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Abstract

Most cognitive processes are studied using abstract or synthetic stimuli with specific features to
fully control what is presented to subjects. However, recent studies have revealed enhancements
of cognitive capacities (such as working memory) when processing naturalistic versus abstract
stimuli. Using abstract stimuli constructed from distinct visual features (e.g., color and shape),
we have recently shown that human subjects can learn multidimensional stimulus-reward
associations via initially estimating reward value of individual features (feature-based learning)
before gradually switching to learning about reward value of individual stimuli (object-based
learning). Here, we examined whether similar strategies are adopted during learning about
naturalistic stimuli that are clearly perceived as objects (instead of a combination of features) and
contain both task-relevant and irrelevant features. We found that similar to learning about
abstract stimuli, subjects initially adopted feature-based learning more strongly before
transitioning to object-based learning. However, there were three key differences between
learning about naturalistic and abstract stimuli. First, compared with abstract stimuli, the initial
learning strategy was less feature-based for naturalistic stimuli. Second, subjects transitioned to
object-based learning faster for naturalistic stimuli. Third, unexpectedly, subjects were more
likely to adopt feature-based learning for naturalistic stimuli, both at the steady state and overall.
These results suggest that despite the stronger tendency to perceive naturalistic stimuli as objects,
which leads to greater likelihood of using object-based learning as the initial strategy and a faster
transition to object-based learning, the influence of individual features on learning is stronger for
these stimuli such that ultimately the object-based strategy is adopted less. Overall, our findings
suggest that feature-based learning is a general initial strategy for learning about reward value of

all types of multi-dimensional stimuli.

Keywords: value-based learning, curse of dimensionality, naturalistic tasks, reinforcement

learning.



1. Introduction

A hallmark of human cognition is the ability to attribute reward outcomes to cues or events that
precede them, or to choices that lead to those reward outcomes. Attributing reward outcomes to
stimuli and actions allows the brain to learn and compute the so-called stimulus and action
values, respectively, which we collectively refer to as “reward value” for simplicity. Choices
faced in the real world, however, are often objects consisting of many different features or
attribute dimensions (e.g., color, shape, texture, etc.), each of which could potentially take many

values and carry different information about reward outcomes.

Learning about multi-dimensional stimuli is not a trivial problem given that humans and other
animals have limited cognitive abilities in terms of the number of features or objects that can be
held in working memory or attended at a time. In addition, the set of possible associations grows
supra-linearly as the dimensionality of attributes increases, which is often referred to as the
“curse of dimensionality” (Barto & Mahadevan, 2003; Diuk, Tsai, Wallis, Botvinick, & Niv,
2013; Hastie, Tibshirani, & Friedman, 2001; Sutton & Barto, 1998). It has been proposed that
humans overcome the curse of dimensionality by constructing a simplified representation of the
stimuli and learning only a small subset of features (Niv et al., 2015; Wilson & Niv, 2012), or by
extracting a set of rules to estimate reward value of options based on their features (Braun,
Mehring, & Wolpert, 2010; Dayan & Berridge, 2014; Gershman & Niv, 2010). We have recently
shown that during learning about multi-dimensional stimuli, humans initially adopt feature-based
learning (i.e., learn reward value of individual features shared between different options) to
tackle the curse of dimensionality before gradually transitioning to learning reward value of
individual stimuli, which we refer to as object-based learning (Farashahi, Rowe, Aslami,

Gobbini, & Soltani, 2018; Farashahi, Rowe, Aslami, Lee, & Soltani, 2017b).

Most studies of reward learning for multi-dimensional stimuli (including ours), however, have
focused on abstract stimuli, such as fractals, colored shapes, Gabor patches, etc. (Farashahi et al.,
2017b; Niv et al., 2015; Oemisch et al., 2019; Wilson & Niv, 2012; Wunderlich, Beierholm,
Bossaerts, & O’Doherty, 2011). These simple stimuli have been adapted to avoid the complexity
related to real-world stimuli and better control what is provided to the subjects in the

experiments. Although this approach has led to great progress in understanding reward-based



learning, it remains unclear whether findings based on abstract stimuli generalize to naturalistic

stimuli.

Recent work using naturalistic stimuli has provided evidence that other cognitive abilities such
as working memory and visual search are enhanced when processing real-world objects rather
than abstract stimuli (Brady, Stérmer, & Alvarez, 2016; Brady et al., 2019; Spachtholz &
Kuhbandner, 2017). In addition, there is also evidence that naturalistic stimuli can evoke a faster
response compared to abstract stimuli (Arntzen & Lian, 2010; Battistoni, Kaiser, Hickey, &
Peelen, 2018). These findings are significant because both working memory and visual search
can contribute to reward learning. For example, limited capacity of working memory has been
shown to decrease the speed of learning (Collins, Brown, Gold, Waltz, & Frank, 2014; Collins,
Ciullo, Frank, & Badre, 2017; Collins & Frank, 2012; Otto, Raio, Chiang, Phelps, & Daw,
2013). In addition, analyses of visual search between abstract and naturalistic stimuli suggest that
naturalistic stimuli tend to be processed faster because they are perceived to be more salient
(Battistoni et al., 2018; Kaiser, Oosterhof, & Peelen, 2016; Thorpe, Fize, & Marlot, 1996).
Increased saliency of naturalistic stimuli may lead to more object-based learning when tackling
the curse of dimensionality. Together, these findings suggest that using naturalistic stimuli could
lead to an overall improvement in learning and/or could bias learning strategy toward object-

based learning.

To test these alternative hypotheses and further explore learning about reward value of
naturalistic stimuli, here, we examined learning in a multi-dimensional environment that
resembles naturalistic settings. Similar to our previous study (Farashahi et al., 2017b), human
subjects learned reward value of multi-dimensional visual stimuli through feedback. To construct
naturalistic stimuli, we used photos of athletic shoes with color and shoe type as the two task-
relevant features. We found that similar to abstract stimuli, subjects initially adopted feature-
based learning before systematically transitioning to object-based learning. We also observed
three key differences in learning about naturalistic versus abstract stimuli. First, subjects initially
adopted the feature-based strategy less often when learning about naturalistic stimuli. Second,
the transition from feature-based to object-based learning was faster for naturalistic stimuli.
Third, subjects were less likely to use the object-based strategy for naturalistic than abstract

stimuli both at the steady state and overall.



2. Materials and Methods

2.1. Subjects

All subjects gave written informed consent prior to participating in the experiment in accordance
with the procedures approved by the Dartmouth College Institutional Review Board. No subject
had a history of neurological or psychiatric illness. A total of 46 subjects (29 females) were
recruited from the Dartmouth College student population (ages 18-22 years). Among them, 23
subjects (15 females) performed two sessions of the experiment that involved learning about
naturalistic stimuli only (first cohort of subjects). The other 23 subjects performed the
experiment (four sessions) that involved learning both naturalistic and abstract stimuli: they
completed two sessions with naturalistic stimuli on one day and two sessions with abstract
stimuli on another day (second cohort of subjects). Data in the first cohort of subjects was
obtained to compare learning about naturalistic stimuli with our previous study on abstract
stimuli (Farashahi et al., 2017b). We then collected data from the second cohort of subjects to
perform within-subject comparisons and to have identical task design between naturalistic and

abstract stimuli.

Due to the learning nature of our experimental paradigm, we used a performance threshold to
exclude subjects whose performance—defined by the average probability of choosing the more
rewarding stimulus in each trial—were not distinguishable from chance level. More specifically,
we excluded subjects whose average performance was below 0.5439 (equal to 2 s.e.m from
chance level of 0.5 based on the average of 576 trials after excluding the first 30 trials of each
session). This resulted in the exclusion of 5 out of 23 participants in the first cohort of subjects
and 3 out of 23 participants in the second cohort of subjects. The data from the remaining 38
subjects were used for the results presented here. We did not perform data analysis on the
excluded subjects due to the small sample size (8 subjects). All data used in this manuscript can

be downloaded from http://ccnl.dartmouth.edu/DataShare/NatStiLer.zip.

Subjects were compensated with “t-points” (1 t-point/hour), which are extra credit points for
classes within the Department of Psychological and Brain Sciences at Dartmouth College. Based

on their performance, subjects were additionally rewarded up to $10 per hour. The experiment



was written in MATLAB using the Psychophysics Toolbox Version 3 (Brainard, 1997) and

presented using an OLED monitor.
2.2 Stimuli

We used both naturalistic and abstract stimuli. These stimuli were used in both the choice and
estimation tasks described below. For naturalistic stimuli, we used pictures of shoes worn for
different sports and outdoor activities. These stimuli had two task-relevant features for assigning
reward probabilities: type of shoe (soccer shoe, basketball shoe, etc.) and color (blue, red, etc.;
Fig. 1c¢). There were two possible sets of naturalistic stimuli (Fig. 1¢ left and right panels), each
containing 9 pictures of shoes (3 shoe types x 3 colors). The order in which these two sets were

used in the two experimental sessions was randomly determined for each participant.

For abstract stimuli, we used colored shapes similar to those of our previous study (Farashahi et
al., 2017b). Specifically, abstract stimuli were drawn from a set of 9 objects that were
constructed using combinations of three distinct patterns and three distinct shapes. For each
subject and each session, three patterns and shapes were selected randomly and without
replacement from a total of eight patterns and eight shapes (Fig. 1e). Importantly, we used the

same reward probabilities for the task with abstract stimuli and the task with naturalistic stimuli.
2.3. Experimental procedure

Overall, the experimental paradigm was identical to Experiment 3 in Farashahi et al. (2017b)
except that subjects were required to learn a total of 9 (instead of 8) stimuli. Each participant in
the first cohort of subjects completed two sessions of the task with naturalistic stimuli in one day.
Participants in the second cohort of subjects completed two sessions of the task with naturalistic
stimuli one day and two sessions with abstract stimuli on a separate day. The order of stimulus
type (abstract and naturalistic) was randomly determined for each participant. Each session
lasted about 30 minutes and consisted of 288 choice trials that were interleaved with 8 estimation

bouts presented after trials 22, 43, 65, 86, 144, 216, 259, and 288 of the choice task.

In each trial of the choice task, the subjects were presented with a pair of stimuli and were asked
to choose the stimulus that they believed would provide the most reward (Fig. 1a). The chosen

stimulus was rewarded (independently of the other presented object) based on its assigned



reward probability (Fig. 1d). Of the two features in each stimulus, one feature was partially
informative of reward probability associated with the stimuli (e.g., shoe type [T] in the left panel
and color [C] in the right panel of Fig. 1d), while the other feature was not. Hence, stimulus
reward probability could not be determined by combining the reward probability assigned to
individual features, resulting in a moderately non-generalizable environment. For example, while
stimuli containing T3 feature were overall more rewarding than objects containing T2 feature
(left panel in Fig. 1d), stimulus C1T3 was less rewarding than stimulus C1T2. In addition, the
average reward probability of stimuli containing a given non-informative feature (in this case
C1) was equal to 0.5 (the average reward probability for C1T1, C1T2, and C1T3 objects was
equal to 0.5). We constructed a non-generalizable reward environment because a fully
generalizable environment is not realistic and could push subjects to solely adopt feature-based
learning (Farashahi et al., 2017b). It is worth noting that these reward probabilities were adjusted
by a small amount due to a limited number of trials for delivering reward with a certain
probability. However, the general structure of reward assignments stayed the same throughout

the experiment for the experienced reward.

During each bout of the estimation task, each consisting of 9 trials, subjects provided their
estimates of reward probability for each individual stimulus. Possible values for these estimates
ranged from 5% to 95% (the average value of each interval shown in Fig. 1b) in 10%

increments.
2.4. Data analysis and model fitting

To examine the strategy adopted by subjects to estimate reward probabilities associated with
different stimuli, we used two methods based on subjects’ responses in the estimation trials.
First, we fit a Generalized Linear Model (GLM) on subjects’ estimates of reward probabilities
using the following regressors: the actual reward probability assigned to each stimulus (the
object-based regressor), the reward probability calculated by combining reward probability of
individual features using the Bayes’ theorem (the feature-based regressor; see Eq. 1 in Farashahi
et al., 2017b), and a constant. The constant (bias) term in this model quantifies subjects’ overall
bias in estimating reward probability, and the other two terms determine the influence of feature-

based and object-based strategies on probability estimation. We used the ratio of the regression



coefficient associated with the object-based regressor to the sum of the regression coefficients
associated with the object-based and feature-based regressors to quantify the relative weight of

object-based strategy on learning.

a
reward feedback © T T2 T3 T T2 T3
fixation target presentation  choice Cl e | - c1 a & E
+ =+mlE+@ C2 | i | e | 2 02&_‘,&
C3 | 22w | i | audin C3 L s i
informative feature non-informative feature

T T2 T3 T T2 T3

0.30 | 0.70 | 0.50 0.30 | 0.10 | 0.70
(0.33) | (0.17) | (0.75)

Q
Q

0.70 | 0.50 | 0.30
0.67)| (0.5) | (0.25)

0.10 | 0.50 | 0.90
©.17)| (0.5) | 087)

0.70 | 0.30 | 0.50
(0.75) (0.5)

O0O0anAOOS

Fig. 1. Reward probabilities and stimuli used in the experiment. (a) Timeline of the choice trials.
In each trial, subjects chose between two options (i.e., shoes that differed in type and color, or two
shapes that differed in shape and color) and were provided with feedback on the chosen option.
Reward or no reward is indicated by yellow and grey rings, respectively. (b) A sample estimation
trial. In each estimation trial, subjects estimated the probability of reward associated with a given
stimulus by pressing one of ten keys on the keyboard associated with probability ranging from less
than 10% to more than 90%. (¢) Two sets of stimuli used in the experiment comprised of naturalistic
stimuli with two task-relevant features (C: color; T: type). The order in which each set of stimuli
were assigned to two experimental sessions was pseudo-randomized across subjects. (d) Stimulus-
reward associations. Two sets of reward probabilities were assigned to the two sets of stimuli shown
in (b). For each set of stimuli, only one feature was informative. An informative feature indicates that
the average reward probability would change as a function of that feature. Importantly, reward
probabilities assigned to the shoes could not be determined by combining the reward probability of
individual features and thus, the reward environment was non-generalizable. Numbers in parentheses
show the actual probabilities of reward obtained on each stimulus (by the subjects) due to limited
resolution for reward assignment. For the set on the left, shoe type was on average informative about
reward (average probability of reward = {0.36, 0.5, 0.63}), whereas color was not informative of
reward probability (average probability of reward = {0.5, 0.5, 0.5}). The opposite is true for the set
on the right. (e) The sets of possible patterns (left set) and shapes (right set) used in building abstract
stimuli. For each session of the experiment, only three of these shapes were used for a given subject
(randomly chosen without replacement). Other aspects of the task and reward probabilities were
similar for abstract stimuli and naturalistic stimuli.
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Second, to determine whether subjects’ probability estimates were closer to estimates based on
the feature-based or object-based strategy, we computed the correlation between subjects’
estimates and the actual reward probability assigned to each stimulus as well as subjects’
estimates and the reward probabilities calculated by combining the reward probability of
individual features using Bayes’ theorem. We then used the outcome correlation coefficients to
determine the fractions of subjects whose estimates follow the feature-based or object-based
learning strategy more strongly in each condition or over time. That is, each subject was assigned
as a feature-based or object-based learner based on comparing the correlation coefficients

mentioned above.

In addition, we fit two GLMs to test the effect of stimulus type (abstract vs. naturalistic), time
(trial number), and the interaction of stimulus type with time. First, we performed a logistic
regression analysis to predict the fraction of subjects whose estimates were more correlated with
actual reward probabilities than reward probabilities calculated based on features and subjects’
estimates of reward probabilities, using time and stimulus type as independent variables. Second,
we fit a GLM on the difference between two correlation coefficients: the correlation between
subjects’ estimates and object-based predictions, and the correlation between subjects’ estimates
and feature-based predictions. The regressors in this model were time (trial number) and stimulus
type (natural or abstract stimulus). For both models, we also considered the interaction of time

and stimulus type.

To estimate the time course of performance as well as the time course of relative weight and

fraction of subjects, we fit data using an exponential function based on the following equation:

—t
V(&) = Yss — ss — Yo)exp D (Eq. 1)

where y, and yq, are the initial and steady-state values of performance, 7 is the time constant for

approaching steady state, and t represents the trial number in a session.

Finally, we also used six different reinforcement learning (RL) models based on object-based or
feature-based learning strategies to fit individual subjects’ choice behavior in order to identify
the learning strategy adopted by each subject (see below for more details). These models were fit

to experimental data by minimizing the negative log likelihood (LL) of the predicted choice



probability given different model parameters using the ‘fminsearch’ function in MATLAB
(MathWorks, Inc., Natick, MA). To avoid finding local minima for the fit of experimental data,
we repeated fitting of each dataset with at least 10 different sets of initial parameters and picked
the best fit. Based on the examination of the fitting results, we found 10 initializations to be
sufficient to avoid local minima. We performed model comparison using both Akaike
information criterion (AIC) and Bayesian information criterion (BIC). The smaller value for each

measure indicates a better fit of choice behavior.

In addition, to compare the ability of different models in fitting choice behavior over time, we

also used AIC and BIC per trial (Farashahi et al., 2018), denoted as AIC, and BIC,:
AIC,(t) = —2LL(t) + 2k/Nriais (Eq.2)
BICp(t) = _ZLL(t) + Zklog (Ntrials)/Ntrials (Eq~ 3)

where k indicates the number of parameters in a given model, ¢ represents the trial number, LL(t)
is the log-likelihood in trial ¢, and N;,;4;s 1S the number of trials in the experiment. The logic
behind these definitions is that penalties included in AIC and BIC are based on the sum of the
log likelihoods over all trials (data), and thus, by dividing the penalty terms by the number of
trials we ensure that the sum of AICp(#) and BICp(#) over all trials would be equal to AIC and
BIC, respectively. The smaller values for these measures indicate a better fit of choice behavior.
As we show here, these measures can be used to detect a transition between feature-based and

object-based learning.

Finally, to confirm our results based on AIC and BIC, we applied the variational Bayesian model
selection (BMS) approach in order to identify the most likely models that could account for our
data. Specifically, the BMS approach treats different models as random variables and estimates
the parameters of a Dirichlet distribution, which describes the probabilities from which models
are sampled across all subjects. These probabilities translate to the probability of one model
being more likely than any other model (Stephan et al., 2005). To avoid overfitting of data and
reducing the effect of outliers, we randomly sampled 80% of the data to estimate the likelihoods

and repeated this procedure 50 times to calculate the average likelihood of all models. All
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behavioral analyses and model fitting were done using custom codes written in MATLAB 2018a

(MathWorks, Inc.).
2.4.1. Object-based RL models

Using standard RL models (Sutton & Barto, 1998), the reward value of each stimulus was
estimated based on reward feedback following the subjects’ choice in each trial. In the context of
this study, reward value is equal to the reward probability associated with each stimulus. We
fitted two types of models, referred to as uncoupled object-based RL and coupled object-based
RL. In the uncoupled object-based RL, only the reward value of the chosen object was updated
in each trial. This update was done via separate learning rates for rewarded or unrewarded trials

using the following equation:

Venos(t + 1) = Vepos(t) + arew(l - Vchos(t)) , Uif r(t)=1

Vchos(t + 1) = Vchos(t) - aunr(VchoS(t))' if T'(t) =0 (Eq‘ 4)

where ¢ represents the trial number, Vs is the estimated reward value of the chosen stimulus,
r(t) is the trial outcome (1 for a rewarded outcome, 0 for an unrewarded outcome), and @4,
and a,,, are the learning rates for rewarded and unrewarded trials. The value of the unchosen

stimulus is not updated in this model.

In the coupled object-based RL, reward values of both stimuli presented in a given trial were
updated, but in opposite directions (if the subject incorrectly assumes that reward assignments on
the two stimuli are anti-correlated). That is, while the reward value of the chosen object was
updated based on Eq. (4), the value of the unchosen stimulus was updated based on the following

equation:

Vines(t + 1) = Vypes () — arew(VuncS(t))' if r(t) =1

Vuncs(t + 1) = Vuncs(t) + aunr(l - Vuncs(t))r if T'(t) =0 (Eq- 5)
where Vs 1s the estimated reward value of the unchosen stimulus.

The estimated value functions were then used to compute the probability of choosing between

the two stimuli in a given trial based on a logistic function:
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logit P,(t) = (V,(¢) — Vx(t))/o + bias (Eq. 6)

where PL is the probability of choosing the stimulus presented on the left, /'L and V'r are reward
values of the stimuli presented to the left and right, respectively, bias measures a response bias
toward the left option to capture the subject’s location bias, and o is a parameter measuring the

level of stochasticity in decision-making processes.
2.4.2. Feature-based RL models

In this set of models, reward value of each stimulus is computed by combining reward values of
the features of that object, which are estimated from reward feedback using a standard RL
model. The updating rules for the feature-based RL models are identical to the object-based RLs
described above except that the reward value of the chosen (unchosen) stimulus is replaced by

reward values of the features of the chosen (unchosen) stimulus.

As with the object-based RL models, the probability of choosing a stimulus is determined based

on the logistic function of the difference between the estimated values for the stimuli presented:

lOgit PL (t) = Wshape(VshapeL (t) - VshapeR (t)) + Wcolor(VcolorL (t) - VcolorR (t)) + bias
(Eq. 7)

where Vspaper, (Veotort) and Vpaper (Veoiorr) are reward values associated with the shape
(color) of the left and right stimuli, respectively, bias measures a response bias toward the left
option to capture any location bias, and Wgpqpe and we,o, determine the influence of the two
features on the final choice as well as the overall stochasticity in choice (larger values of weights
correspond to smaller stochasticity in choice). Note that these weights can be assumed to be
learned over time through reward feedback (as in our models; see RL models with decay below)

or could reflect differential processing of the two features due to attention.
2.4.3. RL models with decay

Additionally, we investigated the effect of “forgetting” reward values of the unchosen (or not-
presented) stimuli or features by introducing a decay in reward values. This feature has been

shown to capture some aspects of learning (Ito & Doya, 2009), especially in multi-dimensional
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tasks. More specifically, reward values of the unchosen or not-presented stimuli or features

decayed to 0.5 with a rate of d (0 < d < 1) as follows:
Vit+1)=V(Et)—d=WV(t)—05) (Eq.8)

where ¢ represents the trial number and V is the estimated reward value of an unchosen stimulus

or feature.
2.4.4. Hybrid RL model

To show that AICp(t) and BICp(t) can be used to detect a transition between feature-based and
object-based learning, we performed additional simulations using a hybrid RL model. In this
model, the subjective value of each option is the weighted sums of two sets of values: values
based on a feature-based RL model with decay and values based on an object-learning RL model

with decay. As a result, the probability of choosing between the two stimuli is equal to:
logit PL(t) = W(t) <(VshapeL(t) - VshapeR(t)) /2 + (VcolorL(t) - VcolorR(t))/Z)

+(1 = w®)(L(®) — Vr(®) (Eq. 9)

where w(t) is the relative weight of the object-based to the feature-based component. The
relative weight of the object-based to feature-based component monotonically increases over

time as follows:

-t

w(t) = Ws — (W — Wo)exp(T) (Eq. 10)

where w, and wg are the initial and steady state values, and 7 is the time constant. We set the
Wo, Wss, T, Urey, and @y, 10 0.3, 0.7, 100, 0.2, and 0.1, respectively, to match the observed
choice behavior of the subjects in our experiments. We used this hybrid model to simulate choice

behavior in our experiment with the same task parameters used for subjects.
3. Results

3.1. Effects of stimulus type on performance

13



We first examined performance (probability of choosing the more rewarding stimuli) to
determine whether participants were able to perform the choice task correctly. We found that in
choice trials, the average performance was significantly above chance level (abstract stimuli:
mean=std = 0.60+0.08; naturalistic stimuli [first subject cohort]: mean+std = 0.61+0.05;
naturalistic stimuli [second cohort of subjects]: meantstd = 0.62+0.07). Performance in each
cohort of subjects and across all subjects quickly increased and plateaued after about 100 trials
(Fig. 2a, d, g). These results demonstrate that participants were engaged in the task and were

able to select the stimulus with a higher probability of reward in most trials.

We then compared the dynamics of learning for naturalistic and abstract stimuli by fitting the
time course of performance with an exponential function (see Materials and Methods). We found
that for the second cohort of subjects who performed the task with both naturalistic and abstract
stimuli, the performance reached its steady-state at a faster rate for the naturalistic rather than
abstract stimuli (naturalistic: T = 52 trials, CI = [31, 62]; abstract: T = 85 trials, CI =[76, 94]).
However, the steady-state performance was not significantly different between the two types of
stimuli in this cohort of subjects (0.65 and 0.63 for abstract and naturalistic stimuli, respectively;

Fig. 2a, d).

We found similar results when considering data from both cohorts of subjects. More specifically,
the subjects reached the steady-state performance at a faster rate when learning about naturalistic
stimuli (naturalistic: T = 60 trials, CI = [49, 71]; abstract: t = 85 trials, CI =[75, 95]), whereas
the steady states were not different between the two types of stimuli (equal to 0.64 and 0.65 for

naturalistic and abstract stimuli, respectively; Fig. 2g).

Finally, we also fitted a Generalized Linear Model (GLM) on the overall performance in order to
test for possible transfer of knowledge between the two sessions of the experiment. However,
this analysis did not reveal any effect of stimulus type (abstract vs. naturalistic stimuli) or session

number (first vs. second) on performance.
3.2. Subjects’ estimates reveal the effects of stimulus type on learning strategy

Next, we used two GLMs to examine the effects of stimulus type (abstract vs. naturalistic), time

(trial number), and their interaction on the subjects’ probability estimates throughout the

14



experiments (see Materials and Methods). First, we performed a logistic regression analysis on
the fractions of subjects whose estimates were more correlated with actual reward probabilities
than reward probabilities calculated based on features and subjects’ estimates of reward
probabilities. Second, we used a multiple regression model to predict the difference in the
correlations of subjects’ estimates and object-based predictions and subjects’ estimates and
feature-based predictions. Using these analyses, we found significant effects of time and stimulus
type, suggesting an overall larger value for abstract than naturalistic stimuli and an increase in
the use of object-based strategy over time (Table 1). Additionally, we found negative but non-
significant regression coefficients for the interaction of time and stimulus type in both models.
This result suggests that learning about abstract and naturalistic stimuli follow different time

courses.

To further investigate the possible interaction between stimulus type and time, we explored the
adoption of the two learning strategies over the course of the experiment. First, using estimates
of reward probabilities, we confirmed the previously observed transition from feature-based to
object-based learning (Fig. 2b, e). More specifically, using a GLM to predict subjects’ estimates,
we found that for the abstract stimuli, the relative weight of the object-based strategy (i.e., the
weight of the object-based divided by the sum of the weights for the object-based and feature-
based strategies) was smaller than 0.5 during the initial estimation bouts and gradually increased
and became larger than 0.5 over time (relative weight for the first two estimation bouts = 0.33,
95% CI1=10.24, 0.45], p = 0.04, d = 0.29, N = 40; relative weight for the last two estimation
bouts = 0.80, 95% CI =[0.7, 0.9], p=0.01, d = 0.38, N = 40; Fig. 2b). We found a similar
pattern for learning with naturalistic stimuli (relative weight for the first two estimation bouts =
0.22, 95% CI=10.15, 0.29], p = 0.02, d = 0.46, N = 40; relative weight for the last two
estimation bouts = 0.62, 95% CI =[0.55, 0.68], p = 0.03, d = 0.32, N = 40; Fig. 2e). This result
shows that initially, subjects’ estimates of reward probabilities were more strongly influenced by
the feature-based strategy but later on, were more affected by the object-based strategy for

learning and computing reward probabilities of different stimuli.
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stimulus type

Ind dent variables f . . . .
ndependent variables for (abstract vs. | time (trial #) | stimulus typextime

predicting fraction of subjects

naturalistic)
Regression coefficients and 0.37+0.13 0.004+0.001 -0.004+0.0004
corresponding p-values p=0.016 p=0.013 p=0.09

Independent variables for
predicting difference in correlation
of subjects’ estimate with object-

stimulus type
(abstract vs. | time (trial #) | stimulus typextime

turalisti
based vs. feature-based learning naturalistic)
Regression coefficients and 0.26+0.11 0.003+0.001 -0.004+0.0005
corresponding p-values p=0.033 p=0.025 p=0.11

Table 1. The effects of time and stimulus type on subjects’ estimates of reward probabilities.
Reported are the values of regression coefficients (meants.e.m.) and corresponding p-values for a
logistic regression model that predicts the fraction of subjects whose estimates were more strongly
correlated with object-based than feature-based predictions (top), and a linear regression model that
predicts the difference between the correlation of subjects’ estimates and object-based predictions
and the correlation of subjects’ estimates and feature-based predictions. In both models, we used
stimulus type, time, and the interaction of stimulus type with time as regressors.

Consistent with these results, correlation analysis revealed that during the first two estimation
bouts, the probability estimates of less than half of the subjects were more correlated with the
actual reward probabilities than the reward probabilities calculated based on feature values, but
this fraction increased over time for both abstract stimuli (comparison of fractions in first two
estimation vs. last two estimation bouts: 2 (1) = 12.25, p = 4.6x107%, N = 40; Fig. 2¢) and
naturalistic stimuli (comparison of fractions in first two vs. last two estimation bouts: 2 (1) =

5.85, p=0.015, N = 40; Fig. 2f).

We found similar results when considering data from all subjects who performed the learning
task with naturalistic stimuli (first and second cohorts of subjects). The relative weight of the
object-based strategy was smaller than 0.5 during the initial estimation bouts but gradually
increased and became larger than 0.5 (relative weight for the first two estimation bouts = 0.35,

95% CI1=10.31, 0.40], p =0.02, d = 0.41, N = 76; relative weight for the last two estimation
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bouts = 0.64, 95% CI =[0.62, 0.69], p =0.01, d = 0.58, N = 76; Fig. 2h). Additionally, the
probability estimates of less than half of the subjects were more correlated with the actual reward
probabilities than the reward probabilities calculated based on features, and this fraction

increased over time (comparison of fractions in first two vs. last two estimation bouts: y2 (1) =

47.04, p=7.0x10"'2, N = 76; Fig. 2i).

To identify the similarities and differences between learning about naturalistic and abstract
stimuli, we next compared our measures within participants in the second cohort of subjects.
Comparison between the relative weights of object-based strategy on estimated reward
probabilities did not reveal any significant difference between the initial estimation bouts
(difference in the relative weight of object-based strategy between abstract and naturalistic
stimuli = 0.11, 95% CI =[-0.02, 0.23], p=0.11, d = 0.12, N = 40). However, we found the
relative weight of the object-based strategy during the last two estimation bouts to be
significantly larger for abstract than naturalistic stimuli (difference = 0.18, 95% CI = [0.09,
0.26], p=0.03, d = 0.26, N = 40). Comparison between the relative weights of the object-based
term on probability estimates during the first two estimation bouts revealed that subjects’ initial
strategy was not different between learning about naturalistic and abstract stimuli (difference in
the relative weight of the object-based strategy between abstract and naturalistic stimuli = 0.02,
95% CI1=1[-0.07, 0.11], p=0.27,d = 0.09, N = 76). Moreover, the relative weight of the object-
based strategy during the last two estimation bouts was larger for abstract than for naturalistic

stimuli (difference = 0.15, 95% CI =[0.03, 0.23], p = 0.04, d = 0.13, N = 76).

By examining the fraction of subjects whose reward-probability estimates were more correlated
with actual reward probabilities associated with the stimuli than the reward probabilities
calculated based on features, we found that in the early stages of learning, a larger fraction of
subjects followed an object-based strategy for naturalistic rather than abstract stimuli (the
difference in fractions between naturalistic and abstract stimuli during the first two estimation
bouts = 0.21, 2 (1) = 6.25, p = 0.01, N =40). We also found that toward the end of the
experiment, a slightly larger proportion of subjects provided probability estimates that were more
strongly correlated with the object-based strategy when learning about abstract stimuli (the

difference in fraction between naturalistic and abstract stimuli during the last two estimation

bouts = -0.19, ¥2 (1) = 7.34, p = 0.0016, N = 40).
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Figure 2. Transition from feature-based to object-based learning occurs faster when learning
from naturalistic stimuli. (a) The time course of performance for learning abstract stimuli. Plotted
is the probability of choosing the more rewarding option in each trial (shaded areas indicate s.e.m.).
The dotted line shows chance performance and the dashed line shows the fit of data based on an
exponential function. The red and blue solid lines show the maximum performance using the feature-
based and object-based RLs, respectively, assuming that the decision maker selects the more
rewarding option based on a model approach in every trial. Arrows mark the locations of estimation
bouts throughout a session. (b) The time course of the strategy used to estimate reward probabilities
based on fitting subjects’ estimates of reward probabilities. Plotted is the relative weight of object-
based to the sum of the object-based (in red) and feature-based terms and explained variance in
estimates (R?, black curve) over time. The error bars demonstrate the confidence interval and the
dashed lines show extrapolation based on an exponential fit. (¢) The fraction of subjects who showed
a stronger correlation of probability estimates with actual reward probabilities than with the
probabilities estimated using reward probabilities of stimuli’s features. The dashed line shows
extrapolation based on an exponential fit. (d—f) Similar to panels a—c but for learning from
naturalistic stimuli in the same cohort of subjects. (g—i) Similar to panels a—c but for learning from
naturalistic stimuli across all subjects (first and second cohorts of subjects).
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These results hold when considering data from both cohorts of subjects. That is, in the early
stages of learning, a larger fraction of subjects followed the object-based strategy for naturalistic
stimuli (the difference in fraction between naturalistic and abstract stimuli during the first two
estimation bouts = 0.23, ¥2 (1) = 8.65, p = 0.0034, N = 76). We also confirmed that toward the
end of the experiment, a slightly larger fraction of subjects provided probability estimates that
were more strongly correlated with the object-based strategy when learning about abstract
stimuli (difference in fractions between naturalistic and abstract stimuli during the last two

estimation bouts =-0.16, ¥2 (1) = 9.34, p = 0.0029, N = 76).

Together, the results from the above analyses indicate that subjects transitioned from primarily
using feature-based learning to object-based learning for both types of stimuli. An interesting
difference between learning about abstract and naturalistic stimuli was that, even though the
subjects initially adopted a more object-based strategy when learning about naturalistic stimuli,

they reached a higher level of object-based learning for abstract stimuli.

Having these results, we next compared the rate of transition from feature-based to an object-
based strategy for naturalistic and abstract stimuli using our measures. First, we fit the relative
weight of the object-based term over time (based on an exponential function) and found that
subjects transitioned to object-based learning at a faster rate when learning about naturalistic
stimuli (t =227, 85 and 65 trials for abstract and naturalistic stimuli in the second cohort of
subjects and naturalistic stimuli across all subjects, respectively; Fig. 2b, e, h). Moreover, to
estimate errors related to the reported time constants, we fitted a GLM to individual subjects’
estimates of reward probabilities. Consistent with our previous results, we found that subjects
transitioned to object-based learning at a faster rate when learning about naturalistic stimuli (1 =
216, 95% CI=1[277, 158], 93, 95% CI =[132, 54], and 52, 95% CI = [24, 79] trials for abstract
and naturalistic stimuli in the second cohort of subjects and naturalistic stimuli across all
subjects, respectively). However, we note that fitting GLM this way, as opposed to fitting GLM
to all subjects’ estimates of reward probabilities, is prone to serious overfitting (3 parameters for

fitting 9 data points).

Similarly, the fraction of subjects with a stronger correlation between estimated reward
probabilities and actual reward probabilities reached a plateau faster for naturalistic stimuli (T =

207, 80, and 76 trials for the time constant of abstract and naturalistic stimuli in the second
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cohort of subjects and naturalistic stimuli across all subjects, respectively; Fig. 2c¢, f, i). Together,
results based on different types of measures illustrate that subjects learned at a faster rate when

faced with naturalistic stimuli compared to abstract stimuli.

Next, to assess if feature identity impacted learning, we compared the subjects’ assignment of
reward probabilities between the two task-relevant features: color and shoe type. This is because
color is a low-level visual feature compared to shoe type, which is a high-level concept.
Therefore, we compared learning between sessions when either color or shoe type was the
informative feature within individual subjects (each subject performed the task twice, once with
color and once with shoe type as the informative feature). However, we did not find any
significant difference in the relative weight of the object-based term between color or shoe type
as the informative feature (the difference in estimated weights between color and shoe type =
0.05, CI=1[-0.12, 0.15]; Fig. 3a). Moreover, when comparing the fraction of subjects whose
reward-probability estimates were more correlated with actual reward probabilities than reward
probabilities calculated based on features, we did not find any evidence for the type of
informative feature in any of the estimation bouts (the difference in the fraction of subjects for

color and shoe type = 0.10, 2 (1) <2.51, p > 0.11; Fig. 3b).
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Figure 3. Transition from feature-based to object-based learning was not different between the
sessions with color and shoe type as the informative features. (a) Plotted is the relative weight of
object-based to the sum of the object-based and feature-based terms for sessions with color and shoe
type as the informative features. Dashed lines show the fit of data based on an exponential function
that allows extrapolation over the entire course of the experiment. (b) The fraction of subjects who
showed a stronger correlation between reward-probability estimates and actual reward probabilities
than the probabilities estimated using reward values of features for sessions with color and shoe type
as the informative features.
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3.3. Choice behavior reveals the effects of stimulus type on learning strategy

To identify the learning strategy adopted by the subjects during choice trials, we fit the choice
data using six different RL models that relied on either object-based or feature-based approaches
for updating reward probabilities. Specifically, in uncoupled feature-based RL models, the
features associated with the selected stimulus are updated. In coupled feature-based RL models,
however, the features associated with both the chosen and unchosen stimuli are updated (with the
assumption of anti-correlated reward assignment). Similarly, in uncoupled object-based models,
only the reward probability of the selected stimulus is updated, whereas the reward probabilities
of both chosen and unchosen stimuli are updated in coupled object-based models. In RL models
with decay, the reward probabilities of unchosen stimuli or features are lost over time (see
Materials and Methods). For model comparison, we used goodness-of-fit measures in terms of

AIC and BIC.

We found the best object-based and feature-based models to be those that incorporate the decay
in value estimates over time (Table 2). More importantly, the object-based with decay model
provided a significantly better fit than the feature-based with decay model when learning about
naturalistic stimuli across all subjects and abstract stimuli in the second cohort of subjects
(naturalistic stimuli: two-sided sign-rank test; BIC [feature-based with decay] — BIC [object-
based with decay]: mean+s.e.m. = 45.7+18.2, p = 0.02, N =38, d = 0.65; AIC [feature-based with
decay] — AIC [object-based with decay]: meants.e.m. =44.1+£18.1; p = 0.02, N =38, d = 0.62,
abstract stimuli: BIC [feature-based with decay] — BIC [object-based with decay]: mean+s.e.m. =
48.4+19.1, p = 0.04, N =20, d = 0.38; AIC [feature-based with decay] — AIC [object-based with
decay]: meants.e.m. = 47.4£19.2; p = 0.04, N =20, d = 0.35).
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Naturalistic stimuli
Model Coupled Uncoupled Fea.ture—based Coupled Upcoupled Obj:ect—based
feature-based | feature-based with decay object-based | object-based with decay
# pars. 5 5 6 4 4 5
-LL 363.1£8.5 370.9£9.5 359.548.9 363.549.8 330.4+12.1*
AIC 736.1+16.9 751.8+19.1 727.0+17.8 734.9£18.6 670.9+£24.2*
BIC 744.2+16.9 759.9.0+19.1 733.5+17.8 741.4+18.6 679.0+24.2*
b)
Abstract stimuli
Model Coupled Uncoupled Fea'ture—based Coupled Upcoupled Ob]"ect—based
feature-based | feature-based with decay object-based object-based with decay
p:is 5 5 6 4 4 5
-LL 365.7+£10.1 372.0+10.4 361.4+8.9 367.6+11.0 332.1£11.6*
AIC 741.4+20.2 754.1+20.8 730.8+17.8 743.3£22.1 674.3+£23.2*
BIC 746.4+20.2 759.1+20.8 734.8+17.8 747.3+22.1 679.3+£23.2*

Table 2. Comparison of the goodness-of-fit measures. The object-based model with decay
provides the best fit to the choice data. Reported are three measures for the goodness-of-fit, negative
log likelihood (-LL), Akaike information criterion (AIC), and Bayesian information criterion (BIC)
averaged over subjects (mean+s.e.m.) for three feature-based RLs and their object-based counterparts
when learning from naturalistic stimuli across all subjects (a) and abstract stimuli in the second

cohort of subjects (b). A smaller value indicates a better fit. The model providing the best fit in a
given experiment and its object-based or feature-based counterpart are highlighted in cyan and

orange, respectively. Each feature-based RL was compared with its object-based counterpart using a
two-sided, sign-rank test, and (*) indicates the difference is significant at p < 0.05.
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Additionally, we applied the variational Bayesian model selection (BMS) approach to identify
the most likely models that could account for our data. We found the most likely object-based
and feature-based models to explain the data were those incorporating the decay. More
importantly, the object-based with decay model was more likely than the feature-based with
decay model (Fig. 4a-b). Therefore, across all models, choice behavior was best accounted for
by an object-based RL with decay, suggesting that subjects learned the reward probability of the
chosen stimulus and forgot the reward probability of the unchosen and non-presented stimuli.
These results illustrate that overall subjects’ choice behavior was more compatible with an

object-based strategy for learning.

To capture a potential change in the best model that accounted for choice data over time, we also
computed the BICp and AICp over time for the best object-based and feature-based models (see
Materials and Methods). We found that the object-based model provided a better fit mainly in the
later stage of the experiment (Fig. 4¢, d). The difference between the goodness-of-fit for the
object-based and feature-based models was significantly different between early (1-50) and late
(50-288) trials (A BIC, = A AIC, = A (-LL): meantstd = 0.14 £ 0.09; two-sided sign-rank test; p
=0.03, d=0.94, N = 38). We note that the boundary for early versus late trials (at 100) was
selected based on the time course of performance (Fig. 2a, d, g) but that the reported difference
was significantly larger than zero (p < 0.05) for any boundary values between 80 and 120 as
well. However, comparing naturalistic with abstract stimuli (Fig. 4¢, d), the difference in
goodness-of-fit for the object-based and feature-based models between early and late trials was
not significant (A BIC, = A AIC, = A (-LL): mean#std = 0.03+0.07; two-sided rank-sum test; p =
0.28, d = 0.25, N = 58). This observation can be explained by the fact that models are fit to the
choice data from all trials. Therefore, fitting provides a set of parameters that captures choice
behavior the best on average, and therefore change in behavior is not captured best in this
measure. Together, results based on fitting choice behavior illustrate that similar to abstract
stimuli, subjects transitioned from feature-based to object-based strategy during the time course

of the experiment.
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Fig. 4. Goodness-of-fit based on two best models shows similar transitions from feature-based
to object-based learning for naturalistic and abstract stimuli. (a—b) Likelihood of different
strategies adopted by humans when learning about naturalistic stimuli across all subjects (a) and
abstract stimuli in the second cohort of subjects (b). Fitting choice behavior shows that subjects’
choice behavior was more likely to be explained by an object-based learning strategy. (c—d) Plotted
is the average BIC per trial across all subjects based on the feature-based model with decay, the
object-based RL model with decay, and the difference between object-based and feature-based
models when learning from naturalistic stimuli across all subjects (c) and abstract stimuli in the
second cohort of subjects (d). We did not observe any significant difference between learning about
naturalistic and abstract stimuli based on the goodness-of-fit measure.

We have previously used LL(t), AICp(¢), and BICp(?) to compare competing models in terms of
their ability to capture choice after a sequence of trials (Farashahi et al., 2017a) and at a given
point in time during a session (Farashahi et al., 2017b, Farashahi et al., 2018). Nonetheless, we
performed additional simulations to show that these measures can capture a transition between
feature-based and object-based learning. More specifically, we simulated 50 instances of choice
behavior in a hybrid model that includes both feature-based learning with decay and object-based
learning with decay components and in which the relative weight of these two components
continuously changes over time (see Materials and Methods for more details). We then fit the
simulated choice data using an object-based model with decay and a feature-based model with
decay and computed BICp(¢) for fit based on these two models. We found that BIC,(¢) can detect
the transition from feature-based to object-based learning at about the same time point (~70
trials) as when the object-based component became stronger than the feature-based component
(i.e., when w(t) > 0.5; Fig. 5). This result shows that BICp (and similarly AICp) can detect a

transition in the learning strategy over time.
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Figure 5. BICp can be used to detect transition from feature-based to object-based learning
from simulated data. (a) Plot shows the relative weight of the object-based to the feature-based
component in the hybrid model used to generate the simulated choice data. (b) Plot shows the
average BICp(t) across all subjects for fit of simulated data based on the feature-based model with
decay, the object-based model with decay, and the difference between BICp(t) in the two models. At
the beginning of the session, the feature-based model provides a better fit as reflected in a smaller
BICp, but later on, the object-based model provides a better fit. Importantly, the difference in BICp
changes sign around the same time point (~70 trials) as the relative weight of the object-based to the
feature-based component in the simulated data passes 0.5. This result shows that BICp can be used to
detect a transition between different learning strategies over time.

4. Discussion

In this study, we investigated learning about reward value of naturalistic stimuli based on
feedback in multi-dimensional reward environments. We confirmed our previous observations
using abstract stimuli (Farashahi et al., 2017b) but also found significant differences between
learning naturalistic and abstract stimuli. More specifically, our subjects initially adopted a
feature-based learning strategy more strongly and slowly transitioned to an object-based strategy
as they gained more experience through reward feedback. However, we found that compared
with abstract stimuli, subjects initially adopted a less feature-based strategy and transitioned to
an object-based strategy faster when learning about naturalistic stimuli. These findings validate
our previous results that feature-based learning is a general initial strategy for both learning

about reward value of multi-dimensional stimuli and tackling the curse of dimensionality.

RL theories have been widely adopted as the main framework to understand reward learning in
human and non-human primates. However, it has been suggested that other cognitive processes

such as working memory (WM) play a role in learning (O’Reilly & Frank, 2006). For example,
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WM capacity has been shown to be a limiting factor for learning from reward feedback (Collins
et al., 2017; Collins & Frank, 2012). Moreover, although it is generally accepted that WM
capacity is discrete and limited (Awh, Barton, & Vogel, 2007; Cowan, 2001; Fukuda, Awh, &
Vogel, 2010; Miller, 1956; Rouder et al., 2008), a series of recent studies has shown that the
capacity of WM is continuous (Alvarez & Cavanagh, 2004; Bays, Catalao, & Husain, 2009;
Bays & Husain, 2008; Ma, Husain, & Bays, 2014) and can be almost unlimited for naturalistic
objects (Brady et al., 2016). Based on the aforementioned findings, our observed faster rate of
learning for naturalistic stimuli could be attributed to an increase in WM capacity for these

stimuli.

Studies of interactions between WM and learning have also pointed to the influence of individual
differences in WM capacity on the balance between model-free and model-based learning (Etkin,
Biichel, & Gross, 2016; Otto et al., 2013; Schad et al., 2014; Wills, Graham, Koh, McLaren, &
Rolland, 2011). Although these suggest that WM capacity might affect the speed of alternation
between learning strategies, it is still unclear how WM capacity influences learning strategies.
Here, we find that naturalistic stimuli bias the initial learning strategy toward object-based

learning and result in a faster transition to object-based learning.

Additionally, naturalistic stimuli are more familiar and could be perceived as more salient than
abstract stimuli (Battistoni et al., 2018; Kaiser et al., 2016; Thorpe et al., 1996), and thus, could
result in a strong bias toward object-based learning. Nonetheless, we find that the heuristic
feature-based strategy, which provides an approximation for reward value based on features, is
still adopted as the initial learning strategy when learning about naturalistic stimuli. Learning
about features has been shown to enhance learning speed (Gigerenzer & Goldstein, 1996;
Jocham et al., 2016) and allows for generalization of values (Kahnt, Park, Burke, & Tobler,
2012; Kahnt & Tobler, 2016). Together, these findings suggest that, when adopting learning
strategies, the demand for adaptability (Farashahi et al., 2017b; Farashahi et al., 2017a; Farashahi
et al., 2019; Soltani & Izquierdo, 2019) and tackling the curse of dimensionality could be the

more important factors than the saliency of naturalistic stimuli.

Our experimental design has a few limitations that can be addressed in future experiments. First,

only a specific type of object (i.e., shoe) was used as naturalistic stimuli, which might have been
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more familiar to some subjects than others. Familiarity (e.g., repeated exposure to the same
stimuli) has been shown to enhance the WM performance (Olson, Jiang, & Moore, 2005; Olsson
& Poom, 2005). Measuring subjects’ degree of familiarity to establish a baseline measure with
given stimuli can be used in future studies to understand the effect of familiarity on learning
from reward feedback. Another limitation of our study is the difference between the two task-
relevant features: color is a low-level visual feature whereas shoe type is more high-level and
conceptual. Although we did not find any difference between learning depending on the
informative feature, the difference between our two task-relevant features could potentially bias
learning toward a feature-based strategy because of recent studies suggesting that existing
semantic knowledge impacts WM capacity (Bower, Karlin, & Dueck, 1975; Brady et al., 2019;
Konkle, Brady, Alvarez, & Oliva, 2010; McWeeny, Young, Hay, & Ellis, 1987).

Finally, a novel aspect of our work is the use of naturalistic stimuli to study learning because so
far only a limited number of studies have investigated cognitive processes using such stimuli
instead of abstract stimuli (Battistoni et al., 2018; Boorman, Rajendran, O’Reilly, & Behrens,
2016; Brady et al., 2016; Hickey & Peelen, 2015; Kaiser et al., 2016; Leong, Radulescu, Daniel,
DeWoskin, & Niv, 2017). The lack of experiments exploring learning using naturalistic stimuli

calls for reconsideration of existing findings based on abstract stimuli.

5. Conclusion

Here, we aimed to investigate learning about multi-dimensional naturalistic stimuli based on
reward feedback. Crucially, our study is the first to compare response to multi-dimensional
naturalistic stimuli and abstract stimuli in the context of learning. We demonstrate that learning
about both types of stimuli involves transition from a feature-based to an object-based strategy,
however, this transition is faster for naturalistic compared to abstract stimuli. Moreover, object-
based learning is initially adopted more strongly for naturalistic than abstract stimuli, whereas
the object-based strategy is adopted less for naturistic stimuli both overall and at the steady state.
Overall, our results suggest that although naturalistic stimuli could be perceived as objects more
strongly, leading participants to use the feature-based strategy less often initially and transition
faster to object-based learning, the overall influence of individual features on learning was

stronger for naturalistic stimuli.
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Supplementary Materials

Supplementary data to this article, including parameters used for running the experiment and
behavioral responses recorded for each subject can be download from

http://ccnl.dartmouth.edu/DataShare/NatStiLer.zip.
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