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Abstract: This paper presents the first wireless multiplexed
fluorescence-based bio-molecular sensing system in a pill form
for GI-track health monitoring application. This application is
geared towards quasi-real time analysis of microbiome
distribution through nucleic acid detection. A silicon chip
integrates both the sensor and the wireless system, including a
124 pW ULP wireless receiver with -59 dBm sensitivity, a dual
mode FSK/OOK transmitter, and a fluorescent sensor array
with 1.6 attomoles and 100 pM of target DNA detection limit
per pixel. The complete package includes a CMOS fluorescent
sensor chip with integrated filter, a prototyped UV LED and
optical waveguide, functionalized bioslip, off-chip power
management and Tx/Rx antenna that fits in a standard FDA
approved capsule size 000.

Introduction: Ingestible bio-electronic sensors with robust
wireless communication capability and multiplexed bio-
molecular sensing can enable real-time monitoring of human
health in an in-vivo setting. Recent discoveries shows linkages
between microbiome population in Gl-track and a wide range
of health conditions [1]. Traditional methods to analyze gut
microbiome balance is lab-based DNA/RNA sequencing of
bacteria in fecal samples. Therefore, a wireless ingestible pill
with integrated bio-marker sensor that can map the microbiome
distribution in-vivo can revolutionize existing health care
system. While prior work has shown ingestible electronics
capable of sensing pressure, pH, temperature, performing
ultrasound endoscopy [2], and extracting microbiome samples
from gut fluid in-vivo [3], enabling a multiplexed nucleic acid
sensor in a compact bio-pill with a complete RF transceiver is
extremely challenging due to the level of sensitivity required
in such a low power and compact form factor. By eliminating
external bulky optics, this paper presents a packaged prototype
bio-pill system including a 15-pixel fluorescence CMOS
nucleic acid sensor array with on-chip optics, signal processing
and bi-directional communication capability.

System Overview: Fig. 1 shows the packaged system that is
powered by a 1.55 V, 12.5 mAh battery. The chip architecture
is shown in Fig. 2. The sensor array is integrated using metal-
based, angle-and-scattering-insensitive, nano-optic excitation
filters (M1-M4), eliminating bulky and expensive optics [4].
To enhance sensitivity, each pixel employs a differential
measurement scheme with a sensing and shielded reference
photodiode (150%170um) that are laid out in an interlaced
pattern to suppress common mode dark current. The
fluorescence read-out circuitry contains a capacitive-TIA
(CTIA) that is digitized with an on-chip 10-bit SAR ADC. In
the SAR ADC, a MOM capacitor with minimum value of 27
fF is used as unit cell. A preamplifier with auto-zeroing
technique is implemented to reduce input-referred offset and
suppress 1/fnoise (Fig. 6). Then, the ADC output is transmitted
via a dual-mode OOK/FSK transmitter realized with a current-
starving ring oscillator and a switching PA at 915 MHz (ISM).

The entire system operation goes as follows (Fig. 3): after
the system startup, it will be forced into receiving mode,
waiting for a 16-bit hardware verification ID. The purpose of
the verification is to guard against false trigger due to RF
scattering effects in tissue [5]. Concatenated with the 16-bit
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verification ID, a 32-bit instruction ID that includes pixel
selection, transmitter timing controls and 12-bit dynamic range
control (~30 dB) for the pixel. Finally, upon reception of the
32 bits, the system moves to the wireless transmitter mode.

ULP Wireless Front-end: To minimize power consumption
of the receiver, envelope detector (ED) based architecture
along with pulse-pause encoded (PPE) data is chosen (Fig. 7).
This eliminates high-power PLL-based CDR circuity. In this
encoding scheme, bit “0” is defined as a short pulse followed
by a short null, while bit “1” is defined as a longer pulse. The
input LNA is designed with an inverter with a resistor feedback,
followed by an open loop inverter (~33 dB voltage gain). The
amplified signal passes through a sub-Vt active ED. Then, an
oversampling comparator is used to decode the clock signal.
Such implementation allows all digital programmability,
eliminating any external analog voltage control. Then, the
Tx/Rx path share a single antenna in TDD operation. The
inverted-F antenna with an off-chip tapped capacitor matching
network at 915 MHz is designed for both PA and LNA (Fig. 4).
The total power consumption of the chip in the Rx and Tx
mode is 860 pW and 1.4 mW respectively (Fig. 11).

Measurement Results: The Rx performance is
characterized in a wireless setup. Figure 7 shows the measured
sensitivity of the Rx mode is -59 dBm with 10~ BER at 1 Mb/s,
demonstrating 124 pl/bit with 124 uW of power with 128.1
FoM (Fig. 9). With a human body between the bio-pill and the
external transmitter, ~6 dB of transmitting power increase is
observed. The decoded signals from the Rx is also shown in
Fig. 7, demonstrating the correct verification and the
instruction set. In Tx mode, an output power of -15 dBm is
measured (Fig. 7) that is received by the external receiver. The
wireless specification is summarized in Fig. 9 demonstrating
robust performance against other state-of-the-art implantable
radios. In addition, a 10-bit differential SAR ADC is designed
on-chip and achieves SFDR of 72 dB with 1 Hz input sine wave
and ENOB of 9.5 bits. This is sufficient to sample CTIA output,
from which the noise source is primarily dominated by the
photon shot noise (~1.5 mV) [4].

The on-chip optical filter achieves ~39 dB extinction ratio.
This removes complex and bulky optics and allows the limit of
detection (L.0.D.) for Qdot 800 to reach ~40 dots/um? or 1.6
attomoles (Fig.10) that is comparable to modern fluorescent
scanners and readers [4]. Figure 8 shows the absolute
responsivity at the output of the CTIA at varying target DNA
concentrations, demonstrating a detection limit of ~100 pM
with S.N.R. = 1. The dynamic range and sensitivity of the
sensor proves sufficient coverage to map gut microbiome
distribution which is typically in the range of nM to uM. The
system demonstrates, for the first time, a multiplexed
fluorescence-based bio-molecular sensor with bi-directional
communication capability in a FDA approved pill form.
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wireless implantable receiver and FoM eq. works on fluorescent sensor. Tx Mode.
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