co-
optimizations on a representative HPC code both from a
performance and energy perspective. Specifically, we study
these tradeoffs for an application that consists of multiple
GEMM calls that are combined with complex data-structure
accesses and memory reshuffling. This workload is common
in many HPC applications but as an example we study the
Fast Multipole Method (FMM). FMM approximates a dense,
O(N?) matrix-vector multiplication by a sparse, O(N)
matrix-vector multiplication. FMM belongs to the broad
class of N-body methods used in computational physics and
machine learning [17], [6], [38], [31], [20]. The fraction spent
in N-body solvers varies from 100% in electromagnetic and
acoustic scattering, to 80% in astrophysics and complex fluid
simulations, to less than 50% in molecular dynamics.

We consider the near-interaction computation in volume
FMM (a particular FMM variant), referred to as the “U-
list”. The U-list computation is a sparse matrix-vector mul-
tiplication computed by traversing a non-uniform octree
to setup a series of GEMMs of various sizes, interleaved

with data reshuffling, and matrix-matrix accumulation. In
well-optimized FMM codes the U-list accounts for 50% of
execution time. The remaining time goes to far-interactions,
which have the same workload pattern [37]. Indeed, this
pattern—GEMMs interleaved with data-transformations—
is prominent in HPC applications, e.g., N-body methods,
high-order finite element methods [7] and hierarchical ma-
trices [49]. By varying a parameter that controls the size of
the GEMM s in the U-list, we can model workloads that are
both compute- and memory-bound.

We accelerate the GEMM operations in the U-list us-
ing a dedicated ASIC, the Linear Algebra Processor (LAP)
from [41] as an example of a typical GEMM accelerator. We
chose the LAP for our studies since it represents an extreme
case of acceleration that amplifies the impact of placement
and data movement tradeoffs. Compared to modern GPUs,
the LAP delivers a similar performance while having 7-10x
better energy efficiency [41]. Note that our primary goal is
to study relative accelerator placement effects/tradeoffs in
terms of total system energy and runtime, not absolute ben-
efits or comparison of specific acceleration options. As such,
while quantitative results will vary, we expect the main
qualitative placement insights to be independent of and to
transfer to other accelerators or system configurations.

To study placement tradeoffs, we first develop a generic
performance model. Using this model, we perform design
space explorations across different application and archi-
tecture parameters. We complement analytical studies with
simulations using the extended MARSSx86 system simula-
tor from [5], which integrates a LAP and is calibrated to
closely match the performance of modern x86 machines
for faithful heterogeneous system studies. We extend this
simulator with detailed energy [33] and DRAM [43] models.
Using this setup, we study different architecture variants by
integrating the U-list with GEMM on the LAP, and we test
performance and energy for U-list without LAP, U-list with
a LAP next to or in DRAM, and U-list with on-chip coupling
of the LAP at the LLC. We combine architecture with algo-
rithm co-optimizations by proposing software modifications
for data blocking, pipelining and overlapping of accelerator
computations.

Our results show that simply integrating accelera-
tors onto the chip does not necessarily lead to perfor-
mance/energy wins. For the FMM application we evaluate
in our study, naive on-chip integration of a hardware ac-
celerator alone can reduces DRAM accesses by up to 26%
compared to an off-chip integration. With careful algorithm
co-optimizations, DRAM accesses can be reduced further
by up to 2x for a total of 3x savings. However, even after
carefully blocking GEMM operations to fit into LLCs, there
are only minor performance and energy variations over
a naive off-chip integration. This is due to the compute-
dominated nature of GEMM operations and performance
otherwise being determined by base memory overhead. We
similarly observed that when taking static memory idle,
leakage and refresh power into account, the large reductions
in dynamic DRAM accesses do not translate into significant
total energy savings. However, when more aggressive co-
optimizations such as software pipelining and overlapping
with on-chip accelerator coupling are applied, further run-
time and energy savings of 37% and 35% are achieved,

2

respectively. When similar optimizations are employed in
off-chip integration, on-chip integration offers up to 20%
better performance with 17% less total energy consump-
tion. As such, we observe that on-chip integration offers
more opportunities for runtime and energy gains. However,
depending on application characteristics and parameters,
overall performance and energy are in other cases compara-
ble across off- or on-chip couplings.
In summary, we make the following contributions:

e We study accelerator integration tradeoffs for a
representative N-body code comprehensively under
consideration of different application and architec-
ture scenarios, hardware/software co-optimizations,
problems sizes and FMM parameters, which allow
us to simulate both compute-bound and memory-
bound workloads.

e We co-optimize architectures and algorithms
by developing novel accelerator-aware
hardware/software coupling and algorithm
optimizations.

o We quantify, analyze and identify detailed accelera-
tion benefits, tradeoffs and limitations in the context
of the FMM U-list and the LAP ASIC using both an-
alytical performance models as well as simulations.

e To the best of our knowledge, this is the first com-
prehensive co-design study of actual system-wide
hardware acceleration benefits and tradeoffs under
different accelerator integration/placement, architec-
ture and software optimizations, specifically for cus-
tom hardware FMM acceleration.

The rest of the paper is organized as follows: after
related work discussion in Section 2, we provide a back-
ground on FMM and the LAP accelerator in Section 3.
We then introduce generalized application and architec-
ture models as well as HW/SW co-optimizations in Sec-
tions 4 through 6. Using analytical performance models, we
present projections and an exploration of different applica-
tion/architecture scenarios in Section 7. Finally, we demon-
strate a comprehensive simulation-based performance and
energy evaluation in Section 8, followed by a summary and
outlook in Section 9.

2 RELATED WORK

The demand for increased system specialization and het-
erogeneity originated as a response to the end of tradi-
tional semiconductor scaling [18], [47]. To date, heteroge-
neous computing has received steady attention both in
academia [11], [42], [23], [54] and industry [29], [1]. As one
type of specialization, custom hardware accelerators and
accelerator-rich system designs promise order of magnitude
performance and power benefits beyond traditional CPUs
and GPUs. Accelerators are often designed as standalone
components that communicate with the rest of the system
through some interface [27], [35]. While a large amount of
accelerator research has focused on the performance and
energy improvements [47], [11], [23], [41], system-level inte-
gration and implications have received less consideration.
Initially, such ASICs were envisioned as external devices
located in a separate chip different from the host system. As

such, any data transfer has to be exchanged through DRAM.
To address the overhead of off-chip memory accesses, re-
searchers have proposed methods for hiding communica-
tion latency using overlapped computations, e.g. via special
direct memory access (DMA) [51], [44], [26] and DMA
pipelining mechanisms [41]. More recently, processing-in-
memory (PIM) architectures have gained renewed atten-
tion [34]. With advancements in 3D technology, integration
of general-purpose or specialized compute units into the
logic layer of 3D stacks has been investigated to exploit mas-
sive memory bandwidth at low energy consumption. While
such approaches in general help move accelerator compu-
tation closer to memory, not every application pattern can
benefit. In particular, most PIM work assume limited to no
data sharing between the PIM accelerators and the host [3],
[50]. By contrast, in domains where data is frequently shared
and exchanged, the potential benefit of PIM acceleration is
limited and unclear.

Alternatively, we can place the accelerator on the chip.
To optimize on-chip cache-level integration, caching and
cooperative prefetching policies have been proposed [32],
[48]. Other approaches allow accelerator local memories to
become part of the shared cache substrate, thereby extend-
ing LLC capacity when accelerators are not in use [15].
Within this context, PIM-like approaches closely couple
accelerators with on-chip caches [2], but such architectures
are again targeted at offloading operations that manipulate
data already residing in caches.

In all cases, existing work is limited to hardware- and
architecture-managed integration issues. There is no exist-
ing work that evaluates and compares actual system-wide
benefits and tradeoffs of different on-/off-chip accelerator
couplings. Our work is the first to study and demonstrate
cross-layer acceleration tradeoffs from a system-level and
hardware/software perspective, specifically in the context
of HPC applications. Furthermore, not only do we study
hardware-centric optimizations, but we also propose soft-
ware modifications to fully exploit performance and en-
ergy opportunities of acceleration. Our results show that
for real applications, careful architecture and software co-
optimization effort is required in order to unlock on-chip
integration gains. We do not discuss the vast literature
on HPC applications on GPU-accelerated systems. Again,
our primary goal is to study relative accelerator placement
effects/tradeoffs in terms of total system energy and run-
time, not advocating for absolute benefits or comparison of
specific acceleration options. For a review focused on energy
consumption see [39].

Previous work have investigated FMM acceleration op-
portunities using GPUs and FPGAs [53], [16], [24], [9].
Examples of GPUs and FMM coupling (and an energy
consumption model) include [10] and [14]. Special-purpose
systems for N-body codes include [40], [45]. More relevant
to the questions we study in this paper are efforts to
integrate N-body methods with FPGAs. Examples include
[46] in which a direct O(N?) N-body code (without FMM
acceleration) is ported to an FPGA. In [52], the authors
combine FPGAs with tree codes (another variant of fast
N-body code). This is an FFT based N-body particle code,
where near interactions for each tree node are shipped to
an FPGA. The authors evaluate performance improvements,

3

but they do not study the coupling placement and co-
optimizations tradeoffs questions we consider here. In [36]
the authors study an ASIC for the direct evaluation of pair-
wise interactions. The main focus of [36] is the description of
the ASIC and characterization of its performance. It does not
examine more complex algorithms like FMM and no other
architectural tradeoffs are studied.

3 BACKGROUND

In this section, we briefly describe the FMM application and
LAP accelerator used as examples for our study.

3.1 FMM

The FMM was originally presented in [22] as an algorithm
to accelerate computation of gravitational (or Coulombic)
potentials due to a distribution of N-particles (also called an
N-body problem),

N

b :ZG(zi,fﬂj)mg‘, 1)

j=1

where z; and m; are the positions and masses of the
particles, G(z;,z;) = m is the gravitational potential
kernel and ¢; is the required potential at particle 7. This
is essentially a matrix-vector product with a dense NxN
matrix whose entries are G;; = G(z;,z;) and it requires
O(N?) work to compute this product. The FMM works by
geometrically partitioning the problem into smaller boxes
(Figure 1-Left) using a tree data-structure (called octree in
3D). The interactions between adjacent boxes (called the
U-list interactions) are computed directly and all other in-
teractions are computed using clever hierarchical low-rank
approximations. This reduces the overall cost to O(N).

Based on this idea several variants of FMM have been
developed, including the volume FMM [21], [19], [13], [30],
[37], [38], which computes potentials due to continuous
mass (or electric charge) distributions through an integral
transform. The potential computed in this way solves the
Poisson’s equation: A¢p = f where f is the mass density
and ¢ is the required potential. This idea is also appli-
cable to solving many other partial differential equations
(PDEs). Instead of computing interactions between irregular
distributions of particles, volume FMM can be viewed as
having regularly spaced particles in each leaf-box of the tree,
sampling the density function at those locations' (Figure 1-
Center). In 3D, there are (q+1)(q+2)(q¢+3)/6 ~ ¢>/6 par-
ticles per box, where the parameter ¢ is the order of the
method. Interactions between adjacent boxes, called the
near-interaction or the U-list interactions, are computed
directly using matrix-vector products while the interactions
with the remaining boxes are computed using hierarchical
low-rank approximations. In this paper, we only consider
the U-list part of the computation which we describe in
more detail below.

The N-body problems that we consider are translation-
ally invariant and scale invariant i.e. if all the particles are
shifted in space by the same amount or the distance between

1.in practice we use a Galerkin scheme using Chebyshev basis
instead of a nodal basis; however, this detail is unimportant for the
discussion in this paper.

Fig. 1: Left: A gravitational N-body problem depicting a galaxy with several particles and the geometric partitioning of
the problem in FMM. The particles in the red-box interact directly (using matrix-vector product) only with particles in
the blue-boxes (in addition to the red-box itself). The remaining interactions are approximated using hierarchical low-rank
approximations. Center: The continuous analogue of the particle N-body problem. The continuous mass density function
is sampled at regularly spaced points (green) in each box. The interactions between particles in the red-box are computed
using direct mat-vecs with particles in the red and blue boxes. This set of boxes is called the U-list of the red box and the
interactions are called U-list interactions. Right: The N x N matrix for a volume FMM problem with order ¢ = 14 and 358
boxes, each containing 680 particles for a total of N = 2.4e5 particles. Each pixel in the image represents a dense 680 x 680
block of the matrix corresponding to the interaction between two boxes. The colored pixels represent the U-list interactions
and the colors denotes one of the 10 precomputed matrices from which it is derived.

the particles is scaled by a constant factor, then the potentials
remain the same (up to a constant scaling factor). In the
volume FMM, since the particles are regularly spaced in
each box, the matrix block for the U-list interaction between
two boxes depends only on the relative position of the two
boxes. In our octree data structure, we ensure that adjacent
leaf-nodes are within one level of each other. This restricts
the number of unique U-list interaction matrix blocks to just
139 and allows us to precompute these matrix blocks instead
of evaluating the matrix entries on the fly. Furthermore,
these N-body problems are also rotationally invariant i.e.
if the entire domain is rotated then the potentials still do not
change. For the FMM algorithm this implies that each of the
139 U-list interaction matrix blocks (A° for i = 1,---,139)
can be derived from one of ten precomputed matrices by re-
ordering and scaling its rows and columns: A’ = M* A% K,
where M and K* are permutation and scaling operators
(special type of sparse matrices) requiring O(q?) storage
each; and A7 (for j = 1,---,10) are precomputed dense
matrices requiring O(q®) storage each.

Figure 1-Right shows the U-list matrix blocks in a vol-
ume FMM problem with the colors denoting the precom-
puted matrix from which the matrix-block is derived. The
repeating matrix blocks provide tremendous opportunity
for maximize performance by exploiting data locality in
computing these interactions. The PVEMM library [37], [38],
which is the test bed for for all of our experiments, is highly-
tuned for the x86 architecture, on which it has demonstrated
up to 60% of the peak theoretical FLOP rate. It achieves this
high performance using data locality in the computations.

This sparsity pattern and repeating matrix blocks (due
to translational, scale and rotational invariance of the PDE)
is also typical of other other PDE solvers relying on uniform
meshes or trees based spatial discretization of the domain,

such as finite element methods (FEM) and finite difference
methods (FDM). Therefore, the results of our experiments
also extend to these methods. Furthermore, the parameter
g, which we vary in our experiments, determines the size
of the matrix blocks in U-list computation and determines
the arithmetic intensity (ratio of floating point operations
to memory operations) of the computation. When ¢ > 8, we
are in a compute-bound regime and the workload resembles
many practical FMM problems as well as high-order stencil
codes. When ¢ < 8, we are in a memory-bound regime and
the workload resembles low-order block-structured stencil
codes. Thus by varying ¢ we can analyze both compute-
bound and memory-bound applications.

3.2 Linear Algebra Processor (LAP)

We use the Linear Algebra Processor (LAP) in our studies as
an example of a typical GEMM accelerator. With specialized
microarchitecture optimizations, the LAP can provide mas-
sive parallel compute capabilities within tight power and
area constraints. Previous work has demonstrated that a
double-precision LAP with 15 internal cores can run GEMM
with 600 GFLOPS at 1.4GHz with 90% utilization in an
area of 120mm? in 45nm technology [41]. By comparison,
modern GPUs reach a GEMM performance of 350 GFLOPS
at 70% utilization in a total of 500mm? chip area [41]. All
in all, the LAP achieves 25 GFLOPS/W GEMM efficieny,
making it 10x more energy efficient than modern GPUs [41].

Figure 2 shows the overall microarchitecture of a single
LAP core. It consists of a 2D array of 4 x 4 processing
elements (PEs). Each PE has a multiply-accumulate (MAC)
unit with a local accumulator and local storage separated
into a bigger single-ported and a smaller dual-ported local
memory. PEs are connected by low-overhead horizontal and

External I/F
'y
On-chip SRAM OWT —
| Write |
Column Bus
PE PE PE PE Write m
0o [en] ©2 ; .
>
PE PE PE PE \Accumulator/ MEM B
@0 [anl| (@2 .3 _MA‘C
PE PE PE PE =1=
o[len] @2 ‘g —
| MEm A
PE PE PE PE || |
| programmed
BoY (@Y |62 I omtrolier | ¥ ¥

Fig. 2: Linear Algebra Processor (LAP) [41].

on-ChIp C'/ III @\\\ Bp
Memory 1C11| 4= 1 X \\n/2 \
/ / \ \
/ / p / \ \
/ /l / \ \
! /’ \ \
/ II \\
// II :
Main - A B
Memory o’ += X

Fig. 3: Blocking mechanism of larger matrices [41].

vertical broadcast buses. MAC units perform the inner dot-
product computations central to GEMM operation.

A LAP can integrate multiple cores together with a
shared local scratchpad memory. When a GEMM kernel
is offloaded to the LAD, its problem size can exceed LAP
local memory capacity. To address this challenge, the LAP
internally tiles/blocks larger problems into smaller chunks
that fit into its local memory and that are processed succes-
sively. Figure 3 illustrates the LAP blocking scheme. The
LAP fetches sub-blocks of matrices A, B and C into its
local memory, denoted by A,, B,,, C; ; respectively. The LAP
cores then further block sub-matrices to distribute them
across PEs. Multiple LAP cores can thereby operate on
different sub-blocks concurrently. The LAP performs sub-
block operations repeatedly until the GEMM is complete.

For details about the LAP architecture and its perfor-
mance analyses see [41]. In our study, we employ a single-
core LAP with 2MB of internal memory. We modified the
application to offload the GEMM kernel to the LAP with the
help of a device driver. The LAP then performs the GEMM,
and interrupts the host CPU when it has finished.

4 APPLICATION MODEL

In this section, we use the FMM example to derive a gener-
alized and representative HPC application model. We first
describe FMM dataflow and computation patterns, and then
introduce a corresponding application performance model.

4.1 Data Flow and Computation Patterns

The overall data flow and computation pattern is presented
in Figure 4. It shows the three main parts in U-list com-

5

putation, namely the input permutation, the main GEMM
Kernel, and the output permutation. The preprocessing or
the input permutation step applies the permutation and
scaling operator K to the input array, labeled “in”, and
assembles the result into the matrix B. This step mainly
consists of light-weight computation along with data shuf-
fling. The main GEMM computation kernel then computes
the product of the precomputed matrix A with matrix B
and produces matrix C as the result. The width of matrices
B and C is equal to the number of times the matrix block A
appears in the U-list matrix (shown in Figure 1-Right) and
this can be hundreds or even thousands of columns wide.
Since the GEMM requires a significant amount of compute
resources, it is the main candidate for accelerator offloading.
Once the GEMM is complete, the matrix C' is sent to the
host CPU which performs the post-processing computation
to assemble the final result in the array, labeled “out”. This
again involves a combination of light-weight computation
with data reshuffling.

This workflow represents typical program patterns ob-
served in HPC applications consisting of a mix of ir-
regular data transformation and compute-intensive stages.
Throughout this paper, we use the U-list as a representa-
tion of application patterns requiring significant data ex-
changes between irregular code executing on host CPUs and
compute-intensive kernels offloaded to accelerators.

The main FMM parameter in our experiments is g, the
polynomial order of the leaf nodes. For each ¢, we keep
the total problem size fixed at N = 2.4e5 by adjusting
the number of leaf nodes. The matrix B is in the GEMM
(Figure 4), has height approximately (¢+2)3/6. The average
width of B is approximately 2.35N/((q + 2)*/6) (the factor
2.35 is the number of times each A; blocks repeats on
average per block row in the FMM matrix in Figure 1-Right).
Hence for problem size N=2.4e5 and q=10, the size of B is
approximately 286-by-2K and for q=4 it is approximately
35-by-16K. The order g determines one dimension of the
GEMM (the dimension of the square matrix A is approxi-
mately (¢ + 2)3/6, Figure 4). While the size of B (and C)
remains constant, the smaller ¢ is, the smaller A will be and
the thinner the GEMM becomes.

4.2 Performance Model

We present a performance model for generalized applica-
tions that exhibit FMM-like dataflow /computation patterns.
Application model parameters and their values for typical
problem degrees are summarized in Table 1 and Table 2,
respectively. As described earlier, the general application
model consists of three sequential stages:

1) Input permutation: pre-processing to gather leaf node
data with dimensions Ny.; X N, and assemble matrix
B with dimensions k x n = Ny x Ny.

2) Computational kernel: perform GEMM operations to
compute pieces C; = A;B; = 1...10 each with
problem size m x k x n = Ny x Ny x Ny /10.

3) Output permutation: post-process the combined matrix
C with dimensions m x n = N4 x Ny to scatter results
back to leaf nodes.

As mentioned before, pre-/post- processing is executed on
the CPU while the GEMM kernel is either executed on the
CPU or offloaded the LAP.

for (int i=0; i<n; i++){

}

e

Execution Flow

// Pointer arithmetic setup .E, .

// .. (setup in/in perm/in scale ptrs) 12 in

for (int 3=0; j<k; j++) l

B[i][j]= in[in_perm[j]]*in_scale[]j]; %%
//in_perm returns permutated index - Input

Permutation

GEMM

for(int i=0; i<n; i++){

// Pointer arithmetic setup .,

// .. (setup out/out perm/out scale ptrs) a

for (int j=0; j<m; J++) A c

out [out_perm([j]]+= C[i] [j]*out_scale[]];

//out perm returns permutated index Output
} .

Kout_perm Compute out Read out, out_perm,

Permutation

l out

Host CPU Memory Accelerator
in_scale
. Compute B Je—e2d| in, in_perm,
in_perm in_scale
Wi
L8 |z
Qﬁy
A
/ fees
e

|

out_scale v\eac\

out_scale

\\\\ﬂéél\

out

Fig. 4: Data flow graph (DFG) of U-list execution and data movement patterns.

The total execution time 7' is the sum of execution
times 17, 15 and T3 for pre-processing, GEMM and post-
processing, respectively:

T=T1+T>+1T;3 ()

The total data exchanged between pre-/post-processing
and the GEMM invocation can reach more than 3x the
total capacity of even the large 8MB LLC. This requires
a significant amount of shared data written to the LLC
by a producer to be evicted and spilled to DRAM, from
where the consumer has to read it again. As such, shared
data will be spillled and predominantly exchanged through
DRAM. We can thus derive an upper bound on performance
assuming that pre- and post-processing are memory-bound
and not cache-contained, where their cost is dominated
by the time required to read and write matrices from/to
main memory. In case of pre-processing, this includes write-
allocating matrix B into the cache, reading leaf node data,
and writing B back to memory:

Tl :(2NUNq+Nocth)/va (3)

where w¢ is the effective memory bandwidth for a combi-
nation of regular and irregular transfers made by the CPU.

Similarly, in case of post-processing, the cost is deter-
mined by the time to read leaf node data, read matrix C,
and write leaf node data back to memory:

T3 = (2Nocth+NUNq)/wC' 4)

Finally, assuming that memory accesses and computa-
tions are perfectly overlapped, we can derive the cost of
executing the ten GEMM operations as the maximum of
the compute time for one multiply and one accumulate
operation per element and the times to read matrices A and

B and write-allocate and write C' from/to memory:
T, = 10max(2Ny N7 /10fc, Ng(Ng + 3Ny /10) /we))
= max(2Ny N7/ fo, Ng(10Ng + 3Ny) /we),

where fc is the effective number of floating-point opera-

TABLE 1: Application model parameters.

Symbol Description

q Chebyshev degree

Ng (¢ +1)(g+2)(g+3)/6

Noet Number of leaf nodes

Ny Total number of U-list interactions
fe/ fr. CPU/LAP FLOP-rate

we/ wr, CPU/LAP memory bandwidth

TABLE 2: Application parameters as a function of q.

GEMM sizes
q Ny Noet Ny m k n
4 35 6917 164913 35 35 16491
6 84 2885 68769 84 84 6877
8 165 1450 34172 165 165 3417
10 286 869 20129 286 286 2013
14 680 358 8336 680 680 834
18 1330 183 4309 | 1330 1330 431

tions per second (FLOPS) when executing the GEMM.

We validated our performance model by comparing pre-
dicted performance against real performance measured on
an Intel Core i7-920 CPU running at 2GHz with a peak flop-
rate of 8GFLOPS and single-core maximum measured band-
width of 6.4GB/s (theoretical peak is 12GB/s). We run ex-
periments ten times and measure average performance. The
observed variation across runs is less than +0.5%. Table 3
shows the comparison of measured execution times ver-
sus performance predicted by the model. Results generally
confirm that the model captures runtime trends accurately.
Output permutation runtimes show variations with ¢ that
are not tracked by our model. This is due to memory trans-
fers becoming more irregular and hence more bandwidth-
inefficient depending on q. We measured a bandwidth of
0.13GB/s for randomized transfers on the Intel machine
and account for this by applying a reduced average CPU
bandwidth of 0.32GB/s in our output permutation model.

TABLE 3: CPU performance model validation.

Model [MCycles] | Real [MCycles]

q | T Ty T3 | Ty T T
4129 101 38 | 27 158 26
6|29 242 31126 303 33
8 | 28 465 33126 533 34
10 | 29 823 35|26 916 35
14 | 28 1928 34 | 25 2064 34

5 ARCHITECTURE MODEL

Based on their granularity of coupling, hardware acceler-
ators can be fundamentally classified as tightly coupled or
loosely coupled [8]. Tightly coupled accelerators are attached
to the main processor pipeline as one or more special-
ized functional units (FUs) located inside or very close to
the main processor core. They typically realize fine-grain,
short-latency computations, such as floating-point, vector
or SIMD operations. As such, they generally share key
resources with the processor core (e.g., register file, MMU
and L1 data cache) while in some cases possessing their
own additional internal storage. Similar to co-processors,
tightly coupled accelerators require special instruction set
architecture (ISA) extensions to manage their operation.

By contrast, loosely coupled accelerators are located
outside of the main processor core and connected via cache,
memory or I/O buses, or over on- or off-chip interconnect.
Loosely coupled accelerators are often also called coarse-
grained, due to the fact that they typically operate on
coarser invocations of complete tasks, kernels or even an
entire application. They typically operate asynchronously,
where triggering of their operation and synchronization
of completion and results is achieved through memory-
mapped /0O, polling or interrupt mechanisms. Proper com-
munication and synchronization with such accelerators is
accomplished through device drivers for handling of in-
terrupts, cache flushes and/or memory copies. GPUs and
network/cryptography processors [35], [4] are examples
that belong to this class.

In this work, we focus on integration tradeoffs of loosely
coupled custom ASIC accelerators. We use the LAP [41] as
an example for coarse-grain custom hardware acceleration
of GEMM operations in the FMM U-list. We study different
LAP coupling scenarios and their implications and system
tradeoffs. Specifically, we investigate two different cases
(Figure 5): (1) the accelerator is externally coupled as an
off-chip device sharing DRAM with the host CPU, and (2)
the accelerator is located on the same chip as the host CPU
sharing the last level cache (LLC). In this study, we assume a
modern, high-end x86 CPU with a typical aggressive wide-
issue and out-of-order processor micro-architecture.

5.1 External Off-chip Coupling at Shared DRAM Level

In this scenario (Figure 5a), the LAP is connected to the
external, off-chip system bus. The LAP accesses all its neces-
sary input and output data in the DRAM through the system
bus and a DMA controller. To avoid coherency protocol
overhead, we assume that LAP and CPU are non-coherent.
Instead, as shown in Figure 5a, before the LAP attempts
to read inputs from the memory, if there exists any dirty

7

data in the host CPU caches, the software has to explicitly
manage coherency and tell the CPU to evict relevant data
from its caches to DRAM. For example, this can be done
via the “clflush” instruction in the x86 ISA. Once data is
synchronized and the LAP has been triggered, it will operate
directly on data in DRAM. The LAP will issue memory
requests to DRAM, subject to DRAM latency. The LAP will
prefetch data and overlap computation and communication
through its internal scratchpad memory. At the end of one
invocation, the LAP will have stored all output data back to
DRAM, from where it can be accessed by the CPU. Before
accessing the LAP results, the CPU driver will ensure that
all previously cached copies are invalidated.

In a PIM setting, the accelerator would be coupled and
integrated directly in or near DRAM. The main benefit is
increased bandwidth for DRAM accesses by the accelerator.
However, GEMM on the LAP is compute-bound and not
bandwidth-limited, i.e., we would not expect to see any
performance benefits from such in-memory integration. As
such, we exclude this as a separate case in our studies. From
an energy perspective, our simulation models currently do
not explicitly account for off-chip interconnect energy. This
underestimates energy costs for DRAM accesses. At the
same time, in a PIM case, off-chip interconnect overhead
would only be incurred for DRAM accesses by the CPU,
which would in turn again be closer to our reported re-
sults. In literature, dynamic energy costs of 20p]J/bit are
reported for off-chip DRAM interfaces in current 40nm
technology [28] on top off around 60p]/bit for actual DRAM
accesses including all dynamic read/write and activation
energy as modeled in our setup. In addition, both intercon-
nect and DRAM incur similar proportions of static versus
dynamic power [25]. Our reported DRAM energy results
can thus be scaled accordingly to account for additional
interconnect costs in either PIM or non-PIM scenarios.

5.2

To avoid communication via external DRAM accesses, we
couple the LAP at the LLC by connecting it to the internal
bus network between L2 and LLC—in the same way as
other cores are interconnected in multicore systems. As
shown in Figure 5b, the LAP shares the LLC with other
cores. It will access all data through the LLC. Since the LAP
itself explicitly manages all memory and internal scratchpad
accesses, we want to avoid the overhead of it having to
participate in the L2 coherency protocol. Instead, the LAP
expects necessary data to be in LLC or DRAM when it starts
computing. However, since data might be cached in the
CPU’s L1 or L2, the CPU now has to explicitly evict data to
the LLC. In our setup, caches are non-inclusive and write-
back. The clflush instruction by default evicts the targeted
block all the way to DRAM. If the block exists in the LLC, it
will be invalidated and further evicted. In our scenario, we
wish to manage the eviction and keep or store the block
in the LLC by not invalidating and potentially updating
an already existing, or by allocating a new LLC cache
line that potentially replaces and evicts others. There are
two plausible options to support this: (1) adding a special
instruction in the ISA that handles eviction only to the LLC,
or (2) setting a configurable register in the LLC controller
to identify if a block should be invalidated or kept/stored

Internal On-chip Coupling at Shared Cache Level

Core 0

Lsu

—>
| LLC
® Evict to DRAM AP
[ofi-chip@ urrmea]] FEIHE-[F
® Get data | e
DRAM
N Mem

(a) Off-chip coupling at shared DRAM.

Core O LAP

Lsu

&
<€

@ Get data

S

(2 LAP Request
@ Evict to LLC

Off-Chip _

(b) On-chip coupling at shared LLC.

&
<€

Fig. 5: Accelerator coupling at different levels of the memory hierarchy.

when software eviction happens. We opted for the latter
implementation due to its simplicity and transparent change
from the software perspective.

Figure 5b shows the data movements for this case. The
CPU evicts necessary data to the LLC. Afterwards, the LAP
accesses the LLC to get its data to operate on. If the LAP
experiences an LLC miss, the request is forwarded and
serviced by the main memory controller. Similarly, the LAP
writes results back to the LLC, which, in case of capacity
misses, can lead to previous results being evicted to DRAM.

A closer integration with potentially lower distance and
latency would be to couple the accelerator to the CPU at
the level of L1 or L2 caches and buses. While we considered
this option, it is less appropriate for loosely coupled coarse-
grain accelerators. Such accelerators usually afford a greater
area budget than tightly coupled ones. This allows them
to operate with complex data paths and internal memory
for acceleration of complete tasks or kernels. Coupling a
greater area budget close to the main CPU would pose
challenges in achieving timing closure and meeting tight
clock frequency constraints set for latency-sensitive L1 and
L2 caches. Moreover, buses and interconnect of private L1
and L2 caches are usually not designed to support multiple
connected cores. Furthermore, when task-level accelerators
are allowed to access and share a private L1 or L2, the
capacity pressure of the relatively small caches increases.
Hence, potential performance degradation resulting from
cache pollution and cache trashing can negate acceleration
benefits, especially when executing on CPU cores and accel-
erators concurrently. A number of recent works have pro-
posed acceleration engines placed in between L1 and L2 [2].
However, for reasons outlined above, such approaches do
not target task/kernel level invocations, but are restricted to
acceleration at finer instruction-level granularity.

5.3 Performance Model

In the following, we extend our performance model from
Section 4.2 to incorporate different on-/off-chip accelera-
tor coupling scenarios. We assume that once the CPU is
done with pre-processing, the GEMM is offloaded to the

accelerator without any further modifications. However, as
mentioned in Section 4.2, since the total data exchanged by
the CPU and the accelerator during one GEMM invocation
can reach more than 3x the total capacity of the S8MB LLC,
shared data will be spillled and predominantly exchanged
through DRAM in both on- and off-chip coupling scenarios.
In other words, a large fraction of data is exchanged through
the DRAM in either case, i.e., even when the LAP is coupled
to the LLC.

We can thus derive an upper bound on performance
assuming that pre- and post-processing times 77 and T3
remain memory-bound and are not impacted by accelera-
tion or different accelerator coupling scenarios. In contrast
to the CPU performance model from Section 4.2, however,
we can express the processing time of the GEMM kernel on
the LAP as follows. As mentioned before, the LAP performs
internal blocking to compute C' = AB in r sub-blocks with
dimensions m. X n.:

r=[n/n:] *[m/m.] (6)

To compute each sub-block, the LAP needs to read the sub-
block of C with size m. x n. as well as m. x k and k x n,.
sized panels of A and B into its local memory, perform
the GEMM and then write the sub-block of C back. Again
assuming that memory accesses and computations are per-
fectly overlapped, we can derive the cost of computing all
7 sub-blocks for each of the ten GEMMs on the LAP as the
maximum of compute time and the time to read/write data
from/to memory:

Ty = 10max(2mkn/ fr, r(2mene + mek + kne)/wy)
= max(2NUN(12/fL, 10r(2men. + Ny(me +ne))/wr),
@)
where block sizes for a LAP with 2MB of local memory are

determined to fit all data as m. = min(max(m,64), 256)
and n. = min(max(n, 64), 256).

6 HW/SW Co-OPTIMIZATION

In this section, we discuss HW/SW co-optimization op-
portunities to exploit coupling options and optimally take

Time

CPU/(in(0))i in(1) :\'outw)l in(2))i e | (out(i-2) in(i))
- N\ '

gemm (i-1)

LAP N N

gemm (0) gemm (1)

Fig. 6: Software blocking, pipelining and overlapping.

advantage of the underlying system architecture.

6.1 Cache-Aware Blocking

In order to minimize data movement and unnecessary
round-trip transfers to DRAM with LLC coupling, all data
should ideally be exchanged between CPU and the acceler-
ator exclusively through the LLC. As Figure 4 shows, in the
U-list, CPU and LAP communicate by exchanging matrices
B and C during GEMM calls. Since the LAP operates on
both matrices simultaneously in a streaming fashion, ideally
both matrix B and matrix C should remain resident in the
LLC for the duration of such calls. To achieve this, we
modify the U-list such that the program operates on smaller,
blocked versions of matrix B and C whose total size is equal
or smaller than the LLC capacity.

6.2 Prefetching, Pipelining and Overlapping

When GEMM operations are executing on the LAP, the CPU
is generally idling until the LAP signals completion and the
output permutation can resume by processing the C result.
However, we can note that auxiliary M.scale and M.perm
metadata needed by output permutations is independent
of GEMM execution and can thus be prefetched ahead. We
modify the code flow to accommodate this optimization,
such that the CPU prefetches the required metadata for out-
put permutation while the LAP is performing the GEMM.
Moreover, with blocking of matrices into tasks with
smaller granularity, we can apply software pipelining to
exploit additional overlapping and parallelism between ac-
celerator and CPU. As shown in Figure 6, with input per-
mutation, GEMM, and output permutation tasks denoted as
in(i), gemm(i), and out(i), respectively, where i represents the
iteration phase of the blocking, while the LAP is operating
on one iteration of the GEMM, the CPU simultaneously
performs output and input permutations for the portions of
B and C from the previous and next iterations, respectively.
Initially when i=0, the CPU starts executing the first
block of the input computation, in(0). The first block of the
input computation will produce a number of column vectors
of matrix B, encapsulated by the green rectangle on the top
part of figure 6. Afterwards, when the input permutation
enter stage in(1), the LAP executes gemm(0) which takes
the input produced by the CPU at in(0). Then on the next
stage, the result of the GEMM computation will be ready to
be used by the out(0). Moreover, on this stage, the LAP is
simultaneously ready to execute the next iteration gemm(1).

6.3 Performance Model

We discuss how our performance model can be further
extended to account for blocking and pipelining optimiza-
tions. Execution is blocked into b smaller sub-problems of
size m X k x n = N, x N, x Ny/b, such that blocks of
matrices B and C' are exchanged between CPU and LAP
through the LLC without the need to go to DRAM:

T=0b(T+1Tr+1T3), (8)

where pre-processing incurs costs for read-allocating rel-
evant leaf node data while flushing dirty lines being
replaced back to DRAM, the GEMM is predominantly
cache-contained, and post-processing incurs costs for read-
alllocating leaf node data into the cache. The size of leaf
node data accessed per block is thereby upper-bounded by
the block dimension n = Ny /b:

Ty = 2min(Nyet, Ny /b) Ny /we 9)
Ty = 2NyNg /bfr (10)
T3 = min(Nye, Ny /b)Ny/we 11

These b iterations are then further pipelined, where input
and output permutation on the CPU are overlapped with
the GEMM on the LAP. Assuming perfect overlapping be-
tween all memory transfers and computations, and ignoring
filling and flushing of the pipeline, the pipelined execution
time becomes:

T =b max(2Ny NZ /bfr, 3 min(Noet, Ny /b)Ng/we) (12)

7 MODEL-BASED EXPLORATION

In this section, we use analytical performance mod-
els presented in previous sections to discuss algo-
rithm/architecture exploration on various scenarios. We
demonstrate different design points with respect to varying
parameters such as Chebyshev degree, FLOPS, bandwidth and
different HW/SW co-optimizations and coupling scenarios.

Figure 7a plots projected FMM runtime in total system
cycles (CPU cycles at 2GHz) for varying ¢ across differ-
ent fr with off-chip coupling following Equations (2)-(4)
and Equation (7). We explore both a traditional DRAM
coupling of the LAP (using peak DRAM bandwidth of
wr, = 12.8GB/s) as well as a near-memory scenario with
10x more LAP bandwidth (w; = 128 GB/s). In general,
runtime improves with f7, for both options until the GEMM
on the LAP becomes memory-bound. For large ¢, runtime is
dominated by the GEMM kernels and significant speedups
can be achieved by acceleration. For ¢ < 8, the GEMMs
become smaller and are memory-dominated already at
lower LAP FLOPS. A near-memory integration can provide
additional performance, but gains are limited by a strict per-
formance floor set by pre- and post-processing runtimes on
the CPU. In memory-bound cases, near-memory integration
can improve runtime by up to 20% for ¢ = 14.

Figure 7b and Figure 7c show FMM runtime for on-
chip coupling with blocking and pipeling optimizations
(Equations (8) and (12)) , respectively. Comparing Figure 7a
and Figure 7b, we can observe that blocking optimizations
alone rarely improve baseline performance. Since matrices
need to be brought into the cache at least once, pre- and

-
=]
S
-
=]
S

10

)
=]
<]

@-- q=14, wL=12.8GB/s —— q=14, wL=128GB/s 8 q-14 & q-14
9--- q=10, wL=12.8GB/s —— q=10, wL=128GB/s A 4—q=10 *—q=10
500 -A--- q=8, wL=12.8GB/s —a&— q=8, wL=128GB/s 500 \\\ A— Q=8 500 —A—(q=8
%-- q=6, wl=12.8GB/s —m— q=6, wlL=128GB/s AN X—q=6 g6
$ 400 ©-- q=4, wl=12.8GB/s —@— q=4, wL=128GB/s ¢ 400 1 AN °—q=4 ¢ 400 —o—q=4
K s e 2
O S -
2 300 4 2 300 2 300
S S g 5
= = > - =
- - —
s = 200 — * 2 200
———§ ———————

N
=]
S

=
1)
S
i
o
S

,_.
1)
S

<)

T T T T
80 160 320 6 40 80
fL [GFLOPS]

(a) Off-chip DRAM coupling.

I
o

1L [GFLOPS)

0

T T - T T
160 320 6 40 80 160 320 640
1L [GFLOPS]

(b) On-chip LLC coupling with blocking. (c) On-chip LLC coupling with pipelining.

Fig. 7: Design space explorations with different optimizations and LAP coupling scenarios.

post-processing benefit from blocking optimizations only
in a limited manner, while the GEMM is largely compute-
dominated. By contrast, pipelining optimizations (Figure 7c)
can further improve performance. With a properly balanced
pipeline, the GEMMs are hidden and a constant execution
time as determined by the sum of pre- and post-processing
times is achieved irrespective of g or fr. For ¢ = 14 and low
fr, a pipeline imbalance leads to runtime being dominated
by GEMM:s again.

8 SIMULATION-BASED EVALUATION

In this section, we present our evaluation methodology and
comprehensive results across different acceleration options.
As discussed before, we adopt FMM U-list as a represen-
tative application exhibiting heterogeneous data exchanges
between host CPU and an accelerator.

We use a cycle-accurate MARSSx86 [5] full-system sim-
ulator for architecture evaluation. The simulator itself has
been calibrated to model a highly representative x86 CPU
baseline targeting HPC applications. We specifically config-
ured and calibrated the simulator to match an Intel Core
i7-920 CPU. As an example of a hardware accelerator, the
simulator from [5] integrates a cycle-accurate model of the
LAP. We feed statistics obtained from MARSSx86 into Mc-
PAT [33] to model the total CPU energy. Finally, we attach
DRAMSIim2 [43] to model an accurate DRAM delay and
energy. We measured a single-core maximum bandwidth
of 3GB/s in the simulator and use that for performance
models. Table 4 shows the detailed system configuration.

We run FMM using the simulator across different gs. We
fast-forward execution in native emulation and only simu-
late the U-list using the cycle-accurate system model. Since
execution statistics from the simulator are deterministic, we
only use a single run for every ¢ scenario.

8.1 DRAM Accesses

We first evaluate impact of integration options on DRAM
overhead, which is the main optimization goal affected by
different accelerator couplings. Figure 8 shows the total
number of DRAM accesses in the U-list under different
HW/SW coupling options across varying ¢q. We compare
the original U-list with basic acceleration of GEMM calls
(Orig) to a U-list with prefetching (Orig + Pref), with cache-
aware blocking (Blocking), with blocking and prefetching
(Blocking + Pref), and with blocking and software pipelining

TABLE 4: System configuration.

Parameter Core Model
Clock frequency 2GHz
Fetch Width 4
Dispatch Width 4
Issue Width 5
Commit Width 4
Writeback Width 4
Cache Block Size 64B
L1-I Cache 32kB, 8-way
L1-D Cache 32kB, 8-way
L2 Cache 256kB, 8-way
LLC 8MB, 16-way
LAP
FLOPS rate 40GFLOPS
Local Memory 2MB
DRAM
DDR Type DDR3-1600
Specification Micron MT41J256M4

(Pipelining) for both DRAM and LLC coupled LAP acceler-
ators. As expected, when the accelerator is coupled as an
external device requiring data to be always exchanged via
DRAM, none of the software optimizations significantly af-
fect DRAM accesses. DRAM accesses are slightly increased
with blocking due to reduced cache and scratchpad locality
with smaller matrices.

By contrast, when the accelerator is coupled at the LLC,
a cache-aware blocking approach reduces the number of
DRAM accesses by 50%. The blocking case is optimized to
ensure that all data exchanged between CPU and accelerator
fits into the LLC, avoiding DRAM round trips for CPU-
LAP communication. However, blocking benefits decrease
with higher ¢. In the ¢ = 14 case, due to algorithmic
limitation, the smallest chunk that matrices B and C can
be partitioned into already exceeds LLC capacity. Hence,
significant capacity misses are unavoidable and result in
additional DRAM accesses.

Prefetching does not generally affect DRAM access
counts, but in the blocked case (Blocking + Pref), a minor
decrease is observed. This is due to the Least-Recently
Used (LRU) cache replacement policy. With prefetching,
data already in the LLC is marked as used, which reduces
the likelihood of it being evicted before being needed next
as compared to other, less recently used lines. However,

11

E LAP-DRAM ELAP-LLC

Millions of DRAM accesses
O P N W bHh U1 OO N 0

Fig. 8: DRAM accesses with different integration options across varying g.

600

® Input Perm (LAP-DRAM)
Overlap (LAP-DRAM)

® GEMM (LAP-DRAM)

m Pref (LAP-DRAM)

m Output Perm (LAP-DRAM)

500 -

400 -

300

Input Perm (LAP-LLC)
Overlap (LAP-LLC)
GEMM (LAP-LLC)

m Pref (LAP-LLC)

Output Perm (LAP-LLC)

Million Cycles

200

100

Fig. 9: Execution cycles with different integration options across varying gq.

adding prefetching to a non-blocking approach instead in-
creases the number of DRAM accesses (Orig + Prefetch). Due
to the large number of capacity conflicts in the non-blocking
case, prefetched data is likely be evicted again from the
cache before it can even be used.

8.2 Execution Time

Figure 9 shows total system cycles for U-list execution under
different optimization and coupling options across varying
g. Total execution time is broken down into cycles spent
on different parts, including Owverlap periods in which the
GEMM on the LAP runs in parallel with either prefetching
or input and output permutations on the CPU. Note that
Pref refers to extra cycles spent on prefetching when it can
not be completely hidden behind a shorter GEMM.

Among HW/SW optimizations, due to additional over-
heads, performance is slightly decreased with blocking
alone. Prefetching can in turn be applied to compensate
such overheads. The best improvement is observed from
pipelining and overlapping (Pipelining). At lower g, execu-
tion times are dominated by permutations and there are
only small gains from overlapping them on the CPU with
the GEMM on the LAP. As g grows, first input and then
output permutations are hidden behind the increasingly
dominating GEMM (except for non-overlapped invocations
needed to fill and flush the software pipeline). At ¢ = 10,
both permutations are maximally overlapped and balanced

with the GEMM. This yields a 37% better performance
compared to the non-optimized solution (Orig). However,
these speedups almost exclusively stem from exploiting
available parallelism between accelerator and CPU, i.e. they
are not a function of data movement optimizations and,
ultimately, do not vary significantly across different accel-
erator couplings. Although the number of DRAM accesses
in Figure 9 strongly depends on accelerator coupling and
is significantly reduced with LLC blocking, the impact on
performance is generally relatively minor, with a maximal
gain of up to 20% comparing LLC to DRAM coupling. As
discussed in Section 7, the GEMM is normally compute-
bound and input/output permutation do not benefit sig-
nificantly from blocking.

Closer observation shows that input permutations con-
sume more execution cycles in LAP-DRAM than LAP-LLC
due to flushing overhead to off-chip DRAM. In case of the
GEMM, as it becomes smaller and thinner with smaller
g, the computation to memory ratio and data locality in
the LAP decrease, making it more memory bound. With
ample parallelism, the LAP executing is not latency sen-
sitive, but coupling it to the LLC with higher bandwidth
benefits performance resulting in 10% faster GEMM execu-
tion in LLC vs. DRAM coupling at ¢ = 4 (higher DRAM
bandwidth, e.g. through in-memory LAP placement could
potentially alleviate such differences). However, at bigger
g, GEMM executions differ by less than 2%. Finally, output

12

M Background (LAP+DRAM) M Refresh (LAP+DRAM)

M Activate (LAP+DRAM)

M Burst (LAP+DRAM)

Background (LAP-LLC) Refresh (LAP-LLC)

Activate (LAP-LLC)

M Burst (LAP-LLC)

Joule

g=6

q=8 g=10

Fig. 10: DRAM energy with different integration options across varying g.

B CPU (LAP-DRAM) = DRAM (LAP-DRAM)

H LAP (LAP-DRAM)

® CPU (LAP-LLC) DRAM (LAP-LLC)

LAP (LAP-LLC)

Joule
O B N W b U1 O N

P & & ¢ L% & & & L K & & & L | L & LY & L & &
o & & & §lo & & & § o & ¢ & E e & E & EF o & ¢ &E
* S * S * S * & % S * S * S % > * & % >
@ & & ¢ @ & & & @ & & & @ & & & & & & &
o & 9 o & ¢ o & 9 o & o F ¢
& & & & &
q=4 q=6 q=8 q=10 q=14

Fig. 11: Total energy with different integration options across varying q.

permutations are largely unaffected by coupling. However,
due to increased overhead and cache pressure, performance
actually decreases with LLC coupling and blocking at larger
g. Coupled with previously discussed blocking limitations,
this makes LLC worse than DRAM coupling at ¢ = 14.

8.3 Energy

We further evaluate potential energy benefits of different
architecture and algorithm options. We first focus on DRAM
energy savings as the primary aspect that is affected by
data movement and accelerator placement/coupling opti-
mizations. Figure 10 shows the DRAM energy breakdown
across different coupling options and varying g. We break
energy consumption down into static background energy
due to leakage, energy spent on periodic refresh, and dy-
namic energy consumption dependent on activation and
read /write activity. As can be observed, static background
and periodic refresh energy is the most contributing factor.
Such idle baseline power contributes from 60% up to 80% of
total energy consumption. As such, while dynamic energy
reduces by 50%-60% proportionally to the reduced number
of DRAM accesses shown in Figure 8 with blocking and
LLC coupling, total energy improvements are limited due
to small share of dynamic energy.

At the full system level (Figure 11), this translate into
even smaller savings. The graph shows the total system

energy broken down by contributions from individual sys-
tem components. As can be seen, the CPU consumes the
largest portion of energy spent, followed by the DRAM
and the LAP with a comparably tiny fraction. Due to
additional base overheads and relatively constant energy
contributions by the CPU and the LAP, savings in dynamic
DRAM energy across different integration options and data
movement optimizations have limited effect on total energy.
Variations in energy consumption are predominantly due
to differences in static idle and leakage power accumulated
over different total execution times. This is the case both at
the DRAM and full system levels, where the CPU is also
the dominant contributor of static leakage power (while
its dynamic energy varies little given the same workload).
In other words, energy savings are primarily driven by
improvements in performance.

Through a combination of dynamic DRAM energy and
execution time, i.e. static idle power savings, when coupling
the LAP at LLC and applying aggressive software pipelining
and overlapping optimizations, reductions in DRAM data
movement between the LAP and CPU reduce the total
system energy by up to 17% compared to coupling at the
DRAM level. All in all, primarily driven by execution time
savings, pipelining and overlapping yields up to 43% lower
energy consumption compared to the original solution, but
is, again, largely independent of the architecture coupling.

TABLE 5: Performance model validation.

LAP-DRAM LAP-LLC LAP-LLC

Orig [MCycles] | Block [MCycles] | Pipeline [MCycles]

q | Model Sim | Model Sim | Model Sim
4 183 190 177 176 148 150
6 193 195 188 189 150 150
8 235 220 240 223 151 152
10 311 288 317 297 190 188
14 529 502 524 522 388 448

8.4 Performance Model Validation

Table 5 shows a validation of our performance model
against simulation results. The performance model tracks
simulation results accurately across different ¢ and opti-
mization scenarios with less than 3% average error per
model. Our pipelined model overestimates performance for
q = 14. As mentioned before, the smallest chunk that
matrices can be partitioned into in practice already exceeds
LLC capacity for ¢ = 14. This leads to performance losses
when all memory transfers are overlapped in pipelined
execution, which are not captured in our idealized model.

9 SUMMARY AND CONCLUSIONS

In this paper, we study system-level performance and en-
ergy saving benefits of hardware acceleration under dif-
ferent placement scenarios and software optimizations for
a state-of-the-art Fast Multipole Method (FMM). We in-
vestigated accelerator coupling options at the architecture
level and proposed several algorithm co-optimizations to
maximize acceleration benefits. We showed that, in the
context of a complex real-world application, simply placing
an accelerator closer to the chip does not always lead to sig-
nificant performance/energy wins. We demonstrated that
an on-chip integration alone without supporting software
optimizations can only provide limited gains. Only when
more aggressive software/hardware co-optimizations are
applied, additional gains can be unlocked. Moreover, when
similar optimizations are employed in off-chip integration,
on-chip integration presents up to 20% better performance
with 17% less total energy consumption. In general, on-chip
integration offers more performance opportunities when
careful and aggressive co-optimizations are applied. Un-
latching this, however, requires closer involvement and
collaboration between both architects and programmers.

Such a study of ASIC acceleration and integration trade-
offs in the context of real, complex and well-optimized HPC
applications has not been presented before. While absolute
performance and energy results are specific to our targeted
FMM application, U-list phase, x86 architecture and GEMM
accelerator, we focus on analysis of relative tradeoffs, where
these can be considered representative of typical HPC appli-
cation and architecture patterns. In future work, we plan to
extend such analyses to other application, architecture and
acceleration options.

ACKNOWLEDGEMENTS

The material is based upon work supported by NSF awards
CCEFE-1817048, CCF-1725743 and CCF-1337393, DOE awards

13

DE-SC0019393 and DE-NA0003969, AFOSR award FA9550-
17-1-0190, and computational resources from the Texas Ad-
vanced Computing Center (TACC).

REFERENCES
[1] AMD Fusion. http://sites.amd.com/us/fusion/apu/Pages/fus
ion.aspx.

[2] S. Aga etal. Compute Caches. In HPCA, 2017.

[3] J. Ahn et al. A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing. In ISCA, 2015.

[4] R.Anderson et al. Cryptographic Processors: A Survey. Proceedings
of the IEEE, 94(2):357-369, January 2006.

[5] M. Asri et al. Simulator calibration for accelerator-rich architecture
studies. In SAMOS, July 2016.

[6]].Board and K. Schulten. The Fast Multipole Algorithm. Comput-
ing in Science and Engineering, 2(1):76-79, February 2000.

[7] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable
algorithms for parallel adaptive mesh refinement on forests of
octrees. SIAM Journal on Scientific Computing, 33(3):1103-1133,
2011.

[8] C.Cascavaletal. A taxonomy of accelerator architectures and their
programming models. IBM Journal of Research and Development,
54(5):5:1-5:10, September 2010.

[9] Y. Chai, W. Shen, W. Xu, and Y. Zheng. Computing acceleration of
fmm algorithm on the basis of fpga and gpu. Advanced Materials
Research, 291-294:3272-3277, 07 2011.

[10] A.Chandramowlishwaran, K. Madduri, and R. Vuduc. Diagnosis,
Tuning, and Redesign for Multicore Performance: A Case Study of
the Fast Multipole Method. In SC, 2010.

[11] T. Chen et al. DianNao: a small-footprint high-throughput accel-
erator for ubiquitous machine learning. In ASPLOS, 2014.

[12] Y-H. Chen et al. Eyeriss: An Energy-efficient reconfigurable
accelerator for deep convolutional neural networks. In ISSCC,
2016.

[13] H. Cheng, J. Huang, and T. J. Leiterman. An adaptive fast solver
for the modified helmholtz equation in two dimensions. Journal of
Computational Physics, 211(2):616-637, Jan. 2006.

[14] J. Choi and R. W. Vuduc. Analyzing the energy efficiency of the
fast multipole method using a DVFS-aware energy model. In
IPDPSW, 2016.

[15] E. G. Cota et al. Exploiting Private Local Memories to Reduce the
Opportunity Cost of Accelerator Integration. In ICS, 2016.

[16] V. Dang, Q. Nguyen, and O. Kilic. Fast multipole method for
large-scale electromagnetic scattering problems on gpu cluster and
fpga-accelerated platforms. Applied Computational Electromagnetics
Society Journal, 28, 12 2013.

[17] J. Dongarra and F. Sullivan. The Top 10 Algorithms. Computing in
Science and Engineering, 2(1):22-79, February 2000.

[18] H. Esmaeilzadeh et al. Dark Silicon and The End of Multicore
Scaling. In ISCA, pages 365-376, June 2011.

[19] E Ethridge and L. Greengard. A new fast-multipole accelerated
poisson solver in two dimensions. SIAM Journal on Scientific
Computing, 23(3):741-760, Jan. 2001.

[20] A. Gray and A. Moore. N-body problems in statistical learning.
Advances in neural information processing systems, pages 521-527,
2001.

[21] L. Greengard and J.-Y. Lee. A direct adaptive poisson solver of ar-
bitrary order accuracy. Journal of Computational Physics, 125(2):415—
424, May 1996.

[22] L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations. Journal of Computational Physics, 73(2):325-348, Dec.
1987.

[23] T.]. Ham et al. Graphicionado: A High-Performance and Energy-
Efficient Accelerator for Graph Analytics. In MICRO, 2016.

[24] T. Huang, Y. Zhu, Y. Ha, X. Wang, and M. Qiu. A hardware
pipeline with high energy and resource efficiency for fmm accel-
eration. ACM Trans. Embed. Comput. Syst., 17(2), Jan. 2018.

[25] X. Jian, P. K. Hanumolu, and R. Kumar. Understanding and
optimizing power consumption in memory networks. In HPCA,
Feb 2017.

[26] X. Jiang et al. Architecture support for improving bulk memory
copying and initialization performance. In PACT, 2009.

[27] N. P. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, June 2017.

[28] S. W. Keckler et al. GPUs and the future of parallel computing.
IEEE Micro, 31(5):7-17, Sept 2011.

[29]

(30]

[31]

[32]

[33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

(42]
[43]
(4]

(45]

[46]
[47]
(48]

[49]

(50]
(51]
[52]

(53]

[54]

A. Krishna et al. Hardware acceleration in the IBM PowerEN
processor: architecture and performance. In PACT, 2012.

H. Langston, L. Greengard, and D. Zorin. A free-space adaptive
FMM-based PDE solver in three dimensions. Communications in
Applied Mathematics and Computational Science, 6(1):79-122, Aug.
2011.

D. Lee et al. A distributed kernel summation framework for
general-dimension machine learning. Statistical Analysis and Data
Mining, 2013.

J. Lee and H. Kim. TAP: A TLP-Aware Cache Management Policy
for a CPU-GPU Heterogenous Architecture. 2012.

S. Lietal. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO,
pages 469-480, Dec 2009.

G. H. Loh et al. A processing-in-memory taxonomy and a case for
studying fixed-function pim. 2013.

M. H. Luke Durant, Olivier Giroux. Inside Volta: The world’s most
advanced data center GPU. In Parallel Forall: NVIDIA Developer
Blog, Sept. 2017.

J. Makino and H. Daisaka. GRAPE-8-an accelerator for gravita-
tional N-body simulation with 20.5 Gflops/W performance. In
SC, 2012.

D. Malhotra and G. Biros. PVFMM: A Parallel Kernel Independent
FMM for Particle and Volume Potentials. Communications in
Computational Physics, 18(3):808-830, September 2015.

D. Malhotra and G. Biros. Algorithm 967: A distributed-memory
fast multipole method for volume potentials. ACM Transactions on
Mathematical Software, 43(2):17:1-17:27, 2016.

S. Mittal and J. S. Vetter. A survey of CPU-GPU heterogeneous
computing techniques. ACM Computing Surveys, 47(4):69, 2015.

T. Narumi et al. Fast calculation of electrostatic potentials on the
gpu or the asic md-grape-3. The Computer Journal, 54(7):1181-1187,
2010.

A. Pedram, A. Gerstlauer, and R. van de Geijn. Codesign Tradeoffs
for High-Performance, Low-Power Linear Algebra Architectures.
IEEE TC, 61(12):1724-1736, December 2012.

W. Qadeer et al. Convolution Engine: Balancing Efficiency and
Flexibility in Specialized Computing. In ISCA, 2013.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle
accurate memory system simulator. IEEE CAL, 10(1):16-19, 2011.
Y. S. Shao et al. Co-designing accelerators and SoC interfaces using
gemb-Aladdin. In MICRO, pages 1-12, 2016.

D. E. Shaw et al. Anton 2: raising the bar for performance
and programmability in a special-purpose molecular dynamics
supercomputer. In SC, pages 41-53, 2014.

D. Sozzo et al. A highly scalable and efficient parallel design of
N-body simulation on FPGA. In IPDPSW, pages 241-246, 2017.
G. Ventakesh et al. Conservation Cores: Reducing the Energy of
Mature Computations. In PACT, 2012.

Y. Yang et al. CPU-Assisted GPGPU on Fused CPU-GPU Archi-
tectures. In HPCA, 2012.

R. Yokota, H. Ibeid, and D. Keyes. Fast multipole method as
a matrix-free hierarchical low-rank approximation. Computing
Research Repository, abs/1602.02244, 2016.

D. Zhang et al. TOP-PIM: throughput-oriented programmable
processing in memory. In HPDC, 2014.

L. Zhao et al. Hardware support for accelerating data movement
in server platform. IEEE TC, 56(6):740-753, 2007.

L. Zheng et al. Heterogeneous reconfigurable design for TreePM
N-body simulation. In ICACT, pages 442446, 2017.

Z. Zheng et al. Revealing feasibility of fmm on asic: Efficient
implementation of n-body problem on fpga. In IEEE International
Conference on Computational Science and Engineering, 2010.

Y. Zhu and V. J. Reddi. Webcore: Architectural Support for Mobile
Web Browsing. In ISCA, 2014.

Mochamad Asri is currently a Research Sci-
entist at Facebook Reality Labs (FRL), Menlo
Park. He received his Ph.D. in Electrical and
Computer Engineering from The University of
Texas at Austin in 2020. His research in-
terests include heterogeneous system archi-
tectures, data movement optimizations, out-of-
order micro-architecture, and high performance
caching.

14

Dhairya Malhotra is a Research Scientist at
the Flatiron Institute, New York. He received
his Ph.D. in Computational Science, Engineering
and Mathematics from the University of Texas
at Austin in 2017. He was a postdoctoral as-
sociate at the Courant Institute of Mathemati-
cal Sciences from 2017 to 2020. His research
interests include high performance computing,
fast algorithms, numerical analysis and integral
equations.

Jiajun Wang is a Hardware Engineer at Google.
She received her Ph.D. in the Electrical and
Computer Engineering (ECE) Department at the
University of Texas at Austin in 2019. Her re-
search interests include high performance codes
evaluations and software hardware co-design to
explore alternative algorithm/hardware scenar-
ios.

George Biros is the W. A. “Tex” Moncrief Chair
in Simulation-Based Engineering Sciences in the
Oden Institute for Computational Engineering
and Sciences and has Full Professor appoint-
ments with the departments of Mechanical En-
gineering and Computer Science (by courtesy)
at the University of Texas at Austin. He received
his Ph.D. in Computational Science and Engi-
neering from Carnegie Mellon (2000). He was a
postdoctoral associate at the Courant Institute of
Mathematical Sciences from 2000 to 2003. Biros
was among a team of researchers that won the IEEE/ACM SCO03 and
SC10 Gordon Bell Awards.

Lizy Kurian John is Cullen Trust for Higher Edu-
cation Endowed Professor in the Department of
Electrical and Computer Engineering at The Uni-
versity of Texas at Austin. She received her Ph.D.
in computer engineering from The Pennsylvania
State University. Her research is in the areas
of computer architecture, multicore processors,
memory systems, performance evaluation and
benchmarking, workload characterization, and
reconfigurable computing. She is an IEEE Fel-
low, ACM Fellow and a Fellow of the National
Academy of Inventors (NAI).

Andreas Gerstlauer (S'97-M’'04-SM11) s a Pro-
fessor of Electrical and Computer Engineering
(ECE) at the University of Texas at Austin. He
received a Ph.D. in Information and Computer
Science from the University of California, Irvine
in 2004, where he also was a Researcher before
joining UT Austin in 2008. His research interests
include system-level design, system modeling,
design methodologies, and embedded hardware
and software synthesis. His work has received
several best paper nominations and best paper
awards from, among others, DAC, DATE and HOST. He has been
General and Program Chair for major conferences including ESWEEK|
and he currently serves as Associate Editor for ACM TECS.

	Introduction
	Related Work
	Background
	FMM
	Linear Algebra Processor (LAP)

	Application Model
	Data Flow and Computation Patterns
	Performance Model

	Architecture Model
	External Off-chip Coupling at Shared DRAM Level
	Internal On-chip Coupling at Shared Cache Level
	Performance Model

	HW/SW Co-Optimization
	Cache-Aware Blocking
	Prefetching, Pipelining and Overlapping
	Performance Model

	Model-Based Exploration
	Simulation-Based Evaluation
	DRAM Accesses
	Execution Time
	Energy
	Performance Model Validation

	Summary and Conclusions
	References
	Biographies
	Mochamad Asri
	Dhairya Malhotra
	Jiajun Wang
	George Biros
	Lizy Kurian John
	Andreas Gerstlauer

