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ABSTRACT Multi-human multi-robot (MH-MR) systems have the ability to combine the potential
advantages of robotic systems with those of having humans in the loop. Robotic systems contribute precision
performance and long operation on repetitive tasks without tiring, while humans in the loop improve
situational awareness and enhance decision-making abilities. A system’s ability to adapt allocated workload
to changing conditions and the performance of each individual (human and robot) during the mission is
vital to maintaining overall system performance. Previous works from literature including market-based
and optimization approaches have attempted to address the task/workload allocation problem with focus on
maximizing the system output without regarding individual agent conditions, lacking in real-time processing
and have mostly focused exclusively on multi-robot systems. Given the variety of possible combination
of teams (autonomous robots and human-operated robots: any number of human operators operating any
number of robots at a time) and the operational scale of MH-MR systems, development of a generalized
framework of workload allocation has been a particularly challenging task. In this paper, we present
such a framework for independent homogeneous missions, capable of adaptively allocating the system
workload in relation to health conditions and work performances of human-operated and autonomous robots
in real-time. The framework consists of removable modular function blocks ensuring its applicability to
different MH-MR scenarios. A new workload transition function block ensures smooth transition without
the workload change having adverse effects on individual agents. The effectiveness and scalability of the
system’s workload adaptability is validated by experiments applying the proposed framework in a MH-MR
patrolling scenario with changing human and robot condition, and failing robots.

INDEX TERMS Adaptive Workload Allocation, Agent-Based Systems, Cognitive Human-Robot Interac-
tion, Human-Robot Team, Multi-Robot Systems, Workload Transition.

I. INTRODUCTION

MULTI-HUMAN MULTI-ROBOT (MH-MR) systems
have an immense potential for applicability in var-

ious independent and non-sequential tasks such as cover-
age problems of surveillance, patrolling, search and rescue,
inspection or assembly of items in an industrial conveyor
belt by robotic manipulators, and various other multi-agent
scenarios. Robots allow long operation hours on repetitive
tasks and provide consistent and precise performance be-
yond human capability, while human operators contribute
improved situational awareness, experienced and intuitive

decision making, and the ability to work around unexpected
situations. While research on human-robot interaction has
gained a lot of momentum in recent years [1]–[3], MH-MR
systems are a relatively new area involving interaction and
collaboration between multiple humans and robots.

Task/workload allocation is an important problem in MH-
MR systems. Previous works have investigated team or-
ganization [4], a number of operator-mediated robot con-
trol methods [5], awareness studies in human-robot systems
[6], and various classifications of human-robot systems [7]
for task/workload allocation. Tsarouchi et al. introduced a
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FIGURE 1: Conceptual illustration of the proposed multi-human multi-mobile-robot (MH-MR) system with adaptive workload
allocation to human and robot conditions and performance with workload transitional considerations. Potential application
includes autonomous and multi-human operated multi-mobile robot patrolling, surveillance, multi-robot manipulator tasks on
a moving conveyor belt in an industrial setting etc. The dynamically allocated workspace in the different applications change
with human and robot operator condition and performance in real-time.

system for designing and assigning tasks to operators and
human workplaces [8]. Automation adaptation based on
human perceived workload has also been studied in [9].
Physiological measurements of humans have been used as
triggers in the control of unmanned aerial vehicles (UAVs) to
initiate different workload states and adapt operator perfor-
mance [10], [11]. Error rates and task difficulty as perceived
by operators have also been used as triggers to re-allocate
or automate workload [12]. However, task allocation in a
multi-agent system increases in complexity if the triggers
are less than perfect; sudden or unpredictable changes in
workload or mission may have a negative impact on the
operator’s performance pertaining to the understanding of
the automation behaviors and the system functions they
control; sudden and/or drastic changes may overwhelm or
momentarily catch human operators off guard while trying
to cope with their allocated work [13]. A previous study on
the relationship between workload transition and stress have
concluded that large magnitude workload transitions resulted
in decreased reported levels of task engagement and effort;
however, over time the reported stress and task engagement
approached those reported by non-transitioning individuals
(control group), suggesting that transition coping time also
plays an important role in the workload transition process
[14].

Musić and Hirche have proposed an architecture for plan-
ning human roles in robot team control [15] to optimize
collaboration and teaming mechanisms across a wide range
of human operators and robots. Task allocation in multi-robot
scenarios have been widely studied in [16]–[20], considering
resource constraints and robot performance. Task allocation
with unknown robot capabilities have also been studied in
[21]. Optimal task allocation with multi-humans in the loop
has also been proposed in [22], where task allocation is
performed over multiple-levels (group and individual) com-
prising of high-risk and low-risk information in order to max-

imize effectiveness of the entire system minimizing process-
ing cost and time, considering human factors given limited
resources. In market-based approaches for multi-agent task
allocation, the team seeks to optimize an objective function
based upon robots utilities for performing particular tasks
[23], [24]; desirable features of these approaches include
efficiency in satisfying the objective function, robustness
and scalability of the system. However, in systems where
fully centralized approaches are feasible, market-based ap-
proaches can be more complex to implement and can produce
poorer solutions; when fully distributed approaches suffice,
market-approaches can be unnecessarily complex in design
and can require excessive communication and computation
[25]. Mixed integer linear programming optimization ap-
proaches have also been used for task allocation [26]–[28].
Population based approaches such as the genetic algorithm
was also proposed for task allocation in disaster scenarios
[29]. Ant colony optimization has also been proposed for task
allocation of multi-agent systems in [30].

Most of the task/workload allocation methods proposed in
literature have focused on maximizing the system’s work out-
put without considering individual agent conditions. More-
over, most of the research work on task allocation has re-
mained confined to multi-robot systems only. In contrast,
we present a task/workload allocation method considering
quantified both human and robot condition and performance
equally, i.e. prioritizing the ability of all agents to work in
an MH-MR system maintaining agent level work efficiency,
while ensuring full coverage of the application workspace.

In this paper, we present a generalized MH-MR frame-
work capable of workload allocation for independent, non-
sequential homogeneous tasks, consisting of independent
modular function blocks assessing human and robot con-
ditions and the performances of human-operated and au-
tonomous robots. The system is designed to be compatible
with previously established normalized quantitative human
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and/or robot health and performance assessment tests. The
framework also incorporates a re-allocated workload tran-
sition model to minimize the effects of sudden changes in
workload or mission that may have negative impacts on
operator or robot performance. We demonstrate the applica-
bility, effectiveness, and scalability of the framework through
various scenarios of a MH-MR patrolling application as
validation of the proposed concept. An overview of our MH-
MR work allocation concept applied in example scenarios of
mobile robot coverage problems and robotic manipulators in
an assembly line conveyor belt is shown in Fig. 1.

II. PRELIMINARIES AND ASSUMPTIONS
We consider a homogeneous group of m robots capable of
carrying out autonomous missions of homogeneous tasks,
each denoted as Ri, for i ∈ IR = {1,2, ..,m} with state
definition of qi ∈ Rw, where w represents the dimension
of the system workspace. Ri may be teleoperated by any
number of human operators at any time, each denoted as
O j for j ∈ IO = {1,2, ..,h}, modeled as an edge E in an
undirected graph G = (V,E) without any self-connectivity,
where V represents the nodes {Ri,O j}, i∈ IR, j∈ IO, such that
(Ri,O j) ∈ E. We denote the set of indices of human-operated
robots as IH and the set of indices for autonomous robots
in the system as IA. For the convenience of the reader, we
summarize the terminology usage in this section as: r/R for
robots, o/O for human Operators, c/C and p/P for condition
and performance (human and robot).

Each human operator may control multiple robots and
assume/relinquish control of any robot in the system at any
time, triggering a change in the robot operation mode. We do
not limit robots operated by humans to be only teleoperated;
some level of autonomy might exist while the human operator
acts as a supervisor. Regardless, the performance of such a
robot is dependent on the state of the human operator as well.

The condition or health status of each robot Ri, for i ∈ IR
in the MH-MR system can be monitored at all times as a set
of robot health states denoted as CRi ∈ Rwr , where wr equals
the number of robots in the system m. Physiological measure-
ments and the emotional state of each human operator O j, for
j ∈ IO in the MH-MR system can be monitored at all times as
a set of human operator health states denoted as CO j ∈ Rwo ,
where wo is the number of human operators in the system h.

The performance of each robot (autonomous and human-
operated) Ri, i ∈ IR on their respective allotted mission/task
can be evaluated based on a predefined evaluation metric
relevant to the mission/task using observation set PRi ∈ Rwr ,
i ∈ IR.

We define the constraints of the system workspace (work-
load) W ∈ Rw as finite, known apriori, and covered by
m robots without any overlap. We assume each robot is
equipped with appropriate low level velocity/position con-
trollers with collision avoidance relevant to the MH-MR
application and is capable of fully autonomous behavior
when required [31]–[33]. Once a mission is assigned to a
specific robot, an autonomous robot uses its own individ-

ual mission planning/coordinating algorithms to conduct the
mission. Individual mission/workload assigned to human-
operated robots is coordinated by their human counterparts.

Definition II.1. We define workload on Ri, i ∈ IR (either
autonomous or human-operated) at time t as σi(t) and the
corresponding workspace as Wi ∈ Rw regardless of its task
depending on the application. Upon mission assignment to
the MH-MR system, the initial workload for each robot σi(0)
may or may not be equally distributed.

The objective is to provide a systematic approach to an
adaptive workload allocation in MH-MR systems based on:
(a) robot and human operator state monitoring (CRi , i ∈ IR
and CO j , j ∈ IO), and (b) autonomous robot and human-
operated robot work performance states (PRi , i ∈ IR). The
transition process between workload changes for a robot or
operator must consider the effect of the prescribed change.
The framework must maintain generality for applicability in
any MH-MR system.

At the core of the proposed adaptive MH-MR system
framework, the adaptive workload allocation system and a
workload transition system, designated as module A.1 and
module A.2 respectively, provide a workload distribution
solution on the assigned mission based on the condition and
performance of each human and robot unit operating in the
system. The state of each human and robot in the system, and
the performance of each autonomous and human-operated
robot are assessed to adaptively re-allocate the total mission
workload for continuous performance.

We realize that the relevance of such evaluations or as-
sessments are application specific and may be irrelevant in
certain systems. Therefore, to maintain generality of our
adaptive MH-MR system framework, we propose a modular
design consisting of robot and human state and performance
assessment function blocks. Each module provides a real-
time metric of its unit system adhering to its own procedure
based upper and lower bounds. The modules and their metrics
are listed as follows:

• Module R: Robot state monitoring and evaluation metric
cr

l ∈ [uR,vR] from CRl , l ∈ IR, normalized as ĉr
l

• Module H: Human operator state monitoring and evalu-
ation metric co

k ∈ [uO,vO] from COk ,k ∈ IO, normalized
as ĉo

k
• Module P: Robot (human-operated or autonomous) per-

formance assessment metric pr
i ∈ [uP,vP] from PRi , i ∈

IR, normalized as p̂r
i ,

where u and v represent the lower and upper bounds of the
corresponding metric respectively.

The aforementioned human and robot states and perfor-
mance metrics from the modular function blocks are fed
into the adaptive workload allocation module A.1 for work-
load re-allocation. The workload is re-allocated to maximize
overall system performance at all times. The modular design
ensures that any module may be added or removed from the
system depending on the application requirement, pertaining
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FIGURE 2: Adaptive MH-MR workload allocation system modular framework based on individual human and robot condition
and performance. The MH-MR system may consists of autonomous robots and combinations of single human-operated single
robot, multi-human operated single robots and/or single human operated multi-robots. The workload allocation module takes
equal weighted metric inputs from each modular condition and performance evaluation module to allocate new workload. The
allocation transition module ensures a smooth transition to the new workload.

to the generalization of the framework. Fig. 2 illustrates the
proposed modules of the MH-MR system framework.

III. ADAPTIVE MH-MR SYSTEM FRAMEWORK
A. MODULE A.1 ADAPTIVE WORKLOAD ALLOCATION
We design the workload allocation of the system based on
the maximum outcome of combining the incoming human
and robot states and performance metrics. A variant of the
softmax function, also known as the normalized exponential
function is proposed to determine the workload allocation for
each of the m robots. We define a vector S of m normalized
inputs such that,

[S]i =

{
γi

|Λi|+2

(
ĉr

i +∑k∈Λi ĉo
k + p̂r

i
)

if i ∈ IH
γi
2 (ĉr

i + p̂r
i ) if i ∈ IA

(1)

where Λi, i ∈ IR is a vector of λ ∈ IO|{Ri,Oλ} ∈ E, γi =
min(ĉr

i , ĉ
o
k , p̂r

i ), ∀k ∈ Λi, and γi = min(ĉr
i , p̂r

i ). We note here
that a human operated robot may have multiple humans
operating exclusive on-board tasks at the same time; multiple
operator conditions for a single robot are incorporated in the
respective element of S by vector Λ. We stress here that
the condition and performance of every robot and human
operator is weighted equally by design such that any de-
terioration suffered by any agent in the system is equally
prioritized in reducing its workload; the underlying goal
of this choice is to establish a sense of fairness and trust
within the agents for a self-supporting system that enable
agents to benefit from other’s strengths and support their
weaknesses. The γ terms ensure that the system allocates

zero workload to a robot (autonomous or human-operated),
if the corresponding robot and/or human operator is detected
to have voluntarily/involuntarily stopped working ( p̂r would
equal to zero), completely failed, incapacitated and/or may
have suffered from any discontinuity or disconnectedness
in the teleoperation and communication graph structure (ĉr

and/or ĉo would equal to zero). It also ensures that the
allocated workload is proportional to the worst human/robot
condition/performance in situations where metrics simulta-
neously change equally in opposite directions resulting in
their summation to remain unchanged.

We calculate the share of the total workload for robot Ri,
i ∈ IR at current time t as,

σ
′
i (t) =

S(i)
∑

m
l=1 S(l)

for i = 1, ...,m. (2)

The normalization ensures that the sum of all σ ′ is 1, pertain-
ing to the total workload of the system.

B. MODULE A.2 WORKLOAD ALLOCATION
TRANSITION

Sudden changes in workload allocation may have over-
whelming effects on a host. The transitions must be smooth
and manageable without any drastic changes. We model such
a transition process for the workload change from the cur-
rent actual workload allocation σi(t), i ∈ IR to the proposed
workload allocation σ ′i (t), i ∈ IR considering the effect of the
change to the highest affected agent in the system as follows.

4 VOLUME 4, 2016



Tamzidul Mina et al.: Adaptive Workload Allocation for Multi-human Multi-robot Teams for Independent and Homogeneous Tasks

We model the workload transition process as,

σi(t +1) = σi(t)+Ke∆σi(t) (3)

where ∆σi(t) = σ ′i (t)−σi(t), and Ke ∈ [0,1] is a transition
model coefficient dependent on the highest effect of the
proposed change on the system.

Denoting the proposed 2-D workspace for Ri, i ∈ IR corre-
sponding to proposed workload σ ′i (t) as W ′

i , we determine
the highest effect on the system as q f = min(qc), where qc
denotes the shortest Euclidean distance between the bound-
ary of workspace W ′

i (t) and qi(t), ∀i ∈ IR. In situations
where a complete robot failure occurs or a human operator is
incapacitated, the failed robot is ignored in q f determination.

The transition coefficient Ke can therefore be modeled as
an exponential function of q f ,

Ke = 1− e−Kq f (4)

where K is a positive scaling constant. The exponential nature
of the transition allows for a smooth change in workload
where K may be tuned to control the rate of transition
depending on particular application scenarios.

The workload allocation cycle must be synced with the
contributing modules in the framework. The update cycle
may be implemented as the slowest frequency of the individ-
ual modules; i.e. the workload allocation update cycle time
constant can be set as τ = max(τpr ,τco ,τcr) where τpr , τco

and τcr denote the required operation cycle time constants for
function modules P, H, and R respectively. For applications
requiring a fast update cycle, the workload allocation up-
date frequency may also be implemented by considering the
highest frequency of all the individual modules and relying
on current estimates for the slower modules; we note that
a Kalman filter may also be implemented for the slower
modules for better current estimates.

C. HUMAN AND ROBOT, CONDITION AND
PERFORMANCE
1) Module H: Human Condition Evaluation Metric
We define human operator condition as their ability to per-
form their task of teleoperating robots as a function of
stress, emotion, and/or direct physiological measurements
depending on the MH-MR application. For human operator
condition evaluation, we refer to previous studies in liter-
ature for quantitative and qualitative techniques. Primary
approaches include predicting stress or emotion from audio
signals [34], gestures [35], [36], facial expressions [37], body
gestures [38] or physiological signals such as heart rate, skin
conductance, and respiration [39]–[44]. The measurements
and predictions are used to evaluate stress and psycholog-
ical dynamics in the interest of creating effective working
conditions [45]. Individual or a combination of a number of
emotional responses may be measured and used as human
operator condition for Module H, but at this stage we focus
on human operator stress levels that have been shown to have
a direct negative impact on work performance [46].

Stress quantified by a single physiological measurement
such as galvanic skin response (GSR) [47], [48] may be used
as a measure of human condition. Healey et al. proposed
a continuous stress measurement metric in [47] that can be
normalized and used as a measure of the human operator con-
dition directly as well for our proposed framework. A num-
ber of other human operator condition measurement metrics
based on facial expressions, body gestures, heart rate and
respiration have been summarized in the stress recognition
literature survey [49] that may be used as Module H in our
proposed framework. Stress detection using a combination
of multiple noninvasive physiological variables such as GSR,
blood volume pulse, pupil diameter and skin temperature
have been proposed in [50]; a support vector machine is used
to perform a supervised classification of affective states be-
tween "stress" and "relaxed". We note that stress levels may
also be further discretized as "low", "medium" and "high" in
certain applications. Such discrete states may be quantified
as discrete human operator condition values simply as 0.75,
0.5 and 0.25 respectively, or a moving average may also be
applied depending on the application left at the discretion of
the user. We stress here that our proposed method is designed
for continuous human operator condition values, but may
still be adapted with a discrete human operator condition
evaluation system as well appropriate of the application.

In Fig. 3, we present a sample implementation study of a
possible human condition assessment metric based on stress
detection using heart rate variability (HRV) in terms of the
length between heartbeat intervals called an R-R interval for
Module H. R-R intervals play an important role in predicting
human condition in neorosciences and medical fields [53]
and has been utilized to predict stress in various works of
literature [54]–[57]. Ottesen proposed the following stress
detection algorithm using wearable devices and machine
learning technology [58] using both heart rate (HR) and HRV
as a training dataset from [51] as shown in Fig. 3a; a ma-
chine learning model was proposed for automated machine
learning and the evolutionary algorithm called TPOT [52].
The model had a stress detection accuracy of 79.9% using
an existing dataset from a user study, where participants
watched a horror movie after a 15-minute walking task to
differentiate between physical and mental stress, such as
lowering the R-R intervals.

An implementation of the TPOT algorithm for stress de-
tection is shown in Fig. 3b. An example implementation of a
moving average filter with horizontal window size 30 s and
step size 1 s is presented by the blue line and denoted as
s(t), as a possible continuous stress quantification method
on this discrete stress assessment. This moving average filter
smooths the rapidly changing binary output of the stress
detection algorithm in the time domain [59]. The human
condition metric is defined to be in the closed range [0,1]
for worst to perfect; therefore, the continuous stress plot
s(t) ∈ [0,1] is mapped to the estimated human condition
as 1− s(t) to obtain a continuous human condition metric
required in the MH-MR workload allocation framework.
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FIGURE 3: An example implementation of a machine
learning-based stress detection algorithm using HRV signals
and R-R intervals; (a) raw data of R-R intervals from the ex-
isting dataset [51], and (b) the stress detection and subsequent
human condition assessment.

We chose this specific dataset in our study to show stress
and subsequent human condition assessment because of the
following properties: drastically changing human condition
between 0− 15 mins, an overall gradual slow change be-
tween 15−50 mins with sudden fluctuating changes between
25− 40 mins. We validate the effectiveness of our proposed
framework on simplified cases of these rates of change of
human condition in Section IV-A3.

We deem noise reduction and disturbance rejection in
measuring human operator condition as beyond the scope of
our current work and included within the above presented
human condition measurement metrics; a few specific works
on signal processing and noise filtering of physiological
measurements have been proposed in [60], [61]. Therefore,
we assume that human operator condition can be measured
and quantified with enough certainty and noise rejection for
application in our proposed MH-MR workload allocation
framework.

To establish the generality of the modular human condition
assessment function block in the proposed work allocation
framework, we stress the following notes on possible human-

operated robot scenarios. In cases where one human operates
one robot or one human operates multiple robots, the human
operator’s health condition would be independently used in
Module H for each of the operated robot’s work allocation
in Module A. However, if multiple humans control a single
robot for an MH-MR application, the condition assessments
of all the human operators of this particular robot would
have to be considered for its workload allocation. In such
a scenario where one robot is operated by more than one
human operator, we assume that each human operator of the
robot has exclusive on-board tasks; one operates navigation
and one operates surveillance etc., while the total task being
completed by the robot remains independent and homoge-
neous. If one operator’s condition deteriorates, one on-board
task is affected; i.e. as a whole, this specific multi-human
robot team’s working ability is also affected. The definition of
γ in Eq. (1) ensures that the system allocates zero workload to
a robot for any of its operators becoming incapacitated. The
proposed MH-MR workload allocation system is therefore
general to any number of operators controlling any number
of robots in the system given the stated assumptions and con-
straints. With these generality notes, Eq. (3) assigns workload
to individual robots reflecting its individual ability to work
considering the conditions of all its human operators.

2) Module R: Robot Condition Evaluation Metric
On-board quantitative measurements of robot health may
include battery level, communication signal strength, internal
temperature and a variety of other factors [62]. Detecting sub-
nominal characteristics and isolating problems through self-
checking have also been considered in different autonomous
robot platforms currently available. Qualitative evaluations
may also be included for robot condition evaluation based on
the robot’s physical state. We refer to the Neglect Tolerance
metric [63] for autonomous robots as a measure of how a
robot’s effectiveness declines in autonomous mode without
any human supervision or control. It includes task complexity
and robot capability among various other factors to provide
an overall measure of a robot’s condition of autonomy.

3) Module P: Robot Performance Evaluation Metric
Robot (either autonomous or human-operated) performance
metrics such as percentage area coverage or distance trav-
elled proposed in [64] may be used to asses robot perfor-
mance depending on the MH-MR application. Performance
of robots may be determined in terms of task completion
time, path following cross-track error [65] etc. depending on
the application of the proposed framework. Human Robot In-
teraction (HRI) metrics recommended by Steinfeld et al. [66]
and reviewed by Murphy [67] in terms of navigation (e.g.
localization, effective path determination around objects),
perception (e.g. surveillance, target identification, sensor area
coverage), manipulation, and management at the human,
robot, and system level perspectives may be used to eval-
uate human-operated robot performance using an arbitrary
evaluation function plugged in as Module P. We leave such
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performance assessments for Module P at the discretion of
their relevance to particular applications.

IV. VALIDATION & RESULTS
As validation of the effectiveness of the adaptive task allo-
cation mechanism, we present our experimental findings of
applying the proposed framework to a MH-MR patrolling ap-
plication, where human operator and robot conditions affect
their patrolling ability.

Four experiment scenarios were independently investi-
gated. In the first scenario (S1), we simulate temporary
and permanent deteriorated conditions for a human operator
and an autonomous robot in sequence, while in the second
scenario (S2) we simulate complete failure of a robot, and
analyze the system’s workload adaption in each scenario.
In two further scenarios (S3 and S4) we present workload
transitioning and scalability analysis with similar conditions
as S1 and S2 respectively.

Before moving on to including real human operators in the
experiments, it is vital that controllable evaluation scenarios
are used to validate our proposed work. Therefore, in this
paper we present the investigation results of our proposed
method using simulated human operator conditions of dif-
ferent characteristics.

A. S1 AND S2: ADAPTIVE WORKLOAD ALLOCATION IN
PATROLLING
1) Patrolling Application

Machado et al. broadly defined patrolling as “the act of
walking or traveling around an area, at regular intervals, in
order to protect or supervise it" [68]. Therefore, we set up
our representative patrolling application with a given number
of robots traveling around allocated rectangular regions on
a plane, where the sum of the area of all rectangular re-
gions represents the total workload. The allocated workload
from our proposed framework may be directly used in more
complex region allocations for the patrolling scenario fol-
lowing capacity-constrained Voronoi tessellation works pro-
posed in literature [69]. Applications in multi-robot coverage
problems include [70]. However, for simplicity and ease of
analysis we validate our system using rectangular patrolling
regions, and we define patrolling for each robot as boundary
following its allocated area within a specified time τ∗ within
its ability.

A patrolling performance metric is defined for comparison
study with and without the proposed workload allocation
method. Patrolling performance of the complete MH-MR
system is measured as the maximum time taken to patrol the
entire area once by the MH-MR system expressed as,

TL = max(tl1 , tl2 , .., tlm) (5)

where tli denotes the patrolling lap time of Ri for i∈ IR during
one cycle of full area patrolling, given that the entire area is
covered by all robots.

FIGURE 4: Experiment setup with m = 3 Jackal mobile
robots; R1 and R2 human-operated, and R3 autonomous.
Robots patrol rectangular regions on the plane, defined as
boundary following its allocated area. Patrolling velocities
are modeled dependent on human operator and robot con-
ditions.

2) Experiment Setup
We consider a MH-MR system of h = 2 human operators
(simulated) and m = 3 mobile robots (Jackals from Clearpath
Robotics) with position defined as qi = [xi,yi], for i ∈ IR on
a level plane as shown in Fig. 4. Robot position data was
recorded using a VICON system. True velocity estimation
of the Jackals were made from the collected position data
with time. We simulate robots R1 and R2 as being controlled
by human operators while R3 remains autonomous in pa-
trolling. To simulate the human operators, human operator
condition assessment inputs are provided for R1 and R2; all
robots utilize the same low level line-of-sight path following
controller for consistency. The effect of workload change
in the system at time t depends on the minimum distance
from qi,∀i∈ IR to the changing rectangular region boundaries
using the allocation transition coefficient Ke model in Eq. (4).

At initial time, the patrolling area was distributed equally
among all robots as rectangular regions with a specified
safety distance between rectangular boundaries to prevent
inter-robot collisions while patrolling, and the human oper-
ator and robot conditions were considered optimal. In course
of the experiments, the rectangular region areas were re-
allocated based on the proposed workload allocation frame-
work. We acknowledge that increasing workload on an agent
due to re-allocation, may reduce performance or in turn
cause condition deterioration. Nevertheless, such effects on
agents were ignored for validation purposes of the proposed
framework.

We model robot patrolling ability vable
i dependent on cur-

rent human operator and robot condition,

vable
i = κvmax (6)

for,

κ =

{
min(co

k ,c
r
i ) i ∈ IH ,∀k ∈ Λi

cr
i i ∈ IA

(7)
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where Λi is a vector of λ ∈ IO|{Ri,Oλ} ∈ E, assuming co
k and

cr
i are bounded within [0,1], and vmax denotes the maximum

allowed velocity of Ri.
The required patrolling velocity of Ri is modeled as,

vreq
i =

Perimeter(Wi)

τ∗
for i = 1, ...,m. (8)

where the patrolling time threshold is set as τ∗ = 65 s and
vreq

i = [0,vmax]. Velocity of Ri is therefore modeled as,

vi = min(vable
i ,vreq

i ). (9)

The initial value of τ∗ is arbitrarily set large enough for
experimental analysis purposes with vmax = 0.8 m/s. The ex-
perimental validation process is prone to various unforeseen
external disturbances and unwanted affects such as wheel
sleep and communication delays. Therefore, we allow a
tolerance of±10 s about τ∗ for acceptable lap time evaluation
purposes. Validation setup parameters include the simulated
human and robot condition update frequency time set as
τ = 500 ms, workload transition scaling constant K = 0.5.

Performance of each robot on the patrolling task is mea-
sured as cross-track error with an error margin of ψ . In
reality, the performance measure would also include vi −
vactual

i corresponding to deteriorated performance of the
robot. However, we deliberately do not consider velocity
differences in our robot performance assessment in this val-
idation setup, since we focus on independent analysis and
assessment of the proposed workload allocation based on
human operator and robot condition only. The sum of all
performance measures for all robots is assumed to be unity at
all times. Scenarios S1 and S2 were repeated independently
for 5 times, and each time similar results on patrolling lap
times were obtained. Therefore, we only present the results
from the first set of experiments in this manuscript.

3) S1: Adaptation to Deteriorated Conditions
We model the conditions for the human operator O1 of R1
denoted as co

1 to deteriorate drastically at time τ1
S1 within

2 s and then subsequently recover slowly back to 1 over
100 s with a sudden further small deterioration at time τ3

S1
over 20 s as shown in Fig. 5a; given the experiment area
size and validation setup, this is based on simplified, ob-
served and analyzed condition patterns of quantified human
stress from Fig. 3b (drastically changing human condition
between 0− 15 mins, an overall gradual slow change be-
tween 15−50 mins with sudden fluctuating changes between
25− 40 mins). Here, we stress the design of the simulated
events having drastic and different rates of changes on the
two separate time instances (abrupt and slow), to show their
effects on the workload allocation and transition process.
The minor further deterioration before recovery after τ2

S1
is simulated to investigate the sensitivity of the proposed
workload allocation framework to sudden small changes in
operator condition. Deteriorated condition of the autonomous
robot R3 denoted as cr

3 is simulated as shown in 5b. cr
3 is

simulated to deteriorate instantly and permanently at τ2
S1. The
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(a) Simulated human conditions over time. co
1 deteriorates drasti-

cally at τ1
S1, and then subsequently recovers back to 1 after a further

small deterioration at τ3
S1; co

2 remains at 1 at all times.
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(b) Simulated robot conditions over time. cr
3 deteriorates perma-

nently at τ2
S1; cr

1, cr
2 remains at 1 at all times.
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(c) Workload allocation of patrolling robots change according to
the simulated human and robot conditions: allocated workload of
robots with deteriorated human and/or robot condition is reduced
and compensated by robots with better human and/or robot condi-
tion. The workload transition function ensures that drastic changes
are smoothened for a manageable effect on the host; yet remains
sensitive enough to capture sudden changes in agent condition.
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(d) Translation velocity profiles of patrolling robots with and with-
out workload allocation ignoring region corner rotations. Trans-
lation velocity of robots with deteriorated human and/or robot
conditions is observed to have lowered velocity (R1, R2 after τ1

S1 and
τ2

S1 respectively); robots with increased workload after re-allocation
having better conditions observed to increase their translation ve-
locity (R2, R3 after τ1

S1 and R3 after τ2
S1).

FIGURE 5: S1: Adaptive workload allocation for temporary
and permanent human and robot condition deterioration.
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(a) Patrolling trajectory of robots with workload allocation (b) Patrolling trajectory of robots without workload allocation

FIGURE 6: S1: Patrolling trajectory following comparison with and without workload allocation for temporary and permanent
human and robot condition deterioration.

1 2 3 4 5 6 7 8 9

Patrol Lap

30

40

50

60

70

80

90

100

P
at

ro
l L

ap
 T

im
e(

s)

R
1
 w/ workload allocation

R
2
 w/ workload allocation

R
3
 w/ workload allocation

Total Patrolling time w/ workload allocation

R
1
 w/o workload allocation

R
2
 w/o workload allocation

R
3
 w/o workload allocation

Total Patrolling time w/o workload allocation

FIGURE 7: S1: Total and individual patrolling time required
comparison with and without workload allocation. Total pa-
trolling time is determined as the maximum lap time of any
robot in the system for a particular lap.

experiment S1 is repeated with and without the proposed
workload allocation framework to compare their effects on
the patrolling application using the defined patrolling perfor-
mance metric. The results are presented in Fig. 5, 6 and 7.

With initially set equal workload, all robots patrol their
equally allocated rectangular boundaries until time event τ1

S1.
At τ1

S1 where co
1 shows drastically falling conditions, the

workload is re-allocated to reduce load on the human O1
operated robot R1 and increased equally among R2 and R3
having better conditions as seen in Fig. 5c; the re-allocation
is reflected as a smaller patrolling region for R1 and equal
larger regions for R2 and R3 in Fig. 6a. R2 and R3 were both
positioned roughly equally close to the changing boundary
of their rectangular regions during the first event at τ1

S1,
and thus both robots transition to their allocated workload

at the same time of around 300 s shown in Fig. 5c. The
corresponding changes in the velocity profiles for each robot
with workload allocation is shown in Fig. 5d. The velocity
of R1 is seen drastically reduced with vable

1 < vreq
1 ; and with

increased allocations of patrolling regions, the other two
robots at this point still in good condition are observed to
slightly increase their velocities (vreq

2 < vable
2 and vreq

3 < vable
3 ).

The patrolling time for R1 is observed as increasing above
the τ∗ tolerance at lap 5 and eventually levelling at lap 6 due
to the slow workload transition process as shown in Fig. 7;
and remained high over laps 6 and 7 due to more frequent
slower turning at corners. Patrolling times for R2 and R3
with optimal conditions remained steady within defined τ∗

tolerance after time event τ1
S1.

Similar observations are made after time event τ2
S1, where

robot R3 suffers a sudden condition deterioration. The work-
load of R3 is reduced and re-distributed among the other
two as seen in Fig. 5c and 6a. Velocity of R3 decreases
permanently due to its deteriorated condition. R2 is left with
patrolling a larger region in comparison to the others; its ve-
locity increases to maintain the patrolling time requirement.
However, the velocity of R1 remains the same due to its
previously deteriorated condition. Thus, the patrolling time
for R1 remains considerably higher than R2 and R3 for laps 7
and 8 after time event τ2

S1 as shown in Fig. 7.

Compared to the drastic change of co
1 at τ1

S1 and cr
3 at τ2

S1,
co

1 gradually returns to 1 after a sudden drop at τ3
S1. The work-

load allocation is seen to change relatively slowly as well for
this time event over time period 540 s to 630 s as observed
in Fig. 5c. Right before the recovery, the workload allocation
plot shows a slight dip in allocated workload for R1 and small
increases for R2 and R3 validating the effective sensitivity of
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(a) Simulated human conditions over time. co
1 and co

2 remains at 1 at
all times.
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(b) Simulated robot conditions over time. cr
1 and cr

2 remains at 1 at
all times; cr

3 deteriorates permanently at τ1
S2.
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(c) Workload allocation of patrolling robots change according to
the simulated human and robot conditions: allocated workload of
incapacitated robots is zero and compensated by robots with better
human and/or robot condition. The workload transition function
module ensures that drastic changes are smoothened for a manage-
able effect on the host.
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(d) Translation velocity profiles of patrolling robots with and with-
out workload allocation ignoring region corner rotations. Transla-
tion velocity of incapacitated robots (deteriorated ability) observed
to be zero (R3 after τ1

S2), while robots with increased workload after
re-allocation having better conditions observed to increase their
translation velocity to compensate (R1, R2 after τ1

S2).

FIGURE 8: S2: Adaptive workload allocation for complete
robot failure condition.

the proposed workload allocation method. Upon condition
improvements of O1 at τ3

S1, the workload is redistributed
again to equal portions among R1 and R2 with corresponding
rectangular block patrolling trajectories shown in Fig. 6a.
The velocity of R1 and R2 equalize to a larger value than R3 to
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FIGURE 9: S2: Patrolling trajectory of robots with workload
allocation for complete robot failure condition.

compensate for the re-allocated patrolling regions with lower
workload for R3. Patrolling lap times for all robots return
within the defined τ∗ tolerance after event τ3

S1 at patrol lap
9 with the highest time taken by R3.

To validate the effectiveness of the proposed method, the
experiment scenario is repeated without using the adaptive
workload allocation framework. The robot patrolling trajec-
tories followed the initial equal rectangular region allocation
throughout the experiment as presented in Fig. 6b. With
equal rectangular region allocation over the entire experiment
duration, the robot velocities only reflected the temporary
and permanent deteriorating conditions of O1 (vable

1 < vreq
1 )

and R3 (vable
3 < vreq

3 ) showing slower patrolling speed as
observed in Fig. 5d and higher patrolling times after τ1

S1
and τ3

S1 respectively. Referring to the previously defined
patrolling performance metric, the total area patrolling time
was recorded to be 7 s higher on lap 5 (right after τ1

S1)
without workload allocation. With the initial dip in co

1 after
τ3

S1, the area patrolling time was initially recorded to be 14 s
higher on lap 8 without workload allocation in comparison,
that reduced within the set τ∗ tolerance on lap 9, when the
simulated co

1 gradually returned to 1.
The events τ1

S1, τ2
S1 and τ3

S1 triggered changes in workload
on immediate neighbors of R2, allowing it to quickly adjust
its velocity to meet the required patrolling lap time. The
workload change after event τ1

S1, was slower for R3 in com-
parison as it adjusted to the change following transitioning of
R2, resulting in increased patrolling lap times in laps 5 and
6. The event τ2

S1 triggered in between patrolling laps 6 and
7 of R3 permanently kept its patrolling velocity at 70 s with
workload allocation. In comparison, its patrolling lap time
without workload allocation is observed to increase on lap 7
and permanently stay 3 s higher for the rest of the experiment.
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(a) Initial and final workload al-
located regions for m = 10 sta-
tionary robot MH-MR system.
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(b) Allocated workload conver-
gence for K = 5.
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(c) Allocated workload conver-
gence error over time for K = 5.

FIGURE 10: S3: Transition analysis for m = 10 stationary
robots equidistant from their region boundaries along the hor-
izontal axis, with equal initial workload allocation. Human
and robot conditions are simulated as co

3 = 0.8, cr
3 = 0.6,

co
5 = 0.8, co

8 = 0.75 with the rest as 1 from t = 0, and the
system adaptively converges to the new workload depending
on q f . Green dots represent robots. Zoomed sections of plots
shown in insets.

Although insignificant compared to R1, the total area patrol
time remained 3 s less due to R3 with the proposed workload
allocation after event τ3

S1 on lap 9.

4) S2: Adaptation to Robot Failure
Experimental cases of complete robot failures have also been
investigated, where R3 is completely incapacitated by setting
cr

3 = 0 at event τ4 in a separate experiment. Fig. 8a and 8b
shows the simulated human and robot conditions for S2.

We refer to Fig. 8c to present the resulting allocated
workloads after event τ4. At event τ4, the initial area of R3
is equally allocated amongst R1 and R2 for continuous full
patrolling area coverage; i.e. at any time instant, the total allo-
cated workload was always unity with the proposed adaptive
workload allocation framework. This verifies that the work-
load was always re-allocated to ensure total area coverage by
the MH-MR patrolling system. The resulting robot trajectory
plots are shown in Fig. 9. The modeled velocity plots shown
in Fig. 8d confirm the increased patrolling velocities for R1
and R2 to compensate for their allocated larger equal areas.
For S2, we omit comparison of patrolling performance with
and without using adaptive workload allocation, since total
area patrolling could only be achieved with the proposed
adaptive workload allocation framework.

0 10 20 30 40 50 60 70 80 90

Time step (t)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

W
or

kl
oa

d 
tra

ns
iti

on
 e

rr
or

, K

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

5 10 15 20
0

0.005

0.01

X 11
Y 0.002914

X 4
Y 0.007099
X 4
Y 0.007099

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

t=0

t=88

1 2 3 4 5 6 7 8 9 10

1 2 3 4 6 7 8 9 10

t=0

5

y
y

y
y

1000

800

600

400

200

0

1000

800

600

400

200

0

1000

800

600

400

200

0

1000

800

600

400

200

0

0

200

1000800600400

2000 1000800600400

2000 1000800600400

2000 1000800600400 x x

t=140

(a) Initial and final workload al-
located regions for m = 10 sta-
tionary robot MH-MR system.

0 50 100 150

Time step (t)

0

0.05

0.1

0.15

A
llo

ca
te

d
 W

o
rk

lo
a
d
, 

R
1
, R

7
, R

9

(b) Allocated workload conver-
gence for K = 5.
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(c) Allocated workload conver-
gence error over time for K = 5.

FIGURE 11: S4: Transition analysis for m = 10 stationary
robots closer to their left region boundary along the hor-
izontal axis, with equal initial workload allocation. R3 is
simulated to completely fail with cr

3 = 0, along with human
and robot conditions co

3 = 0.8, co
5 = 0.8, co

8 = 0.75 from t = 0,
and the system adaptively converges to the new workload
depending on q f . Green dots represent working robots and
red dots represent failed robots. Zoomed sections of plots
shown in insets.

B. S3 AND S4: WORKLOAD ALLOCATION TRANSITION
ANALYSIS

The workload transitioning module of the proposed MH-
MR workload allocation framework is a function of q f . We
present the effects of different q f on workload transition
with simulation results of m = 10 robots stationary at all
times. Scenario S3 simulates deteriorating human and robot
conditions with all robots initially placed at the center of
their regions along the horizontal axis; scenario S4 simulates
failed robot cases with all robots initially placed closer to
the left boundary of their rectangular regions. Odd-indexed
robots are assumed to be human-operated while even-indexed
robots are assumed autonomous. At t = 0, the agent con-
ditions are set to co

3 = 0.8, co
5 = 0.8 and cr

8 = 0.75 in both
scenarios; R3 is set to cr

3 = 0.6 as deteriorated condition in
S3 and cr

3 = 0 as failed condition in S4 with the rest of the
agent conditions remaining at 1 at all times. Fig. 10a and 11a
illustrate the initial setup for S3 and S4 respectively.

The workload convergence and convergence error plots
for S3 shown in Fig. 10b and 10c, present a uniform work-
load transition for all robots to their re-allocated workloads
consistent with the setup having all robots initially placed
at the center of their regions along the horizontal axis. R3
converged to the lowest allocated workload followed by R8
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FIGURE 12: Effect of K on the total workload transition time
for m = 50 robots following scenario S3: human and robot
conditions set to co

3 = 0.8, co
5 = 0.8, cr

8 = 0.75 and cr
3 = 0.6.

The system adaptively converges to the new workload fastest
for K = 10 and increasingly slower with lower K as expected.

and R5, while the other robots compensated with increased
allocated workload. As such, the workload convergence rate
was highest for R3 followed by R8 and R5 with increasingly
slower rates respectively following smaller ∆σ . The rest
of the robots showed the smallest rate of convergence to
increased allocated workload with small and equal change
in ∆σ .

In contrast, S4 where R3 is simulated to fail completely,
converges to the zero allocated workload much faster given
the larger ∆σ as shown in Fig. 11b. The actual workload
convergence rate for R3 was followed by R8 and R5 with
increasingly slower rates respectively following smaller ∆σ

in comparison. R2 and R4 are both observed to gain a higher
workload initially at around t = 15 due to their close proxim-
ity to the largest changing workload allocation in the system
for cr

3 = 0, before reaching an equilibrium workload with the
other robots. Between 0 < t < 25 with σ3 shrinking to zero
faster than the other robots, R2 and R4 compensate with a
larger share of actual workload temporarily experiencing a
faster convergence rate compared to the other agents before
the adjustments are propagated to the rest of the robots
reaching an equilibrium in the group. The convergence rate
of workload allocation for R2 is initially observed slightly
higher than R4 for t < 10 consistent with the proposed
workload transition model with R2 initially placed further
away from the changing boundary with R3. R4 then shows
a higher workload convergence rate between 10 < t < 15 as
the changing boundary moves away from R4 and closer to
R2. The rest of the robots in the group reach an equilibrium
workload fairly slowly in comparison, as R2 and R4 adjust
over time.

In Fig. 11c, the workload transition error of R3 shows
an initial error of 0.1 due to the condition cr

3 = 0 at t = 0.
Over the next few time steps, the error is observed to rise
sharply a little over 0.15 as the effect of the deteriorated
conditions of R5 and R8 are propagated to the transitioning
workloads of the rest of the robots including R3; i.e. the error
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FIGURE 13: Scalability analysis with m = 10, m = 20,
m = 50, m = 100 and m = 500 robots following scenario
S3: human and robot conditions set to co

3 = 0.8, co
5 = 0.8,

cr
8 = 0.75, and cr

3 = 0.6. Effect of K is consistent with larger
K yielding faster total workload transition time. Increasingly
larger m resulted in increasingly smaller total workload allo-
cation error and longer transition times as expected.

for R3 was compounded with the compensating errors of R5
and R8 before reaching a transitional error of zero. With a
complete robot failure in S4, the amount of workload to be
re-allocated was larger while considering transitional effects
on all agents; hence the workload convergence time for S4
was recorded higher than S3. The workload convergence and
the convergence error plot for S4 are shown in Fig. 11b and
11c respectively.

As scalability analysis of the proposed MH-MR work-
load allocation and transition framework, scenario S3 was
repeated for m = 50 with varying K. Fig. 12 plots the total
workload transition error along a logarithmic time scale for
K = 1, K = 3, K = 5 and K = 10. The total workload
transition error for all cases of K reach zero in finite time.
K = 10 yielded the fastest convergence of the error to zero
with increasingly slower rates for lower values of K as
expected. Similar observations are made for m = 10, m = 20,
m= 100 and m= 500 robot cases each with K = 5 and K = 10
as shown in Fig. 13; a larger K yielded a faster convergence
of the total workload convergence error to zero. The effect
of larger K gets smaller with larger m; a minor difference is
observed for the two K cases for m = 500. The total initial
error was higher for smaller m because of the initially equal
distribution of workload assumption of the scenario.

V. DISCUSSION
The workload-allocation and transition problem is addressed
from a high-level abstraction to maintain generality of its
application. The proposed MH-MR framework is suitable
for homogeneous and heterogeneous robots (ground, aerial
etc.) on homogeneous tasks, given that all robots in the
group are capable of completing the homogeneous task of
the system independently, and each robot is equipped with
all appropriate and relevant low-level controllers. Validation
scenarios S1 and S2 established the effectiveness of the pro-
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posed workload allocation method dependent on individual
agent condition; workload was allocated successfully for
human conditions changing at different rates as well as for
completely incapacitated robots. Validation scenarios S3 and
S4 demonstrated the workload transitioning effects based
on different q f with all robots stationary for deteriorated
and completely incapacitated agent cases respectively. The
scalability of the proposed system for various K and m was
also established following the conditions of S3. The system
is robust to addition and removal (varying m) of autonomous
and teleoperated robots alike at any time during the mission
since each update cycle of the workload allocation process is
independent of the previous; the system will simply reallo-
cate the workload accordingly in the next update cycle fol-
lowing Eq. (1). Workload transition considerations of added
robots in the next update cycle are also made with σ(t + 1)
determined with σ(t) = 0 following Eq. (3).

The system allows autonomous robots and any number
of human operators to teleoperate any number of robots;
each human operator may teleoperate multiple robots and
multiple human operators may teleoperate a single robot.
The graph structure described in Section II represents the
variable human-robot connectivity of the system. The graph
connectivity must therefore be updated within the system
update cycle τ . Any discontinuity or disconnectedness in the
teleoperation or communication graph structure defined in
Section II is treated as a failed robot with zero health.

The proposed framework assigns workload by treating all
agents equally in terms of their health and performance,
independent of robot inherent abilities (aerial or ground) for
a given application. Robots are free to carry out their task at
their own optimal pace with their inherent abilities depending
on their platform type. Relevant parameters for workload al-
location and transition include normalized operator and robot
condition and performance metrics, transition coefficient K
and the highest effect of transitions on any robot quantified
as q f ; by design all parameters remain the same for any
type of robot in a system with heterogeneous robots. For
coverage problems for instance, aerial robots may have an
advantage over ground robots in a heterogeneous team by
covering more area over a given period of time. In such cases,
the defined performance metric of Module P would present
a comparatively better assessment of the aerial robot in this
specific coverage application resulting in it receiving a bigger
workload in the next update cycle over the ground robot.
However, we note that the total performance of the system
may benefit from initially assigning workload dependent on
inherent abilities of different robots relevant to applications
as well, which we leave as a potential future work on our
proposed system.

Given N robots to fully cover a complete workspace fol-
lowing our proposed framework, the task allocation freedom
is at most N − 1; meaning at least one robot’s workload is
passively allocated. We acknowledge that if a large number
of agents suffer from deteriorated conditions at once and the
rest of the agents are asked to compensate, since the system

is designed to ensure that the entire workspace is allocated
at all times, it may overwhelm them and in turn affect their
health/ability and performance as well. The current frame-
work is unable to consider how much of the total workload
can actually be allocated to the given number of agents or
the passively allocated agent, such that certain agents are
not overwhelmed even if their health/ability are optimal. The
process would require dynamically determining how much
of the total workload could be assigned at a given time
given all agent conditions, such that compensating agents
remain unaffected in terms of health/ability due to individual
workload allocation. We identify this as a limitation of the
proposed framework and leave this as future work. The cur-
rent framework is therefore only applicable assuming enough
agents are in optimal conditions, such that compensating
agents remain unaffected in terms of health/ability due to
individual workload allocations, and the total workspace
could be covered at all times.

Human operators in the system may have different levels
of skill, experience and responsiveness despite the measured
human condition metric. As such, we acknowledge that with
the current design for workload allocation the full potential of
the human robot team may not be utilized. Different human
operators may also have different working capabilities even
under stress or different emotional states which have not
been considered in the current system. A number of other
complexities also exist on measuring human operator health
and condition in the real world in terms of applicability of
sensors, the variable calibration requirements and environ-
mental effects that contribute to the huge variety in recorded
human behavior [71]. Therefore, as future work of our MH-
MR workload allocation framework, we intend to investigate
independent human condition assessment and incorporate
further human operator attributes in the workload allocation
process.

The proposed framework allows multi-human and multi-
robots to work together in a given application; robots are
free to work autonomously and may also be teleoperated by
human operators all the while ensuring that the total work
always sums to unity. Therefore, autonomy of the system on
the application is shared amongst all individual agents. With
the lap time comparison for scenario S1, and failed robot
case in scenario S2 presented in the validation section of the
manuscript, we established the effectiveness of our proposed
workload allocation framework. Therefore, we believe that
the proposed MH-MR workload allocation framework is an
effective shared-autonomy tool. However, we acknowledge
that the current system is validated on a simplified human
condition model derived from a previously collected dataset
from real human experiments with stress classification; the
proposed system must be validated with real human operators
in a future work.

The workload allocation and transition function modules
are designed to reflect the condition and performance of
the autonomous robots, and the humans and robots in tele-
operated robots focusing on the working ability of each
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individual rather than overall optimal system performance.
This approach is important for operators to believe that the
system will consider any deterioration in their health/ability
to work and adjust their workload accordingly, such that they
are never overwhelmed. The proposed framework therefore
facilitates cooperation between agents and could be benefi-
cial in studying inter-agent trust and trust between human
operators and the autonomous systems itself following [72],
[73] in MH-MR applications.

VI. CONCLUSION
An adaptive multi-human multi-robot system framework has
been proposed that performs real-time workload allocation
based on both human operator and robot conditions and
on performance, with workload transitional considerations.
The design allows compatibility with previously established
quantitative human and robot health assessments tests; as-
suming human and/or robot conditions and/or performance
are measured with enough accuracy, the modular design of
the framework can be used for a wide variety of multi-
agent applications, including search and rescue, exploration,
surveillance and monitoring based on specific requirements.
The system functions independent of the number of humans
or robots and is therefore scalable to hosting any number of
agents.

The applicability, effectiveness and scalability of the pro-
posed framework was validated experimentally with a MH-
MR patrolling application, demonstrating system adaptation
to maintain performance despite simulated temporary and
permanent, deteriorating human and robot conditions, includ-
ing complete robot failures. Further work on incorporating
modular function blocks on human experience, skill, re-
sponsiveness and safety protocols within the work allocation
module in the presence of sub-nominal human and/or robot
conditions is currently underway, along with field deploy-
ment studies of the proposed framework.
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