
IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 2, APRIL 2021 587

A Derivative-Free Optimization Method With
Application to Functions With Exploding

and Vanishing Gradients
Said Al-Abri , Tony X. Lin, Graduate Student Member, IEEE , Molei Tao ,

and Fumin Zhang , Senior Member, IEEE

Abstract—In this letter, we propose a bio-inspired
derivative-free optimization algorithm capable of minimiz-
ing objective functions with vanishing or exploding gradi-
ents. The proposed method searches for improvements by
leveraging a PCA-based strategy similar to fish foraging.
The strategy does not require explicit gradient computa-
tion or estimation and is shown in simulation to require few
function evaluations. Additionally, our analysis proves that
the proposed algorithm’s search direction converges to the
gradient direction everywhere outside of small neighbor-
hoods around local minima. Applications to a data-driven
LQR problem and noisy Rosenbrock optimization problem
are demonstrated. Empirical results show the proposed
method exhibits fast convergence and is able to find the
LQR gains for any controllable system, including unstable
systems, and is robust to noisy function evaluations.

Index Terms—Derivative-free optimization, explod-
ing and vanishing gradient, data-driven systems, linear
quadratic regulator.

I. INTRODUCTION

IN DERIVATIVE-FREE (or 0-th order) optimization prob-
lems, objective functions with unknown analytical forms

(also known as black-box functions) are directly optimized
without estimating gradients or higher-order components
derivatives [1], [2]. They have been widely used for deep neu-
ral network fitting and for policy optimization in control and
robotic systems [3], [4], [5], [6], [7]. These methods have

Manuscript received March 17, 2020; revised May 18, 2020; accepted
June 9, 2020. Date of publication June 24, 2020; date of current
version July 9, 2020. The work of Said Al-Abri, Tony X. Lin, and
Fumin Zhang were supported in part by Office of Naval Research
under Grant N00014-19-1-2556 and Grant N00014-19-1-2266; in part
by Air Force Office of Scientific Research under Grant FA9550-19-
1-0283; in part by NSF Grant CNS-1828678, Grant S&AS-1849228,
and Grant GCR-1934836; in part by NRL under Grant N00173-17-1-
G001 and Grant N00173-19-P-1412; and in part by NOAA under Grant
NA16NOS0120028. The work of Molei Tao was supported by NSF
under Grant DMS-1847802 and Grant ECCS-1829821. Recommended
by Senior Editor C. Prieur. (Corresponding author: Fumin Zhang.)

Said Al-Abri, Tony X. Lin, and Fumin Zhang are with the
School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA 30332 USA (e-mail: saidalabri@gatech.edu;
tlin339@gatech.edu; fumin@gatech.edu).

Molei Tao is with the School of Mathematics, Georgia Institute of
Technology, Atlanta, GA 30332 USA (e-mail: mtao@gatech.edu).

Digital Object Identifier 10.1109/LCSYS.2020.3004747

recently received more attention in the optimization commu-
nity as useful approaches when an objective function has a
derivative that is prohibitively expensive to estimate [4]. In
particular, these methods may be better suited than gradient
estimation methods when the gradient is ill-defined, i.e., the
gradient either explodes or vanishes [8].
These ill-defined gradients naturally occur in many common

optimization problems. In deep neural networks, vanishing or
exploding gradients may prevent proper backpropagation of
the network weights [9], [10], while in reinforcement learn-
ing, exploding gradients may cause parameter estimation to
fail. In the case of searching for optimal controller parame-
ters, these exploding gradients are naturally evident when the
control parameters induce an unstable system [11].
In this letter, we leverage a modified version of a decentral-

ized bio-inspired source-seeking strategy known as Speeding-
Up or Slowing-Down (SUSD) [12], [13] as a sample-efficient
derivative-free solution for optimization in scenarios where the
gradients may be ill-defined, i.e., vanish or grow to infin-
ity. We validate our method through a data-driven Linear
Quadratic Regulator (LQR) problem (in which exploding gra-
dients occur if the feedback gains induce instability) and a
noisy Rosenbrock optimization problem (whose global mini-
mum is inside a long and narrow flat valley of a vanishingly
small gradient).
Many existing derivative-free optimization methods rely on

a direct search based only on function evaluations. The authors
of [14] analyze the Nelder-Mead algorithm that refines the
shape of a simplex to find a local minimum. However, the
method suffers from a lack of convergence results as the exist-
ing convergence analysis depends on specific dimensionality
assumptions of the optimization problem [14], [15]. In [8],
random search methods are analyzed in which candidates are
drawn randomly near the current estimate. While the analysis
of these methods is robust, they suffer from slow convergence
rates and high sampling rates. A consensus-based gradient-
free optimization method is presented in [7] which is effective
for high-dimensional problems. However, this method lacks
stability analysis for choosing the optimal parameters.
In model-free optimal control, Extremum Seeking Control

(ESC) is another derivative-free search method which also
2475-1456 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2020 at 01:48:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7623-8435
https://orcid.org/0000-0002-3308-6176
https://orcid.org/0000-0003-0053-4224

588 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 2, APRIL 2021

relies only on function evaluations [16], [17], [18], [19], [20].
However, ESC implicitly estimates the gradient of the objec-
tive function at each iteration which depends on well- behaved
gradients. Inspired by ESC, the authors in [21] use non-
commutative maps to approximate a gradient descent step,
which might be unreliable in circumstances where the gra-
dient is not well-behaved. As another alternative, trust-region
methods are designed to ensure each iteration improves the
minimum estimate [22]. These methods iteratively compute
approximations (usually quadratic models) of the objective in
a neighborhood called the “trust region” of the current esti-
mate. However, the computation of the local approximation is
expensive and iterations may not yield improvements if the
estimate of the trust region is insufficiently accurate.
In the data-driven LQR problem, in which system tra-

jectories are used to minimize the finite horizon cost of a
linear time-invariant system, various solutions have also been
proposed. The authors of [11] provide analysis of policy gra-
dient algorithms that identify the LQR gains when the system
(A,B) is unknown and the authors of [23] identify the LQR
gains using formulas that completely describe the input-state
(or input-output) behavior of the linear system. The approach
described in [23] in particular is very efficient in that the
formulas obtained require only one data set system trajec-
tory. In cases where the open-loop system is unstable or an
initial stable policy for the closed-loop system is unknown,
the gradient of the LQR cost function explodes causing the
approaches detailed in [11] and [23] to fail. As such, comput-
ing an estimate of the LQR gains when the system is unstable
and unknown is still a difficult problem.
The main contributions of this letter are therefore as follows:

i) generalizing SUSD as a derivative-free optimization method
for general functions defined in a Euclidean space of arbi-
trary dimensions, ii) proposing a novel exponential mapping
of the objective function that allows for the application of the
SUSD algorithm to a wide variety of optimization problems
with ill-defined derivatives, i.e., with vanishing or explod-
ing gradients, iii) deriving the SUSD optimization dynamics,
and stability and robustness analysis under both linear and
exponential objective function mappings, and iv) obtaining
empirical results for solutions to the data-driven LQR problem
when the system is inherently unstable and comparisons with
the Natural Policy Gradient (NPG). In addition, we provide
empirical evidence that our approach is robust to noisy eval-
uations of the function by optimizing a high dimensional
classical nonconvex test function (Rosenbrock) where function
evaluations are perturbed by Gaussian noise.
The main challenge this letter has solved is in optimiz-

ing black-box functions in which the gradient is ill-defined.
Compared to our previous 2D robotic source seeking work
in [12] and [13], this letter proposes an exponential objec-
tive function mapping and considers objective functions that
are nonconvex and of arbitrary large dimensions. In addition,
the search dynamics derivations and stability analysis are for
arbitrary dimension and retain the higher-order derivatives of
the function. From this, we are able to refine the conver-
gence neighborhood around the desired equilibrium and obtain
theoretical guarantees which are lacking in most existing

derivative-free optimization methods. Code for the simulations
can be found at https://github.com/tony-x-lin/susdsearch.

II. PROBLEM FORMULATION

Consider the optimization problem

x∗ = argmin
x

z(x), (1)

where z : Rd → R is a scalar objective function.
Assumption 1: The function is continuous and twice differ-

entiable. However, the analytical forms of z, the gradient ∇z
or the Hessian ∇2z are unknown.
As will be shown later, our algorithm only requires the func-

tion to be continuous, but our convergence proof requires the
scalar objective function to be C2. A challenge we consider in
this letter is that we consider the function z to possibly suf-
fer from an exploding or vanishing gradient problem (EVGP).
This problem occurs when the gradient ∇xt z(xt) of the func-
tion z(xt) at time t is very large for some xt and very small for
others [10]. That is ∇xt z(xt) ≈ 0 or ∞. With such a problem, a
gradient descent update xt+1 = xt − λ∇xt z(xt) might be either
too small to be provide progress or too large to be stable [10].
SUSD is a method developed in [12], [13] for multi-robot

distributed source seeking in 2D smooth fields. Using SUSD,
each agent relies only on its evaluation of the field function
to modulate its speed and climb the gradient. This motivates
us to use SUSD with virtual agents to solve the optimization
problem (1). However, using the values of a function with an
EVGP to govern the speeds of the virtual agents leads to either
extremely slow performance as in the functions with vanishing
gradients, or unstable performance as in the functions with
exploding gradients. For example, the LQR cost function (26)
is indeed infinite for an unstable policy K, and even for stable
policy K it may assume very large values. Additionally, it is
hard to design a termination policy when the minimum z(x∗)
is extremely large and hence the virtual agents may not self
terminate at the optimal.

III. THE SPEEDING-UP AND SLOWING-DOWN (SUSD)
OPTIMIZATION ALGORITHM

Consider M virtual search agents, where each agent acts
as a candidate solution xi ∈ R

d. We need M ≥ d, i.e., the
number of search agents is at least equal to the dimension
of the function. Define the covariance matrix C ∈ R

d×d as
follows:

C =
M∑

i=1
(xi − xc)(xi − xc)ᵀ, (2)

where xc = 1
M

∑M
i=1 xi is the center of the agents. Let

{v1, . . . , vd} be the eigenvectors of the covariance matrix (2)
associated with the eigenvalues {λ1, . . . , λd}, ordered from the
smallest eigenvalue λ1 to the largest eigenvalue λd. Observe
that the eigenvectors of C produces the principal components
of the spatial distribution of the agents.
Let the velocity of each agent be described by

ẋi = f (xi)v1, i = 1, . . . ,M, (3)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2020 at 01:48:24 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tony-x-lin/susd_search

AL-ABRI et al.: DERIVATIVE-FREE OPTIMIZATION METHOD WITH APPLICATION TO FUNCTIONS WITH EXPLODING AND VANISHING GRADIENTS 589

Fig. 1. Trajectories of 2-agent (left) and 6-agent (right) systems search-
ing convex and nonconvex functions, respectively. All agents move along
the SUSD direction (v1, illustrated by black arrows) with a speed propor-
tional to the individual function values (f (xi), illustrated by the length of
the arrows). This inter-agent speed difference deforms the spatial shape
which rotates the SUSD direction.

where f : R → R is a linear mapping defined by

f (xi) = γ z(xi) i = 1, . . . ,M, (4)

in which γ is a positive constant scalar value. Under (3), each
agent speeds up or slows down along the direction v1 depend-
ing on its evaluation of the function z(xi) at its current position
xi. We call the v1 direction the SUSD direction. In Fig. 1, we
demonstrate the approach for 2D scalar functions.
The Exponential Function Mapping: To handle the EVGP,

we introduce the mapping

f (xi) = γ [1− exp(z̄− z(xi))], i = 1, . . . ,M, (5)

where γ is a positive scalar value, and

z̄ = z̄(t) = min
i
z(xi(t)) (6)

is the instantaneous attained minimum function value among
the agents. Note that f (x) ∈ [0, 1] where f (x) = 0 if and only
if z(x) = z̄, and f (x) = 1 if and only if z(x) = ∞.
The idea behind this mapping is that the SUSD direction

rotates based on the inter-agent function differences. Observe
that (5) preserves this inter-agent difference while it allows us
to control the forward speed by the parameter γ even when
z(x) = ∞. Let τ = {t|z̄ = z(xk)} be the time interval where
mini zi is attained by the k-th agent. Hence, in this interval,
the k-th agent does not move while the remaining agents
move toward the temporary target z̄ = z(xk). However, and
depending on γ , some agents overshoot the target where by
equation (6) a new z̄ is attained, and so on. This enforces z̄(t)
to be decreasing and the algorithm will eventually reach close
to the optimal minimum. We will show in Section V that even
when the norm of the gradient explodes, using (3) with (5)
allows our approach to converge to the gradient direction but
with step sizes limited by γ .
A pseudocode description for the algorithm is given in

Algorithm 1. Observe that we terminate the algorithm when-
ever there is no improvement in the attained minimum for the
last W iterations.
Remark 1: Computing the SUSD direction at each iteration

becomes a non-trivial operation as the number of dimensions
increases. However, there exist computationally efficient meth-
ods for computing the PCA directions that can be used instead
to ensure the proposed SUSD search method is inexpensive at
each iteration [24], [25], [26].

Algorithm 1 SUSD Optimization Algorithm
1: Input: number of agentsM, initials xi0, gain γ , termination
parameters W, ε, and discretization constant η.

2: while z̄(t) − (1/W)
∑W

h=1 z̄(t − h) < ε, do
3: compute C(t) and v1(t)
4: for i = 1, . . . ,M, do
5: evaluate zi(t) = zi(xi(t))
6: end for
7: compute z̄(t) = mini zi(t)
8: for i = 1, . . . ,M, do
9: compute f (xi(t)) = γ [1− exp(z̄(t) − zi(t))].
10: update xi(t + 1) = xi(t) + ηf (xi(t))v1(t).
11: end for
12: end while
13: return x∗ = xi such that zi(t) = z̄(t).

IV. THE OPTIMIZATION DYNAMICS

In this section, we derive the dynamics of the SUSD PCA
direction v̇1, function value ż, and its gradient ∇̇z.
Lemma 1: Using the control law (3), the dynamics of the

SUSD direction is described by

v̇1 =
(d∑

k=2

1
λ1 − λk

vkv
ᵀ
k

)(M∑

i=1
(fi − fa)(xi − xc)

)
, (7)

where vk is the k-th eigenvector of C and fa = 1
M

∑M
i=1 fi(z)

is the average function value.
Proof: Recall that xc = 1

M
∑M

i=1 xi. Hence, using (3) we
obtain ẋc = fav1, where fa = 1

M
∑M

i=1 fi(z). Taking the time
derivative of (2) and using ẋi and ẋc, we derive

Ċ =
M∑

i=1
(fi − fa)[v1(xi − xc)ᵀ + (xi − xc)v

ᵀ
1]. (8)

Moreover, by definition Cv1 = λ1v1. Taking the derivative, we
obtain Ċv1 + Cv̇1 = λ̇1v1 + λ1v̇1. Taking then inner product
with the eigenvector vk, k
= 1 on both sides, we obtain

〈vk, Ċv1〉 + 〈vk,Cv̇1〉 = λ̇1〈vk, v1〉 + λ1〈vk, v̇1〉, (9)

Since C is symmetric, then Ċ is also symmetric. This implies
that 〈vk,Cv̇1〉 = 〈Cvk, v̇1〉 = λk〈vk, v̇1〉. Using this along with
the fact that 〈vk, v1〉 = 〈v1, vk〉 = 0, we obtain from (9)

〈vk, v̇1〉 = − 1
λk − λ1

〈vk, Ċv1〉 (10)

Since C is symmetric, one can always find a complete set of
orthogonal eigenvectors {v1, . . . , vd}. Therefore, we may write

v̇1 =
d∑

k=2
〈vk, v̇1〉vk. (11)

Substituting (8) in (10), and using (11), along with the fact
that 〈vk, v1〉〈xi − xc, v1〉 = 0 yields the desired result.
Let fc = f (z(xc)) and define the gradient ∇f = ∇f (xc).

Then we approximate fi = f (xi) using Taylor expansion with
respect to the center xc, as follows

fi − fc = 〈xi − xc,∇f 〉 + ωi, (12)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2020 at 01:48:24 UTC from IEEE Xplore. Restrictions apply.

590 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 2, APRIL 2021

where fc = f (xc) and ωi = O(‖xi − xc‖) is the sum of
remaining higher order components of the function.
Lemma 2: Using the control law (3), the dynamics of the

SUSD direction is described by

v̇1 = −
d∑

k=2

λk

λk − λ1
vkv

ᵀ
k∇f + ω, (13)

ω = −
(d∑

k=2

1
λk − λ1

vkv
ᵀ
k

)(M∑

i=1
ωi(xi − xc)

)
. (14)

Proof: Let ωa = 1
M

∑M
i=1 ωi which implies from (12) that

fa = fc + ωa. Using this, multiplying both sides of (12) by
(xi − xc), and summing over all i, we derive

M∑

i=1
(fi − fa)(xi − xc) = C∇f +

M∑

i=1
ωi(xi − xc). (15)

Substituting (15) into (7), and using the fact that vᵀk C = λkv
ᵀ
k ,

yields (13).
Denote by zc = z(xc) the z function value at the center, xc.

Also, let ∇z = ∇z(xc) be the gradient of z function at the
center, xc.
Lemma 3: Using the control law (3) along with the linear

mapping (4) yields the search dynamics

żc = γ za〈∇z, v1〉, za = 1
M

M∑

i=1
z(xi(t)), (16)

v̇1 = −γ

d∑

k=2

λk

λk − λ1
vkv

ᵀ
k∇z+ ω. (17)

Proof: We have żc = ż(xc) = 〈∇z(xc), ẋc〉. But ẋc =
1
M

∑M
i=1 f (xi)v1 = γ zav1, which proves (16). On the other

hand, f (xc) = γ z(xc) implies that ∇f (xc) = df
dz∇z(xc) =

γ∇z(xc). Finally, substituting γ∇z(xc) for ∇f (xc) in (13)
completes the proof of (17).
Lemma 4: Using the control law (3) along with exponential

mapping (5) yields the search dynamics

żc = γ

M

M∑

i=1
[1− exp(z̄− zi)]〈∇z, v1〉, (18)

v̇1 = −γ exp(z̄− zc)
d∑

k=2

λk

λk − λ1
vkv

ᵀ
k∇z+ ω. (19)

Proof: We first derive ẋc = 1
M

∑M
i=1 f (xi)v1 = γ

M
∑M

i=1 [1−
exp(z̄ − z(xi))]v1. Substituting this in ż(xc) = 〈∇z(xc), ẋc〉
proves (18). On the other hand, ∇f (xc) = df

dz∇z(xc) =
γ exp(z̄− z(xc)∇z(xc). Therefore, substituting this for ∇f (xc)
in (13) completes the proof of (19).
Define N = ∇z

‖∇z‖ to be a unit-length vector in the direction
of the gradient. Let H = ∇2z(xc) be the Hessian matrix of the
z function at the center, xc.
Lemma 5: Suppose the agents are moving according to the

control law (3). Then, if we apply the linear mapping (4), the
gradient at the center changes according to

Ṅ = γ za
‖∇z‖ (I − NNᵀ)Hv1, za = 1

M

M∑

i=1
z(xi). (20)

If instead, we apply the exponential mapping (5). Then
gradient at the center changes according to

Ṅ = γ /M
‖∇z‖

M∑

i=1
[1− exp(z̄− zi)](I − NNᵀ)Hv1. (21)

Proof: We first write Ṅ = d
dt (

1
‖∇z‖)∇z + 1

‖∇z‖
d
dt (∇z). But

d
dt (∇z) = Hẋc, where H is the Hessian matrix. On the other
hand, d

dt (
1

‖∇z‖) = −‖∇z‖−3(∇z)ᵀ d
dt (∇z). Consequently, we

obtain Ṅ = 1
‖∇z‖ (I−v1vᵀ1)Hẋc. Substituting ẋc = γ zav1 for the

linear mapping yields the desired result (20). Similarly, substi-
tuting ẋc = γ

M
∑M

i=1 [1− exp(z̄− z(xi))]v1 for the exponential
mapping yields the desired result (21).

V. THE CONVERGENCE ANALYSIS

We now analyze the convergence of the SUSD direction
v1 to the negative direction of the gradient −N. Define θ =
1 + 〈v1,N〉, where θ = 0 if and only if v1 = −N. Then,
using (17) and (19), we obtain

θ̇ = γ σ‖∇z‖
d∑

k=2

λk

λ1 − λk
〈N, vk〉2 + δ = h(t, θ, δ), (22)

where either σ = 1 for the linear mapping or σ = exp(z̄− zc)
for the exponential mapping. Additionally, δ = 〈N,ω〉 +
〈Ṅ, v1〉 depends on the higher order components of the func-
tion. We will view δ as an external disturbance to the state θ

due to the effect of the nonlinearity of the function which
cannot be controlled by the swarm. Since

∑d
k=2 λk/(λ1 −

λk)〈N, vk〉2 = 0 if and only if 〈N, vk〉 = 0, ∀k
= 1, then
h(t, θ, 0) = 0 if and only if v1 = ±N, i.e., θ = 0 or
θ = 2. Note that when v1 = ±N, then using (20) and (21),
〈Ṅ, v1〉 = ±〈Ṅ,N〉 = 0. Similarly, when v1 = ±N, then
using (14), 〈N,ω〉 = 0. This implies that the perturbation δ

vanishes at the equilibrium points θ = 0 or θ = 2.
Let ε ∈ (0, 1) and ω̄ = ∑M

i=1 ωi(xi − xc). Define

μ = (d − 1)
2λ1σε

λd − λ1

λ2 − λ1
·

(
‖ω̄‖ +

√

‖ω̄‖2 + 4
λ1σεζ‖H‖(λ2 − λ1)2

(λd − λ1)(d − 1)2

)
, (23)

where either ζ = 1
M

∑M
i=1 zi for the linear mapping, or ζ =

1
M

∑M
i=1 [1− exp(z̄− zi)] for the exponential mapping. Recall

that d is the dimension of the function and λd and λ1 are the
largest and smallest eigenvalues, respectively. Additionally, H
is the Hessian matrix of the function.
Theorem 1: Consider (22) and suppose ‖∇z(xc)‖ > μ

where μ is as defined by (23). Then the equilibrium θ = 0
of the unforced system θ̇ = h(t, θ, 0) is asymptotically sta-
ble in which whenever θ(0) ∈ [0, 2), then θ(t) → 0 as
t → ∞. Furthermore, for an input disturbance satisfying
|δ| < γσε

λ1
λd−λ1

μ for some ε ∈ (0, 1), the equilibrium θ = 0
of forced system h(t, θ, δ) is locally input-to-state stable.
Proof: Define D = [0, 2). Let V : D → R be a Lyapunov

candidate give by V = θ/(2− θ), where V = 0 if and only if
θ = 0 and V → ∞ as θ → 2. Then, when δ = 0, we obtain

V̇ ≤ −2γ σ‖∇z‖ λ1

λd − λ1
V, (24)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2020 at 01:48:24 UTC from IEEE Xplore. Restrictions apply.

AL-ABRI et al.: DERIVATIVE-FREE OPTIMIZATION METHOD WITH APPLICATION TO FUNCTIONS WITH EXPLODING AND VANISHING GRADIENTS 591

Since V̇ = 0 if and only if θ = 0, then the origin
of the unforced system h(t, θ, 0) is asymptotically stable.
Additionally, since V̇ → −∞ as θ → 2, and the fact that
V → ∞ whenever θ → 2 and ‖∇z‖ > μ > 0, implies that D
is a forward invariant set, and thus θ ∈ [0, 2) for all t. For the
forced system h(t, θ, δ), we obtain

V̇ ≤ −2(1− ε)γ σ‖∇z‖V, ∀|θ | > ρ(|δ|), (25)

where ρ(|δ|) = 1−
√
1− λd−λ1

λ1
|δ|

εγ σ‖∇z‖ is a class K function.
Since it is assumed that |δ| < γσε λ1

λd−λ1
μ, then the set θ ∈

[0, ρ(|δ|)) is not empty. Let α1(|θ |) = α2(|θ |) = |θ |
2−|θ | which

are class K functions that satisfy α1(|θ |) ≤ V(θ) ≤ α2(|θ |).
Therefore, using Definition 3.3 of local input-to-state stability
in [27], and according to [28, Th. 4.19], the origin of the forced
system h(t, θ, δ) is locally input-to-state stable. We used the
local ISS definition of [27] since the state θ and disturbance
δ are defined in local domains, i.e., θ ∈ [0, 2) and |δ| <

γσε
λ1

λd−λ1
μ.

From (16) and (18), we see that zc is decreasing until enter-
ing the set ‖∇z‖ < μ. For the linear mapping, once ‖∇z‖ < μ,
zc oscillates especially when z∗ is large. However, for the expo-
nential mapping, although zc might increase when ‖∇z‖ < μ,
the agent with zi = z̄ becomes the anchor of the swarm where
the other agents oscillate around it until another agent attains
a smaller z̄.
Remark 2: The bound μ in (23) describes a region of attrac-

tion for the origin (22). That is, the SUSD direction, v1, is
attracted to the negative gradient, −N, whenever ‖∇z‖ domi-
nates ‖ω‖. Interestingly, (23) suggests that μ decreases when
the eigenvalues are close to each other, i.e., when the agents
are radially distributed. Note that in (23), ζ ∈ [0, 1] for the
exponential mapping, while ζ ∈ [0,∞) for the linear map-
ping. This implies that when the minimum z(x∗) > 1, then
the region of attraction of the exponential mapping is larger
than that of the linear mapping.
Remark 3: The ISS result in Theorem 1 may not hold for

an arbitrary discretization constant η when using the discrete
SUSD control law xi(t+ 1) = xi(t) + ηf (xi(t))v1(t). By mak-
ing η small enough we can derive similar ISS result using
techniques from [29], which we leave for future work.

VI. SIMULATIONS

The proposed method is applied first to a data-driven
LQR problem where the LQR gains are estimated from
only system trajectories, and then to a classical nonconvex
Rosenbrock optimization problem, where the function may
also be perturbed by various levels of noise.

A. Data-Driven LQR
Consider the linear system ξt+1 = Aξt+But, where ξ ∈ R

n

is the state vector, u ∈ R
m is the input vector, and (A ∈ R

n×n,
B ∈ R

n×m) are the system matrices. Consider the feedback
control law ut = −Kξt. Our objective is to find K∗ that
optimizes the LQR cost

z(K) = ξ
ᵀ
TQξT +

T−1∑

t=0
ξ
ᵀ
t
(
Q+ KᵀRK

)
ξt, (26)

Fig. 2. The optimization performance of the SUSD method over each
iteration (note y-axis is on a log-scale) with varying numbers of agents
(top) and compared with the NPG (bottom).

using only state-input trajectories of the system {(ξt,ut)}ᵀt=0
where Q ∈ R

n×n and R ∈ R
m×m are positive definite matrices.

In general, the LQR cost (26) is nonconvex [11]. To apply
Algorithm 1, we first reshape K into a vector k ∈ R

mn, i.e.,
k = [(1st column of k)ᵀ, . . . , (mth column of k)ᵀ]ᵀ. Then we
randomly generate policies ki,0 where i = 1, . . . ,M and M ≥
mn. Then each agent applies the SUSD control law (3) where
xi is replaced by ki. We consider an unstable system where the
NPG search method is unable to find the LQR gains due to
an exploding gradient, and a high-dimensional asymptotically
stable system (K ∈ R

3×4, i.e., k ∈ R
12) in order to compare

with the NPG search algorithm (as in [11]). The parameters
for both systems are given by

A1 =
[
1 1
1 0

]
,A2 =

⎡

⎢⎢⎣

−2.5 1.2 4.3 0.1
0.97 −10.3 0.4 −6.1
−9.2 1.1 −4.9 0.3
1.1 0.9 −3.4 −0.9

⎤

⎥⎥⎦

and

B1 =
[
0
1

]
,B2 =

⎡

⎢⎢⎣

1.1 0.4 −0.2
−3.2 1.4 0
−0.8 0.1 3.0
−1.1 −0.9 5.2

⎤

⎥⎥⎦.

Fig. 2, top, demonstrates the performance when each agent’s
initial estimate starts near K0 = [

0.1 0.1
]
and induces

an unstable closed-loop system. Note that SUSD minimizes
the cost of the current best estimate of K with significant
improvements occurring as the number of agents increases.
The SUSD estimated LQR gains with 8 agents (KSUSD =[−6.3724 − 3.6834

]
) aligns closely with the true LQR gains

(KLQR = [−6.4641 − 3.7321
]
). While the high sampled cost

of an unstable policy may lead to numerical issues (such as a
floating point overflow), the matrices Q and R may be scaled
to ensure large costs are able to be stored in memory.
In Fig. 2 bottom, while NPG requires 500 trajectory sam-

ples per iteration, SUSD achieves higher accuracy with only

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2020 at 01:48:24 UTC from IEEE Xplore. Restrictions apply.

592 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 2, APRIL 2021

Fig. 3. Optimization performance using the Rosenbrock function.

20 trajectories per iteration. The NPG’s step size was hand-
tuned to 0.8 to achieve the fastest stable step size while the
SUSD gain γ was hand-tuned to 0.1 to achieve the fastest
convergence rate.

B. Rosenbrock Optimization
The Rosenbrock function is a nonconvex test function where

the global minimum is inside a long and narrow flat valley of
a vanishingly small gradient. For x ∈ R

25,

z(x) = 100+
24∑

i=1

[
100(xi+1 − x2i)

2 + (1− xi)2
]
. (27)

where the minimum is z(x∗) = 100. Fig. 3 shows that our
proposed approach achieves fast convergence and high accu-
racy with f (xSUSD) = 101.83. In addition, when the evaluation
is perturbed by noise drawn from i.i.d. N (0, �) with vari-
ous � values, we are still able to achieve f (xSUSD) = 112.15
when � = 4I25. The cost shown in Fig. 3 is the true function
evaluation of the current best estimate of x∗ without noise.

VII. CONCLUSION

In this letter, we proposed a derivative-free optimization
solver that leveraged a novel exponential mapping to handle
optimization problems with EVGP. The proposed method is
supported by a convergence analysis that shows our approach
is able to converge to the gradient direction. Our approach
is further supported by a data-driven LQR problem, in which
our method is able to approximate the LQR gains for unstable
systems, and the optimization of the Rosenbrock function, in
which our method is able to find good approximations of the
solution, even while under noisy perturbations. In future work,
we will explore alternative function mappings that may extend
our approach to other optimization problems that may be
difficult to solve using conventional optimization techniques.

REFERENCES

[1] A. R Conn, K. Scheinberg, and P. L. Toint, “Recent progress in uncon-
strained nonlinear optimization without derivatives,” Math. Program.,
vol. 79, nos. 1–3, p. 397, 1997.

[2] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization
methods,” Acta Numerica, vol. 28, pp. 287–404, May 2019.

[3] S. Bhasin, M. Johnson, and W. E. Dixon, “A model-free robust pol-
icy iteration algorithm for optimal control of nonlinear systems,” in
Proc. 49th IEEE Conf. Decis. Control (CDC), Atlanta, GA, USA, 2010,
pp. 3060–3065.

[4] D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. L. Bartlett, and
M. J. Wainwright, “Derivative-free methods for policy optimization:
Guarantees for linear quadratic systems,” J. Mach. Learn. Res., vol. 21,
no. 21, pp. 1–51, 2020.

[5] Y. Abbasi-Yadkori, N. Lazic, and C. Szepesvari, “Model-free linear
quadratic control via reduction to expert prediction,” in Proc. Mach.
Learn. Res., vol. 89, pp. 3108–3117, Apr. 2019.

[6] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis,
F. L. Lewis, and W. E. Dixon, “A novel actor–critic–identifier architec-
ture for approximate optimal control of uncertain nonlinear systems,”
Automatica, vol. 49, no. 1, pp. 82–92, 2013.

[7] J. A. Carrillo, S. Jin, L. Li, and Y. Zhu, “A consensus-based global
optimization method for high dimensional machine learning problems,”
2019. [Online]. Available: arXiv:1909.09249.

[8] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of
convex functions,” Found. Comput. Math., vol. 17, no. 2, pp. 527–566,
2017.

[9] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[10] B. Hanin. “Which neural net architectures give rise to exploding and
vanishing gradients?” in Advances in Neural Information Processing
Systems. Red Hook, NY, USA: Curran Assoc., Inc., 2018, pp. 582–591.

[11] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of
policy gradient methods for the linear quadratic regulator,” in Proc. 35th
Int. Conf. Mach. Learn., vol. 80, 2018, pp. 1466–1475.

[12] W. Wu and F. Zhang, “A speeding-up and slowing-down strategy for dis-
tributed source seeking with robustness analysis,” IEEE Trans. Control
Netw. Syst., vol. 3, no. 3, pp. 231–240, Sep. 2016.

[13] S. Al-Abri, S. Maxon, and F. Zhang, “Integrating a PCA learning algo-
rithm with the SUSD strategy for a collective source seeking behavior,”
in Proc. IEEE Annu. Amer. Control Conf. (ACC), Milwaukee, WI, USA,
2018, pp. 2479–2484.

[14] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the Nelder–Mead simplex method in low
dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, 1998.

[15] K. I. McKinnon, “Convergence of the Nelder–Mead simplex method to
a nonstationary point,” SIAM J. Optim., vol. 9, no. 1, pp. 148–158, 1998.

[16] K. B. Ariyur and M. Krstic, Real-Time Optimization by Extremum-
Seeking Control. Hoboken, NJ. USA: Wiley, 2003.

[17] C. Zhang and R. Ordóñez, Extremum-Seeking Control and Applications:
A Numerical Optimization-Based Approach. London, U.K.: Springer,
2011.

[18] Y. Zhang, M. Rotea, and N. Gans, “Sensors searching for interesting
things: Extremum seeking control on entropy maps,” in Proc. 50th
IEEE Conf. Decis. Control Eur. Control Conf., Orlando, FL, USA, 2011,
pp. 4985–4991.

[19] S. Z. Khong, Y. Tan, C. Manzie, and D. Nešić, “Multi-agent source seek-
ing via discrete-time extremum seeking control,” Automatica, vol. 50,
no. 9, pp. 2312–2320, 2014.

[20] B. Calli, W. Caarls, P. Jonker, and M. Wisse, “Comparison of
extremum seeking control algorithms for robotic applications,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura, Portugal, 2012,
pp. 3195–3202.

[21] J. Feiling, A. Zeller, and C. Ebenbauer, “Derivative-free optimization
algorithms based on non-commutative maps,” IEEE Control Syst. Lett.,
vol. 2, no. 4, pp. 743–748, Oct. 2018.

[22] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, vol.
1. Philadelphia, PA, USA: Soc. Ind. Appl. Math., 2000.

[23] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization,
optimality, and robustness,” IEEE Trans. Autom. Control, vol. 65, no. 3,
pp. 909–924, Mar. 2020.

[24] E. Oja, “Simplified neuron model as a principal component analyzer,”
J. Math. Biol., vol. 15, no. 3, pp. 267–273, 1982.

[25] A. Sharma and K. K. Paliwal, “Fast principal component analysis
using fixed-point algorithm,” Pattern Recognit. Lett., vol. 28, no. 10,
pp. 1151–1155, 2007.

[26] M. Tao and T. Ohsawa, “Variational optimization on lie groups, with
examples of leading (generalized) eigenvalue problems,” in Proc. Int.
Conf. Artif. Intell. Stat. (AISTATS), 2020, pp. 4269–4280.

[27] S. Dashkovskiy, D. V. Efimov, and E. D. Sontag, “Input to state stability
and allied system properties,” Autom. Remote Control, vol. 72, no. 8,
p. 1579, 2011.

[28] H. K. Khalil. Nonlinear Systems. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[29] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time
nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2020 at 01:48:24 UTC from IEEE Xplore. Restrictions apply.

