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Abstract— This paper introduces a new ROSbag-based mul-
timodal affective dataset for emotional and cognitive states
generated using the Robot Operating System (ROS). We utilized
images and sounds from the International Affective Pictures
System (IAPS) and the International Affective Digitized Sounds
(IADS) to stimulate targeted emotions (happiness, sadness,
anger, fear, surprise, disgust, and neutral), and a dual N-back
game to stimulate different levels of cognitive workload. 30
human subjects participated in the user study; their physiolog-
ical data were collected using the latest commercial wearable
sensors, behavioral data were collected using hardware devices
such as cameras, and subjective assessments were carried out
through questionnaires. All data were stored in single ROSbag
files rather than in conventional Comma-Separated Values
(CSYV) files. This not only ensures synchronization of signals and
videos in a data set, but also allows researchers to easily analyze
and verify their algorithms by connecting directly to this dataset
through ROS. The generated affective dataset consists of 1,602
ROSDbag files, and the size of the dataset is about 787GB. The
dataset is made publicly available. We expect that our dataset
can be a great resource for many researchers in the fields of
affective computing, Human-Computer Interaction (HCI), and
Human-Robot Interaction (HRI).

I. INTRODUCTION

The recent advancements in wearable devices have in-
creased the attention to affective computing and Human-
Computer Interaction (HCI). The easy availability of the
wearable sensors has allowed for its integration with affective
computing and has given rise to intelligent computing de-
vices that can interpret the affective state of users and provide
adaptive feedback to them accordingly. For instance, in an
autonomous car, the level of autonomy could be dynamically
adjusted based on the affective state of the human operator
[1]. In addition to the field of HCI, the affective computing
has been deeply influencing the field of robotics too, espe-
cially Human-Robot Interaction (HRI). For example, in the
social robot interaction system, physical conditions of users
extracted from cameras (e.g., facial expression and body
gestures) and/or physiological states of users collected from
sensors used to flexibly change communication methods to
reduce human’s antipathy toward the robotics system [2], [3].

With the advent of wireless wearable sensors and other
commercially available devices like a smartwatch, there has
been an increasing interest in estimating human’s state from
monitoring physiological signals. In response to this current
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Fig. 1: Outline showing how a new ROSbag-based multi-
modal affective dataset is created and organized.

trend of monitoring human state using wearable sensors,
it is becoming more important to build more physiological
datasets based on wearable sensors.

Moreover, the development of affective state prediction
algorithms and estimation methods using machine learning
and neural networks has boosted the availability of publically
available annotated affective datasets [4]. The datasets have
focused on recording the physiological responses of the
participants using various stimuli. However, in most of the
existing datasets, the data were recorded using laboratory
type monitoring devices which are using wired technologies,
so caused inconvenience for participants’ movement [5], [6].

In addition to the physiological sensor dataset, external
behavioral information of the human is also useful in the
estimation of the affective state [7]. For example, the facial
data are mostly used in affective datasets alongside the phys-
iological sensor data [8], [9]. Another external modality that
is widely used is the body gesture data [10]. However, there
are not many studies considering the relationship between
physiological signals and behavioral information, so there are
not many datasets including both the physiological data and
human behavioral data. Therefore, it is necessary to build
multimodal datasets that consist of both physiological and
behavioral data.

Furthermore, the estimation of human’s affective state for
effective HRI has been gaining increased interest in the
recent days. The emergence of new robotics middleware
(such as Robot Operating System (ROS) [11]) has also
played a larger role in growing the variety of HRI research
to integrate the robotics system with the affective computing.
In ROS, the data collected are usually stored as a ROSbag.
The ROSbag format has more benefits than the CSV format



for collecting and analyzing the dataset. Since the ROS can
ensure to synchronize the recording signals and videos, it
is available to easily and directly analyze the dataset by
replaying both using a single ROSbag file. Also, the ROS
supports various program languages and operating systems,
so that users can validate the developing algorithm and
programs by connecting the dataset as like in real-time
experiments. Plus, the dataset is available to convert to CSV
format or others via additional ROS packages. Therefore, a
dataset that combines both physiological and behavioral data
based on ROS can have great advantages.

In this work, we present a ROSbag-based multimodal
dataset comprising physiological data measured using wear-
able devices and behavioral data recorded using external
devices. The data were collected from participants through
a user study where various stimuli such as images, audio,
and workload tasks were used. Fig. 1 outlines how the
dataset was created and organized. During the user study,
physiological responses such as Blood Volume Pulse (BVP),
Electrocardiography (ECG), Electro-dermal Activity (EDA),
Electromyography (EMG), Galvanic Skin Response (GSR),
Heart Rate (HR), Interbeat Interval (IBI), Photoplethysmog-
raphy (PPG), and Skin Temperature (ST) were measured
using commercially available wearable devices. In addition
to the physiological sensors, a 3D frontal camera and a side-
view camera were used to record face and body gestures,
respectively. To investigate the implicit behaviors of users,
the variations in the keyboard typing and the mouse motion
patterns were also recorded. During the study, the partic-
ipants performed a self-assessment of their affective level
using questionnaires at the end of each experiment. These
subjective data can be used later for the training of the
classifiers.

II. RELATED WORKS

Human affects shape a huge part of the human experience
such as attention, learning, memory, and even decision-
making which are required to complete tasks. Therefore,
understanding and measuring human affects in real-time
is vital to construct adaptive and context-aware interfaces
that could enrich the user experience. To do so, affective
computing research investigates how affect sensing and elic-
itation techniques can build the understanding of affect and
contribute to the design of technologies [12]. Two main
methods have been used to estimate human emotion and
cognition states [13]. The first is to analyze internal human
changes by monitoring physiological signals such as ECG,
GSR, EMG, and so on. The other method involves human
physical signals such as facial expression, gesture, voice, and
so on. As human affects are too complex to present with a
single signal, many researchers have applied multiple sensors
to improve accuracy and reliability of the system [13], [14].

Most affective computing applications use annotated
datasets to train machine learning models that recognize
human psychological states [14], [15]. The majority of the
dataset includes multimodal stimuli which were designed to

elicit a particular human affect and sensor data that were col-
lected when a subject was exposed to the stimuli. Depending
on how the researchers defined the human affects and what
types of sensors they used, characteristics of the annotated
datasets are different. Although the independence between
emotion and cognition is still a controversial topic [16],
the researchers mainly focused on emotion recognition by
providing different dimensions of emotion, so the affective
dataset are getting increasingly diversified (such as, DEAP
[5], DECAF [6], AMIGO [8], WESAD [17], and so on).
Most of the existing dataset particularly focused on emotion
recognition but did not design a deliberate experimental
setting to detect one’s cognitive state which could affect one’s
emotional states.

In this regard, we present a dataset for detecting emotional
and cognitive states which is collected from various wearable
devices that can monitor and collect human physiological and
behavioral data in an unobtrusive manner.

III. DESIGN OF USER STUDY

We designed a user study to build a new affective dataset
that includes physiological and behavioral data based on the
participants’ emotional and cognitive states. All participants
were asked to perform two tasks: an emotion elicitation task
and a cognitive workload task. This study was approved by
the Purdue University’s Institutional Review Board (Purdue
IRB Protocol: #1812021453).

A. Experimental Setup

The user study was conducted in a closed indoor setup as
shown in Fig. 2. The participants were seated in front of a
screen with the various wearable sensors and other external
sensors connected to a ROS-based monitoring system. Fig.
1 depicts the schematic of the monitoring system for reading
physiological and behavioral data, as well as self-assessment
ratings. The main laptop behind the screen is used to connect
all sensors and devices, as well as to execute the Graph-
ical user interface (GUI) programs for displaying emotion
stimulus sets and the memory test game on the screen. The
programs are connected with the ROS to synchronize and
to save the data to a ROSbag file that is used to track and
record all rostopic messages communicated within the ROS.

B. Participants

For this user study, we recruited 30 participants from the
University; the 11 females and 19 males had an age range of
18 to 37 years (mean: 25.1; std: 4.497). It was ensured that
none of the participants had any skin allergies to metal or
plastic, medical history of brain disorder, or heart diseases
and vision or muscle impairment, so that all the wearable
devices could be used. The participants were compensated
with $10 for their participation.

C. Equipment

As shown in Fig. 2, the physiological and behavioral
sensors used in the monitoring system are wearable and
commercial devices, so that the experimental settings do
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Fig. 2: A user study setting. Commercial wearable sensors including Empatica E4, Shimmer3 GSR and PPG, Polar H10,
and Myo armband are utilized. Behavioral sensors including a USB camera (for side view), Intel RealSense (frontal depth
and RGB images), a microphone, and a mouse & keyboard are also utilized.

not limit the participant’s native body movements which are
essential for monitoring.

The physiological sensors connected to the monitoring
system are as follows:

« Empatica E4 is a wristband with an array of sensors
for physiological monitoring: EDA, BVP, IBI HR, and
ST [18].

o Myo is an armband that measures the 8-channel EMG
signals. It includes the 8 electrodes placed inside the
band to measure the 8-channels EMG signals [19].

« Polar H10 is worn-chest strap wearable measuring the
HR via electrodes attached on a participant’s chest [20].

« Shimmer3 GSR+ measures GSR and the PPG using
electrodes that are attached to the fingers [21].

The behavioral sensors included in the monitoring system
are as follows:

« Intel RealSense is used to record 3D-depth and 2D
color videos, and mounted on the top of the TV screen
for capturing participant’s face [22].

« USB camera is a basic camera to monitor the side view
of the participants.

« Mouse & Keyboard is used to track mouse cursor and
monitor pushed keys.

« Microphone is used to record the participant’s voice.

D. Stimulus

For the emotion elicitation task, the images and the audio
clips were taken from the IAPS and IADS which are widely
used and validated in the field of physiology for provok-
ing specific emotions [23], [24]. We particularly exploited
21 pictures of the International Affective Picture System
(IAPS) [25] and 21 audio clips of the International Affective
Digitized Sound System (IADS) [26]. We used these visual
and auditory stimuli to elicit targeted seven-emotions (e.g.,
happiness, sadness, anger, fear, surprise, and neutral). Table
I shows the finally selected stimulus data for this user study.

TABLE I: Selected stimulus data for basic emotions.

Type of emotion IAPS images IADS: audios

Happiness #1710, #2070, #2550  #110, #226, #3820
Sadness #2800, #3230, #3350  #105, #278, #812
Anger #4621, #6560, #6840 #1006, #290, #420
Fear #1120, #1201, #1930  #276, #286, #712
Surprise #1616, #3022, #8180  #114, #360, #425
Disgust #7380, #9300, #9320  #210, #255, #700
Neutral #7080, #7175, #7217  #262, #319, #723

The used images and the number of IAPS and IADS are
included on the dataset. For the cognitive workload task,
we employed dual V-back games [27]. To provoke different
levels of cognitive workload (e.g., low, medium, and high),
we controlled the number of back steps (V) of games from
1-back to 3-back to adjust the difficulty of the games.

E. Experimental Protocol

In the user study, participants were given three tasks as
illustrated in Fig. 3. The first and second tasks are for
emotional elicitation using IAPS and IADS, respectively. The
third task is to stimulate the three-levels cognitive workload
using dual N-back game. After finishing each task, the
participant took a break until they want to proceed with the
next task.

The first and second tasks were the emotion elicitation
task which was composed of 21 rounds for each task. The
participants were asked to look at a white cross on the screen
for 10 seconds (called a fixation cross), then watch images
of IAPS for 6 seconds in the first tasks or listen to short
audio clips of IADS for 6 seconds in the second tasks,
and then rate their perceived emotion with a 9-point Self-
Assessment Manikin (SAM) scale [28]. The images and the
audios were selected such that they can stimulate various
human emotions. Fig. 3a and Fig.3b explain the procedures
of the emotion elicitation task using the images and sound



10 sec.
fixation cross

10 sec.
fixation cross

6 sec.
listen an audio

6 sec.
watch an image

SAM Rating

Word Rating

SAM questionnaire T — SAM questionnaire

(a) (b)

10 sec.
fixation cross

6 sec.
dual N-back games

SAM Rating

il

NASA-TLX questionnaire

©

Fig. 3: Details of the procedures for emotion elicitation tasks and cognitive workload tasks in the user study; (a) using
images of IAPS set, (b) using audio clips of IADS set, and (c) using a dual N-back game.

TABLE II: Summary of the Dataset.

Participants
Number of ROSbag files

30 (Female: 11 and Male: 19)

1,602 files (about 787 GB)

Arousal, Valence, Dominance,
Word-emotion rating
Mental/Physical/Temporal demand,
Performance, Effort, Frustration

PPG from wist and chest, EDA, IBI,
ST, ECG, GSR, and EMG

Frontal face videos (RGB and depth),
side view video

Emotion ratings

Workload rating

Physiological signals

Video types

stimulus, respectively.

The third task was the cognitive workload task which
consisted of three rounds by presenting different levels of dif-
ficulty, low, medium, and high. The participants were asked
to complete the Dual N-back games. During the experiment,
the humans’ physiological and behavioral conditions were
monitored using the proposed monitoring system in section
II-C. After they completed each session, they were asked
to rate their perceived cognitive workload with NASA-Task
Load Index (NASA-TLX) [29]. Fig. 3¢ shows the procedures
of the cognitive workload tasks.

IV. DATASET CONSTRUCTION

In this section, we explain the details of the proposed
dataset configuration: physiological and behavior sensor data.
Table II presents the summary of the dataset.

A. Physiological Sensor Data

The dataset includes BVP, ST, EDA, and IBI from Em-
patica E4 sensor with 30Hz sampling time, BVP and GSR
from Shimmer3 GSR unit with 30Hz sampling time, HR
from Polar H10 with 1Hz, and 8-channel EMGs from Myo
armband with 50 sampling time.

Fig. 4 shows an example of physiological data in the
dataset (IAPS #1201, P13). The first plot from top is the
BVP signals, the second plot is the average of the IBI data,
the third plot is the average of the EDA, the fourth plot is
the average of ST data. Those data are collected from the

Empatica E4 sensor. The fifth and sixth plots are raw PPG
and GSR data of the Shimmer3 sensor. The seventh plot is
the result of HR data of the Polar H10. The last plot is raw
data of 8-channel EMGs of the Myo armband.

In the figures, the gray area indicates the duration when
the stimulus was exposed to the participants during the
experiments. The left side of the gray area is a baseline
section where the participant lies in the fixation section. The
right side of the gray area is a self-assessment reporting
section for participants to fill the subjective questionnaires
out.

Table III summarizes the rostopic message information of
the physiological data in the dataset.

TABLE III: List of rostopic messages for physiological
Sensors.

Sensor Name of rostopic messages Type of rostopic messages
Empatica E4  /physiological_data empatica_e4_msgs/DataArrays!
Shimmer3 /shimmer3/GSR std_msgs/Float64
} /shimmer3/PPG std_msgs/Float64
Polar HI10 /polar_h10/hrv std_msgs/Int32MultiArray

/myo_raw/myo_emg

Myo Armband /myo_raw/myo_imu

ros_myo/EmgArray*
sensor_msgs/Imu

B. Behavioral Sensor Data

The dataset includes three different kinds of image se-
quences taken by two cameras. The Intel RealSense camera
located at the front captured facial expressions and upper
body gestures in 30 frames per second (fps). At the same
time, depth camera results separately were recorded in 30 fps.
The USB camera at the side of participants obtained induced
behavioral responses in 10 fps. As well, the participant’s
speech was recorded via a microphone mounted on the
participant’s neck for the user study.

The collected experimental data showed that the tasks
elicited participants’ emotional and cognitive states. For

'Empatica  E4  ROS  message:
hyeonukbhin/empatica_e4_msgs

’Myo Armband ROS message: https://github.com/dzhu/
myo—raw

https://github.com/
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Fig. 4: Example of the physiological signals from the dataset
(IAPS#1201 of P13); IBI, EDA, and ST data of Empatica
E4, PPG and GSR data of Shimmer, HR of Polar H10, and
8-channels EMGs of Myo armband (from top to bottom).

example, a piece of the proposed dataset with the participant
P13 and visual stimulus IAPS#1201 is shown in Fig. 5. Given
the recorded stream of participants, as presented in Fig. Sa,
5b and 5c, the behavioral data include facial expressions and
body movements, which may imply emotional reactions.

Table IV summarizes the rostopic messages information
of the behavioral data in the dataset.

TABLE IV: List of rostopic messages for behavioral sensors.

Devices Name of rostopic message Type of rostopic message

Intel /camera/color/image_raw sensor_msgs/Image
RealSense /camera/depth/image_rect_raw  sensor_msgs/Image
USB .
/image_raw sensor-msgs/Image
caemra
Microphone  /audio/audio audio_common_msgs/AudioData
Mouse /mouse_tracking/click std_msgs/String ]
/mouse_tracking/position std_msgs/Int32MultiArray
Keyboard /keyboard_tracking/info std_msgs/String

V. SUBJECTIVE RATING ANALYSIS
A. The SAM Rating in the Emotion Elicitation Task

All participants’ subjective measures (e.g., arousal, va-
lence, and dominance) in each emotion elicitation task are
compared to the reference values published in [30], [31].
The comparison results were plotted on a grid map image
as shown in Fig. 6, where we used Root-Mean Square
Error (RMSE). Fig. 6a shows the result of the comparison
analysis in the emotion elicitation task using IAPS. Fig. 6b

(a) Front view sequence; 8, 11, 14, 17, 20, 23 seconds

(c) Side view sequence
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Fig. 5: Example of the behavioral data from the dataset
(IAPS#1201 of P13); (a) Front RGB images, (b) Front depth
images, (c) Side-view images, (d) speech signals, and (e)
positions of the mouse cursor.

shows the result of the comparison analysis in the emotion
elicitation task using IADS. In both figures, the x-axis is
the participant’s number from P1 to P30 and the y-axis
is the number of the dataset. In order to show the overall
results of the comparison analysis of the self-assessments,
we displayed the results using gradual colors from blue to
red. The closer the index value to O (blue) means that the
more similar it is to the reference value. On the other hand,
the closer the index value to 45 (red) means that the more
different it is is from the reference value.

For the results of the SAM scales in the emotion elicitation
task using IAPS, the lowest similarity of the dataset is
#3350 of P3 with RMSE 42.69, and the highest similarity
of the dataset is IAPS#3022 of P26 with RMSE 0.04. P25
produced the highest similarity with mean RMSE 1.66, and
P28 produced the lowest similarity with mean RMSE 6.81.
The overall average and standard deviation of RMSE are
4.26 and 3.90, respectively.

For the SAM scales in the emotion elicitation task using
IADS, the lowest quality of the dataset is IADS#286 of P2
with RMSE 44.28, and the highest quality of the dataset is
# 820 of P26 with RMSE 0.01. P15 produced the highest
similarity with mean RMSE 1.69, and P14 produced the
lowest similarity with mean RMSE 10.02. The overall av-
erage and standard deviation of RMSE are 4.31 and 4.41,
respectively, excepting lost data (P3’s data and P4’s #278,
#360, and #425).
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Fig. 6: Color map to display the comparing results of root
mean square error (RMSE) between the collected SAM
rating in the emotion elicitation tasks and the reference rating
of (a) IAPS and (b) IADS set.

B. NASA-TLX Rating in the Cognitive Workload Task:

We analyzed the results of the NASA-TLX rating scales
and scores of the dual /N-back game to monitor the change of
the participant’s workload. Fig. 7 shows the overall results of
the NASA-TLX and dual N-back game. The blue bar means
the score of the dual N-back game, and orange, yellow,
purple, green, sky-blue, and red bars mean each subscale
ratings of the NASA-TLX: mental demand, physical demand,
temporal demand, overall performance, effort, and frustration
level that are rated within a 100-points range. In the dual 1-
back, most participants obtained 100 point scores in the dual
N-back game, and also acquired the lowest rating of the
subscales in the NASA-TLX (median of each the subscales:
40/40/35/40/40/50). In the dual 2-back, the participants’
game scores decreased 55.56 points compared to the result
of the dual 1-back. On the other hand, the subscales of the
NASA-TLX increased; (median: 60/65/55/60/65/60). In the
dual 3-back, the game score is 40-points that is the lowest
score and all subscales of the NASA-TLX are highest scores
compared to others; (median: 70/75/65/70/75/70).

VI. ACCESS TO DATASET AND APPLICATION

To obtain the permission for accessing the dataset pre-
sented in this paper, researchers should contact us via email;
info@smart-laboratory.org. We will also provide source
codes (such as ROS package and Matlab codes) to replay
the dataset.

s Dual N-back Game Score s NASA-TLX: Performance
s NASA-TLX: Mental Demand NASA-TLX: Effort

NASA-TLX: Physical Demand s NASA-TLX: Frustration
s NASA-TLX: Temporal Demand
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o
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Dual 1-Back Dual 2-Back Dual 3-Back

Fig. 7: The results of the Dual N-Back game score and
NASA-TLX questionnaire according to the level of the
workload.

A. Examples of replaying the dataset

Since the dataset is encapsulated into the ROSbag files, the
dataset can be easily played back in in any ROS-compatible
robot system, such as ROS system in Linux system, and
Matlab.

For using the ROS system, users should install the ROS
on Linux, and then decompress the compressed dataset. An
example of reading a ROSbag file on Linux system is below:

$ rosbag decompress [rosbag_name.bag]
$ rqt_bag or rosbag play [rosbag_name.bag]

For using Matlab, users should install ROS toolbox? that
enables accessing the ROS and exchanging data. An example
of reading a ROSbag file in Matlab is below:

% Read a rosbag file

input_bag = rosbag('[rosbag_name]|.bag');

% Display availiable topics included in the
rosbag

input_bag. AvailableTopics

% Display all message data along with time
stamps.

input_bag.MessageList;

% Select topics from the all message list

selected_topic = select (input_bag, 'Topic', ']

rostopic name]] ');
selected_topic_-msgStructs= readMessages (
selected_topic , 'DataFormat', 'struct');

B. Applications: Facial Emotion Analysis

In this subsection, we demonstrate an example of applica-
tions using the proposed affective dataset. The application is
to estimate human facial expression from the facial video of
the affective dataset using open source-based Face Emotion
Recognition (FER) libraries [32].

Fig. 8b shows computed emotion based on the facial
expressions (P13’s TAPS#1201). The gray area in Fig. 8b
indicates the exposure duration of visual or auditory stimuli.
The left side of the gray area is the exposure time with
10 seconds fixation cross. The right side of the gray area

3ROS  Toolbox in
products/ros.html

Matlab: https://www.mathworks.com/
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Fig. 8: An example of emotion analysis from the collected
facial expression images.

indicates the period during the self-assessment. The partici-
pant P13 rated the emotion response as word-emotion rating
‘Disgust’ with the SAM scale assessment level. Compared
to the highest emotion probability of ‘Happiness’ from the
emotion recognition library in Fig. 8b, not only is the
calculated emotion different from self-assessed one, but
the facial expressions are also not matched with the SAM
scale assessment. This implies that only analyzing facial
expressions may not be enough to fully estimate human
emotions and that other behavioral or physiological features
and analysis may need to be combined.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have introduced a new ROSbag-based af-
fective dataset that shows how one’s emotional and cognitive
states affect physiological and behavioral data.

For building the affective dataset, we designed a user study
to stimulate the targeted emotions using IAPS and IADS
datasets and different levels of the cognitive workload using
dual N-back games, and executed the study by recruiting 30
participants. In the user study, we recorded the particiapnts
status that includes physiological data from commercial
wearable devices and the behavioral data using hardware
devices, as well as the results of the subjective questionnaires
using SAM and NASA-TLX. All data were saved in single
ROSbag files rather than CSV files. This not only ensures
synchronization of signals and videos in the dataset, but
also allows researchers to easily analyze and verify their
algorithms by connecting directly to this dataset through
ROS. The generated dataset consists of 1,602 ROSbag files,
and the size of the dataset is about 787GB. We expect that
our dataset can be a great resource for many researchers in
the fields of affective computing, HCI, and HRI.

In the future, we will utilize more (and latest) physio-
logical sensors and hardware devices and develop additional
psychological experiments related to workload, in order to

update the affective dataset. We also plan to analyze more
details of the dataset by extracting features from the collected
data and validate the dataset using advanced machine learn-
ing techniques to estimate human’s emotional and cognitive
states.
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