Automatica 122 (2020) 109219

Contents lists available at ScienceDirect

automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

Contention-resolving model predictive control for coupled control N

Check for

systems with a shared resource”
Ningshi Yao?, Michael Malisoff®, Fumin Zhang **

2School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA
b Department of Mathematics, Louisiana State University, Baton Rouge, LA, 70803, USA

ARTICLE INFO ABSTRACT

Article history:

Received 29 April 2019

Received in revised form 28 March 2020
Accepted 17 July 2020

Available online 21 August 2020

Priority-based scheduling strategies are often used to resolve contentions in resource constrained
control systems. Such scheduling strategies inevitably introduce time delays into controls and may
degrade the performance of control systems. Considering the coupling between priority assignment
and control, this paper presents a method to co-design priority assignments and control laws for each
control system, which aims to minimize the overall performance degradation caused by contentions.
The co-design problem is formulated as a mixed integer optimization problem with a very large search
space, rendering difficulty in computing the optimal solution. To solve the problem, we develop a novel
contention-resolving model predictive control method to dynamically assign priorities and compute an
optimal control. The priority assignment can be determined using a sample-based approach without
excessive demand on computing resources, and optimal controls can be computed iteratively following
the order of the assigned priorities. We apply the proposed contention-resolving model predictive
control to co-design scheduling and controls in networked control systems. We present simulation
results to show the effectiveness of our proposed method.

Keywords:

Model predictive control
Mixed integer optimization
Event trigger

Networked control system

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In modern industry, shared resources are widely used as com-
plexity of the systems increases. When multiple systems need
access to a shared resource at the same time, a contention occurs.
An arbitration mechanism is needed to determine which system
can access the resource first. This is a generic problem for the
control of complex systems where many control systems are cou-
pled or connected and need to share resources. Examples of such
systems include networked control systems (or NCS), swarm-
ing robots and smart grids. For NCS, the communication media
(e.g., the network cable or radio frequency) is the shared resource.
Control loops that share the same communication media must
be scheduled to communicate at proper times to ensure success

* The research work is partially supported by ONR grants N00014-19-1-
2556, N00014-19-1-2266 and N00014-16-1-2667; NSF grants OCE-1559475,
CNS-1828678, and S&AS-1849228; NRL grants N0O0173-17-1-G001 and N00173-
19-P-1412; and NOAA grant NA16NOS0120028. The material in this paper
was partially presented at: the 2017 American Control Conference, May 24-
26, 2017, Seattle, WA, USA. the 2nd IEEE Conference on Control Technology
and Applications, August 21-24, 2018, Copenhagen, Denmark. This paper was
recommended for publication in revised form by Associate Editor M. Lagoa under
the direction of Editor Sophie Tarbouriech.

* Corresponding author.

E-mail addresses: nyao6@gatech.edu (N. Yao), malisoff@lsu.edu
(M. Malisoff), fumin@gatech.edu (F. Zhang).

https://doi.org/10.1016/j.automatica.2020.109219
0005-1098/© 2020 Elsevier Ltd. All rights reserved.

in transmitting messages to guarantee stability; see Hespanha,
Naghshtabrizi, and Xu (2007) and Walsh, Hong, and Bushnell
(2002). For the case of load management in a micro power grid,
the amount of available electric power generated is a shared
resource, and each electric load needs to be scheduled to consume
enough power over a time period to accomplish its task (Shi, Yao,
& Zhang, 2017).

A common feature of these applications is that a scheduling
policy is needed to resolve contentions. For some applications,
many feasible scheduling policies can be used. It is sometimes
sufficient to use the one that is easiest to implement or easiest to
analyze (Sha et al., 2004; Zhang, Szwaykowska, Wolf, & Mooney,
2008). However, in many applications, a choice of the scheduling
policy may affect performance significantly (Wang, Shi, Zhang, &
Wang, 2015). For example, well-known scheduling policies, such
as rate monotonic scheduling (or RMS) and earliest deadline first
(or EDF) algorithms introduced in Liu and Layland (1973), are
widely used in real-time systems. These algorithms are optimal
in real-time scheduling in the sense that they can maximize the
number of tasks that can be scheduled before deadlines. However,
they are not optimized for control purposes. Priority assignments
scheduled by EDF and RMS can violate the stability of the whole
system (Yao, Malisoff, & Zhang, 2017). The first-come-first-serve
(FCFS) scheduling mechanism has been used to guarantee fair-
ness; see Lee and Park (2012), Malikopoulos, Cassandras, and
Zhang (2018) and Zhang, Malikopoulos, and Cassandras (2016).

https://doi.org/10.1016/j.automatica.2020.109219
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109219&domain=pdf
mailto:nyao6@gatech.edu
mailto:malisoff@lsu.edu
mailto:fumin@gatech.edu
https://doi.org/10.1016/j.automatica.2020.109219

2 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

However, the FCFS mechanism is conservative, in the sense that
it prevents the scheduler from reordering the request of tasks.
It may lead to poor scheduling and possible congestion. The
drawbacks of these existing scheduling methods motivate the co-
design of scheduling and control to improve coordination among
control systems and obtain more reliable control performance.

Recent works showed encouraging results by co-designing the
scheduling and control in the scenario when multiple control
systems need to share a resource, e.g. a shared communication
media or limited power resources (Engell & Harjunkoski, 2012).
One co-design approach is to determine a specific scheduling
strategy first and then design the control law to compensate for
the time delays or packet dropout induced by the scheduling
strategy; see Chen, Yao, and Qiu (2019), Farnam and Esfanjani
(2014), Gao, Chen, and Lam (2008), Peng and Yang (2013), Shi and
Zhang (2017) and Zhou, Du, and Chen (2012). Another approach is
to use optimization-based methods to solve a mixed-integer op-
timization problem to optimize scheduling decisions along with
the control laws. There are relatively fewer studies (Gaid, Cela,
& Hamam, 2006, 2009; Mazumder, Acharya, & Tahir, 2009; Roy,
Zhang, Chang, Goswami, & Chakraborty, 2016; Yao, Chang, &
Yen, 2005) which take this approach. The co-design problems
were formulated as mixed integer quadratic programs (or MIQPs)
or mixed integer linear program (or MILP) problems, and were
solved by optimization packages such as IBM CPLEX solver. Al-
though these methods can obtain an optimal or a local optimal
solution, the major disadvantage is the computation requirement.
The optimization problem formulated for co-designing schedul-
ing and control is high dimensional and takes a long time for
optimization solvers to find an optimal solution.

Model predictive control (or MPC) offers a natural way to
solve the scheduling and control co-design challenge. Instead
of considering the whole design time window, MPC performs a
prediction-optimization procedure iteratively, using a predefined
cost function (which usually considers the overall performance
and efficiency) while receding a finite optimization time hori-
zon (Mayne, Rawlings, Rao, & Scokaert, 2000; Rawlings & Mayne,
2009). MPCs can incorporate contentions as system constraints
and coordinate all the control systems. Many works utilized MPC
to design the schedule and control laws for networked control
systems (Baskar, De Schutter, & Hellendoorn, 2008; Bellemans, De
Schutter, & De Moor, 2006; Frejo & Camacho, 2012; LjeSnjanin,
Quevedo, & Nesi¢, 2014; Negenborn, De Schutter, & Hellendoorn,
2008; Shi, Bart De, Yugeng, & Hans, 2011), energy storage sys-
tems (Afram & Janabi-Sharifi, 2014; Touretzky & Baldea, 2014;
Zhao, Lu, Yan, & Wang, 2015) and chemical processes (Chu &
You, 2014). While promising, MPC is largely based on prediction
models that are usually nonlinear and non-convex. Therefore,
a major challenge in implementing MPC for complex control
systems is real-time computational performance.

In this paper, we propose a contention-resolving model pre-
dictive control method to co-design optimal priorities and control
in coupled control systems. The contention-resolving MPC can
dynamically assign priorities to each control system to mini-
mize the overall performance degradation caused by contentions.
Our method differs from existing methods, because we consider
priorities as independent decision variables in the objective func-
tion of the MPC, not as constraints as was done in previous
works (Gaid et al., 2006; Liu, Sun, & Zhao, 2013; Liu, Xia, Chen,
Rees, & Hu, 2007). By computing the priorities of each control
system, MPCs can achieve better performance. Although the prob-
lem can be formulated as a mixed integer optimization problem
(or MIP) with a very large search space, doing so would pro-
duce difficulty in computing an optimal solution. Therefore, this
work proposes a sample-based method to solve this optimization
problem without excessive demand on computing resources. The
major contributions in this work are as follows:

1. Sufficient and necessary condition to compute contention time
instants. We utilize the significant moment analysis published in
our previous work (Shi & Zhang, 2017) and establish analytical
timing models for both preemptive and non-preemptive real-
time systems. Based on the timing models, we present sufficient
and necessary conditions to determine the time instants when
contentions occur and compute the significant moments when a
control system actually gains access to the shared resource and
when the resource is not occupied. Based on these significant
moments, the priority assignment and control law design can
be decoupled and we can construct a decision tree to efficiently
search all of the possible priority assignments.

2. Co-design decision tree formulation. Enabled by the significant
moments computed by the timing model, the infinite dimen-
sional priority and control co-design optimization problem can
be converted into a path planning problem for a decision tree
with only finitely many leaves and branches. Our algorithm as-
signs priorities only at the significant moments when contentions
occur, which are a finite number of time instances on the MPC
optimization horizon. The tree will contain a finite number of
branches and each branch corresponds to one possible priority
assignment. The optimal control law design is embedded in the
computation of branch costs. An optimal solution of the co-design
problem must be a path from the root of the decision tree to one
of the terminal leaves. There are only finitely many such paths
that can be searched. Second, among the finitely many paths,
not all need to be searched to find the optimal solution. To the
best of our knowledge, the use of a decision tree to decouple the
coupled priority assignments and control design had not previ-
ously been documented in the literature. In addition, we present
a new formula to compute branch costs in the decision tree that
is constructed by contention-resolving MPC. Different from our
previous work (Yao et al, 2017), the cost function can handle
cases where a control system’s access to the shared resource is
delayed multiple times.

3. Co-design algorithm. We provide a significant modification of
the A-star algorithm from Hart, Nilsson, and Raphael (1968) to
search for the optimal priority assignment. The A-star algorithm
is a sampling based algorithm that has been widely used for
online path planning in robotics. Different from the works (Fayazi
& Vahidi, 2017; Yan, Dridi, & EI Moudni, 2013), which use a
genetic algorithm or an MIP solver to find optimal schedules, our
method searches through a greatly reduced number of possible
paths in the decision tree, which can provide scalable methods
that eliminate the need for an exhaustive search through the full
decision tree.

4. Practical application case study. We apply contention-resolving
MPC to networked control systems with shared communica-
tion media, under both preemptive and non-preemptive schedul-
ing disciplines. We evaluate the performance of the contention-
resolving MPC through simulations and compare the results with
classical scheduling methods. The optimal priority assignment
computed by contention-resolving MPC achieves significant im-
provement compared to the priority assignment computed by the
popular EDF or RMS scheduling methods.

Compared to the standard MPC framework,
contention-resolving MPC produces a computationally tractable
approach that lends itself to optimal control and priority assign-
ment co-design. It is a theoretical framework that is general and
can be applied to many connected or coupled control systems
with shared resources.

The rest of this paper is organized as follows. In Section 2,
we introduce the contention-resolving MPC formulation. In Sec-
tion 3, we present the analytical timing models. In Section 4, we
present the path planning problem converted from the priority
assignment and MPC design problem. In Section 5, we present
simulation results for applying contention-resolving MPC to NCS.
Section 6 summarizes our work.

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 3

2. Problem formulation

The proposed contention-resolving MPC is a general theoreti-
cal framework to address resource allocation for coupled control
systems. Consider N control systems that must access a shared

resource. Assume that the ith control system fori = 1,2,...,N
is modeled in the form
xi(t) = fi(xi(t), wi(t)), yi(t) = gGi(xi(t)) (M

where x;, u;, and y; represent the state vector, control, and output,
respectively. Each control system is viewed as a customer that
must be served to access the shared resource. Here and in the
sequel, we make the following assumption about the shared
resource and our dynamics, where we use measurability and
essential boundedness in the Lebesgue measure sense of Folland
(1984):

Assumption 2.1. The function f; for i = 1,...,N in (1) is
such that this holds for each i: For each measurable essentially
bounded function u; and each initial state x; and each T > 0, the
initial value problem for the dynamics f; and the initial condition
xi(0) = x; has a unique solution on [0, T].

The preceding assumption is satisfied under standard Lips-
chitzness conditions, e.g., from Hirsch, Smale, and Devaney (2004,
Chapter 7).

Assumption 2.2. At any given time, only one customer can
occupy the shared resource.

Assumption 2.2 is valid in many real world applications. In the
automotive industry, the vehicle communication buses such as
the control area network (or CAN) (Robert Bosch GmbH, 1991)
and FlexRay (Pop, Pop, Eles, Peng, & Andrei, 2008) only allow one
device to transmit messages at any time. Also, in a warehouse, a
passageway (e.g., a narrow space between two aisles) may only
allow one forklift to enter and transport packages.

The ith customer has a sequence of tasks, denoted by
{ti[1], w[2], ..., @lk], ...}, where k > 1 is the task index of
customer i. The completion of each task requires a certain time
amount usage of the shared resource. The time instant when task
7;[k]'s request to the shared resource is generated is denoted by
a;[k], which uses the same index k as the task t;[k]. The amount
of time for which the task t;[k] needs to occupy the resource is
denoted by Cj[k]. The completion time instant when task t;[k]
finishes the occupation of the shared resource is denoted as
y;[k]. In a real-time system, it is required that each task must
be completed before its deadline, in order for the system to be
schedulable. In our setup, we define the deadline for a task 7;[k] to
be the time instant when the next task of customer i is generated,
i.e., aj[k+1]. Therefore, for a task to be schedulable, the inequality
yi[k] < a;[k + 1] must be satisfied. We also use T;[k] to denote
the amount of time between two successive resource occupation
requests from customer i, i.e., T;[k] = «;[k + 1] — «;[k], which we
assume satisfy:

Assumption 2.3. For each i € {1,..., N}, there is a constant
T™" > 0 such that Ti[k] > T/™" for all k.

Since the time interval between two successive requests is
bounded below by Tl.min for each customer i, and since there are
only a finitely number N of customers, it follows that there are
only finitely many requests for access on the time interval [to, tf].
Also, the request for the resource will be modeled by a tuple
(e, G, Ty)[K].

2.1. Priority-based scheduling

When there are no contentions among customers, the follow-
ing equation is always satisfied:

vilk]l = ai[k] + Glk]. (2)

When multiple customers request the shared resource at the
same time, a contention occurs and Eq. (2) will not hold. An ex-
ample of three systems sharing one resource is shown in Fig. 1(a).
A contention occurs at time 0. The scheduling algorithm deter-
mines the order of customers’ access to the resource by assigning
them priorities. Each customer i is assigned a unique priority
number p;(t), in which case contentions can be resolved by com-
paring the priorities p; among all customers who are competing
for the resource. In what follows, P({1, ..., N}) denotes the set
of all permutations of {1, ..., N}.

Definition 2.1. A priority assignment is a tuple
P(t) = (p1(t), ..., pi(t), ..., pn(t)) € P({1, ..., N}), where pi(t) is
the priority assigned to customer i at time t and such that for each
iandjin {1,..., N}, we have p;(t) < p;(t) if and only if customer
i is assigned higher priority than customer j at time t. For each
t € [to, tr], the value of p;(t) is a positive integer in {1,..., N},
such that p;(t) # p;(t) if i #j.

Assumption 2.4. When a contention occurs, only the control
system with the smallest p; will be granted access.

This assumption follows the convention in the scheduling
literature of giving smaller numbers to the higher prioritized
tasks (Conway, Maxwell, & Miller, 2003). Based on Definition 2.1,
each task has a unique priority number. Therefore, there exist no
ties among the priority assignments when a contention occurs.

When a contention occurs, the completion times of the tasks of
lower prioritized customers are delayed by the higher prioritized
customers. We introduce the delay 6;[k] so that «;[k]+Ci[k]+6;[k]
is the task completion time for all i and k, i.e. y;[k] = «;[k]+Ci[k]+
8i[k].

Assumption 2.5. We assume that o;[k] + G[k] + 8i[k] < o[k + 1]
for all i and k.

The previous assumption can be interpreted to mean that
no customer requests access to the shared resource until their
previous task has completed using the shared resource. This
assumption guarantees the schedulability of the system, meaning,
all tasks are able to be completed before or at their deadlines.

Example 2.1. Consider tasks 71, 7o and 73 with

(C4[Kk], Co[K], C5[k]) = (0.5, 1, 1.5) and
(T1[k], T2[k], T5[k]) = (3,4,5) forall k > 1

as illustrated in Fig. 1(a). Let the priority assignment be p;(t) = 1,
p2(t) = 2, and p3(t) = 3. Due to the occupation times of systems
1 and 2, system 3 has the longest time delay. If we exchange
the priority assignments between system 1 and 3, i.e., p1(t) = 3,
p2(t) = 2 and ps3(t) = 1, then system 1 has the longest time delay.

This simple example shows that time delays depend on pri-
ority assignments. In Section 3, we will present a timing model
which can accurately compute the time delays given a specific
priority assignment.

4 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

2.2. Formulation of model predictive control

We formulate and solve a contention-resolving model predic-
tive control problem to compute optimal priority assignments
P*(t) = (pj(t),...,py(t)) and an optimal control command
u*(t) = (uj(t), ..., uy(t)) on a time interval [to, tf]. The times to
and ¢y are the starting and ending points of the MPC time horizon,
respectively, and t and tf will move forward in time when the
MPC is initiated. Given initial states x(ty) = (x1(to), - - ., Xn(t0)),
initial controls u(ty) = (uy(to), ..., uy(to)), starting time to and
ending time tf, the co-design method is to find values for the
optimal P*(t) and u*(t) by solving the optimization problem

N
min Vi(xi(t, P(to ~ t), ui(to ~ t)), ui(t, P(to ~ 1)) (3)

P(t),u(t) =

over all u and P where the cost functions V; fori = 1,2,...,N

incorporate the control effort and tracking error. The notation
P(ty ~ t) represents all priority assignments P(¢) for all £ € [to, t).
The term x;(t, P(tg ~ t), uj(to ~ t)) represents that the system
state x; is an implicit function of priority assignment P(t) and
control laws u(t) from the initial time ty to time t. Similarly,
u;(t, P(tp ~ t)) represents that the control law u; is also an
implicit function of priority assignment P(t) from the time ty to
time t. The specific functions will be introduced in Section 3.5
once we presented the analytical timing model to compute the
timing and formulate the contention constraints. For example, if
the system i is linear and time-invarying, i.e., x;(t) = Ax(t) +
B;u;(t), then V; can take a quadratic form

Vi(xi(t, P(to ~ t), ui(to ~ 1)), ui(t, P(tg ~ t))) =
1 [
3 | (st Ptto ~ 0.t ~ 0) - %0

+ lui(t, P(tp ~ t)) — ﬂi(t)lﬁi) dt (4)
+ plxilty, Pto ~ tr), wilto ~ t7)) — Xi(ty)l .

where |v|,2V, = v"Mv for any vector v and matrix M for which the
matrix multiplication is defined, and where Q;, R;, and K; are pos-
itive definite. The parameter p > 0 is a constant. The notations
x; and u; are fixed choices of the corresponding trajectory and
control inputs that tracks a given reference signal A;(t), and X;(tf)
is the terminal state of the corresponding trajectory x;(t) at time
ty. If contentions occur, then time-varying delays can degrade
the control performance and increase the tracking errors (Shi &
Zhang, 2017).

While minimizing the cost function, a set of constraints need
to be satisfied for all t € [to, tr]. One constraint is the system
dynamics x;(t) = fi(xi(t), u;(t)) that must be satisfied for each i.
Then the control needs to satisfy u;(t) € U; for all t, where U;
is a given constraint set for control commands. These constraints
appear in most MPC formulations and we assume these sets are
compact. The mathematical formulations of these constraints will
be presented in Section 3.5.

Since u(t) is a vector of real numbers and P(t) is a vector of in-
tegers at each time t, the contention-resolving MPC problem is a
mixed integer optimization problem (or MIP). It is a nonlinear and
non-convex optimization problem that is difficult to solve (Karlof,
2006). Mixed integer programming problems are usually solved
by two categories of optimization methods. The first category
is combinatorial optimization (Papadimitriou & Steiglitz, 1998),
such as genetic algorithms. However, since the decision variables
u and P are functions of time, the search space of the solution
is very large and does not lend itself to genetic algorithms in
real time. The second category of optimization algorithms com-
prise the branch-and-bound type of algorithms (Lawler & Wood,

1966). In branch-and-bound algorithms, the integers are first
relaxed to real numbers so that convex optimization algorithms
can apply, and then the real valued solutions are rounded up
to the nearest higher integer values. Multiple choices of the
integer values lead to different “branches” of sub-problems where
convex optimization will be applied again. The branch-and-bound
algorithm searches for branches with lower estimated cost first,
so that the optimal solution can be found without exhausting all
permutations of the integers. The branch-and-bound algorithm
is computationally efficient but cannot be used to solve the MIP
problem associated with contention-resolving MPC, for two rea-
sons. First, the priority assignments p;(t) cannot be relaxed to be
real numbers. Second, the cost function V; for each i is not an
explicit function of the priority assignment P(t), therefore convex
optimization cannot be applied.

We now describe how to refine this problem for contention-
resolving MPC.

Assumption 2.6. A controller is triggered at each time instant
when a task is completed.

Hence, each model predictive controller only generates one
control command for each request. The resulting control com-
mand is applied to the control system, and remains constant until
the control system’s next task completion time. Therefore, the
control u; is piece-wise constant. This design follows the idea of
zeroth-order-hold (or ZOH) mechanism that is frequently used
in sampling based control (Astrom & Bernhardsson, 2002; Nesic,
Teel, & Carnevale, 2009). At each y;[k], the control command is
updated based on the measurement x;(y;[k]) of customer i and the
control value computed by MPC based on the state value x;(y;[k]).
Then with ZOH, the continuous-time control u;(t) is a piece-wise
constant function of the form

u;(t) = u;[k] for all t € [y;[k], yi[k + 1]) and k, (5)

which defines the control u; at all times when customer i can
access the shared resource. As mentioned in Section 2.1, the time
delays &;[k] depend on the priority assignment among the cus-
tomers. The priority assignment and control design are coupled
through §;[k]. With this problem set up, our goal is to solve the
MPC problem formulated in Section 2.2 and compute optimal pri-
orities and optimal controls to compensate for the performance
degradation caused by contentions and delays.

3. Significant moment analysis and timing model

Even though the control systems evolve continuously in time,
there are certain moments in time that are more significant than
other moments. The moments when a control system requests
access and finishes the usage of the shared resource are called
significant moments. They are significant because the status of the
system changes at these moments due to whether access to the
shared resource is granted or not. The time instants that systems
request access to the shared resource, i.e. ¢;[k], are significant
because these are the times when contentions may start and new
priority vectors P(t) will be assigned. The time when a control
system finishes the usage of the shared resource, i.e., the task
completion moments y;[k], are significant because these are the
times when the control law u;(t) will be updated as shown in (5).

In order to obtain the significant moments, it is important
to compute the value of the §;[k], which is not easy to com-
pute since we need to consider how many control systems are
competing for the shared resource and whether they will be
delayed based on different scheduling disciplines. In scheduling
theory (George, Rivierre, & Spuri, 2016), priority-based schedul-
ing can be classified into two categories, preemptive and non-
preemptive scheduling. Therefore, in this paper, we model the

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 5

Ti[1
System 1 ey . Ci2] |) f
t t a2l f f T 1
T2[1] i
System?2 | Guf1]) ; | Ca[2] | . |
I l Ts(1] | as[2 | | |
&[]] az(2]
Shared d9[1 :
Resource [:
0 Ml 1] va(1]|71[2] 72[2] 73[2]
3.25 5.4

(a) Scheduled behavior.

Significant t ftn
moments Y Y | I)
T

to—t1 tg—to tg—t3 ts—14
I\ | | A

0 ty 2 t3 ty
(b) Significant moments t,,.

Fig. 1. Illustration of scheduling three systems. The upper three sub-figures in
Fig. 1(a) show the task request times when contentions are not considered. The
bottom sub-figure in Fig. 1(a) shows the resource occupation time after priorities
are assigned to resolve the contention that occurs at time 0.

scheduling behavior of both preemptive and non-preemptive
real-time systems.

In preemptive scheduling, if a task with higher priority re-
quests access to the shared resource, then it interrupts a lower
prioritized task that is occupying the resource. The processing of
the low prioritized task can be resumed once the higher priori-
tized task is completed. In non-preemptive scheduling, if a task
is occupying the shared resource, no other tasks can interrupt
the current task until it completes the usage of the share re-
source (Baruah & Chakraborty, 2006). In our previous work Shi
and Zhang (2017) and Zhang, Shi, and Mukhopadhyay (2013), we
developed a significant moment analysis to show how the pri-
ority assignment changes the delays. In this section, we present
analytical timing models which can determine all significant mo-
ments and compute the delays under both preemptive and non-
preemptive scheduling.

3.1. Timing states

At each time t € [t, tf], we define the timing state variable
Z(t) = (D(t), R(t), O(t)) using the following variables from Zhang
et al. (2013), where a task is a request for access to the shared
resource:

Definition 3.1. The vector D(t) = (d¢(t), ..., di(t), ..., dn(t)) is
the deadline variable, where d;(t) denotes how long after time t
the next task of customer i will be generated, i.e.,

di(t) = aj[k + 1] — t,if t € [e[k], ai[k + 1]).

Definition 3.2. The vector R(t) = (r((t), ..., ri(t), ..., rn(t)) is
the remaining time variable, where r;(t) is the remaining time
after time t that is required to complete the most recently gen-
erated task of customer i, i.e.,

_) wnlkl—t, ift € [ogk], yilk]]
ri(t) = { 0, otherwise

Definition 3.3. The vector O(t) = (04(t),..., 0i(t), ..., on(t))
is the dynamic response time variable, where o;(t) denotes the

length of time from the most recent request from customer i to
the minimum of (a) the time when the most recent request from
customer i is completed and (b) the current time ¢, i.e.,

0i(t) = min{yi[k], t} — a[k], if t € [e;[K], e[k + 1]).

For non-preepmtive scheduling, in addition to the above vari-
ables, we need:

Definition 3.4. The index variable is ID(t) denotes the index
of the control system which is occupying the shared resource
at time t. We use the convention that if no control system is
occupying the resource at time t, then ID(t) = 0 and ro(t) = O.

Therefore, for non-preepmtive scheduling, the timing state
variable is Z(t) = (D(t), R(t), O(t), ID(t)).
We use the example in Fig. 1 to further explain D, R and O.

Example 3.1. Again, consider the three periodic tasks are sched-
uled under a priority assignment pi(t) = 1, po(t) = 2 and
p3(t) = 3. At time t = 3.25, the next tasks 71[3], 72[2] and 5[2]
will be generated at times 6, 4 and 5 respectively. Thus, according
to Definition 3.1, the deadline are (d;(3.25), d2(3.25), d3(3.25)) =
(6 —3.25,4—3.25,5—3.25) = (2.75,0.75, 1.75). After t =
3.25, only the request of 71[2] has not been finished and will be
completed at time 3.5. The remaining time for 7;[2] at time 3.25
is 3.5 — 3.25 = 0.25, i.e. r1(3.25) = 0.25. Therefore, by Defi-
nition 3.2, we have (r1(3.25), 12(3.25), 13(3.25)) = (0.25,0,0).
To compute the dynamic response time, for 7;[2], its request is
generated at 3 and will be completed at time 3.5, which is greater
than the current time 3.25. Therefore, the dynamic response time
for 71[2] at time 3.25 is 3.25 — 3 = 0.25, i.e. 01(3.25) = 0.25.
For t1,[1], its request is generated at time 0 and is finished at
time 1.5, which is less than the current time 3.25. Therefore, the
dynamic response time for 7p[1] at time 3.25 is 1.5 — 0 = 1.5.
For 13[1], its request is generated at time O and finishes at time
3, which is less than time 3.25. Therefore, the dynamic response
time for r3[1] at time 3.25is 3 — 0 = 3, i.e. 03(3.25) = 3.
Thus, (01(3.25), 02(3.25), 03(3.25)) = (0.25, 1.5, 3). Similarly, at
time t = 5.4, if we assume that o1[3] = «3[3] = «3[3] = 7,
then we have the timing state vectors D(5.4) = (0.6, 2.6, 2.6),
R(5.4) = (0,0, 1.1) and 0(5.4) = (0.5, 1.0, 0.4).

To support the continuous timing model, we redefine the
characteristics tuple of a task in the continuous time domain as
follows:

Definition 3.5. At any time t within [to, tf], we define G(t), Ti(t)
and P;(t) to be the execution time, the period, and the priority
of task i in continuous time domain, respectively. The values of
these functions are

G(t) = G[k], Ti(t) = Ti[k] and P,(t) = P;[k] (6)
where k is the largest integer satisfying «;[k] < t and o;[1] = to.

By this definition, we can convert the discrete-time timing
characteristics into piece-wise constant functions in continuous
time, which will be used in the formulas for the analytical timing
model.

The evolution rules for Z(t) within a time interval [to, tr] can
be expressed by mathematical equations. These equations lead
to a timing model. It is an analytical model that is efficient to
compute, and it supports the implementation of real-time model
predictive control.

6 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

3.2. Delay prediction using timing model

We use this notation to represent the timing model:
2(t) = H(t: Z(to), S, Plto ~), 7)

where t; is a starting time, S is the set of all triples of the form
(aj, G, T;) fori = 1, 2, ..., N. The timing model consists of a set of
analytical algebraic and differential equations that can account for
time-varying priorities and interruption of access to the resource
by higher priority tasks. By the definition of the state variable
O(t), we have

8ilk] = oi(ailk + 1]7) — Gi[k]

for all k and i, where «;[k + 1]~ denotes the limit from the left.
3.3. Timing model for preemptive network

The work (Shi & Zhang, 2013) established a dynamic timing
model for the preemptive scheduling discipline. This section con-
sists of a brief review of the timing model from Shi and Zhang
(2013). We divide [to, tf] into disjoint sub-intervals [t,, ty1)
such that tasks are only generated at t,,, but not at any other time
point within (t,, t,.1). The difference between two successive
task generating times is defined by

tws1 — tw = min {di(t,), ..., dy(tw), tr — tu} . (8)

The following example illustrates the preceding notation:

Example 3.2. Consider the example in Fig. 1. The division of
[0,7] into consecutive sub-intervals is carried out using the
following procedure. At the beginning of the first sub-interval,
let to = 0. We choose the first window length t; — t, =
min {d{(0), d>(0), d3(0), 7 — 0} = min {3, 4, 5, 7} = 3 and the end
of the sub-interval is t;. Then we choose the window length t, —t;
and let the end point of this time interval be t,. The process is
repeated until one sub-interval reaches the ending time 7.

After we divide the optimization horizon into sub-intervals.
The evolution of Z(t) within any sub-interval [t,, t,,+1) can be
derived as follows:

At time t,,: We first discuss the value of [d;(t), ri(t), oi(t)] at times
t,. For any task t;, the values of the state vector at time t,,
i.e. [di(ty), ri(ty), 0i(ty)], depend on whether a new task of t; is
released at t,,.

(1) if no task of ; is released at t,,, we have that d(t,)) > 0. In
this case, the state vector holds its values from ¢ to t,, where ¢,
denotes the limit from left

dn(tw) = dn(t;})» rn(tw) = Tn(t,;), On(tw) = On(t;)- (9)

(2) if a new task of t; is released at t,, and the old task of 7; is
completed, then we have that d;(t;;) = 0 and ri(t,) = 0. In this

w

case, the state vector [d;(t), ri(t), 0;(t)] is updated as
di(tw) = Ti(tw)7 ri(tw) = Ci(tw)7 Oi(tw) =0. (]0)

According to Eqgs. (9) and (10), the evolution rules at the times t,,
can be summarized as:

di(ty) = di(t,) + (1 — sgn(di(t;))) Ti(tw).
ri(ty) = sgn(d(t,) + ri(t,,) ri(t,)
+ (1 —sgn(ri(t,))) (1 — sgn(di(t,))) G(tw).
0i(tw) = 0(t,,) sgn(di(t,))
+ o4t) san(ri(t;))(1 — sgn(di(t;). (11)

where sgn is defined by sgn(q) = 1 if ¢ > 0 and sgn(q) = 0 if
q = 0 and the superscripts — indicate a limit from the left.

On the Intervals (t,, t,1): For the deadline variable dj(t), it
decreases constantly with rate d;j(t) = —1 within time interval
(tw, tws1). Therefore, the equation for d(t,, + At) for values A €
(0, tyy1 — ty) is written as

di(tw + At) = di(tw) — At. (12)

For the remaining time ri(t), we know that the resource occu-
pation time of t; is preempted until the occupation of all higher
priority tasks are completed. Then, the amount of time within
[tw, tw + At] that is available to 7; is

max { 0, At — Z rq(tw) ¢ »
qeHP;(tw)

where HPi(t,,) = {j € {1,..., N} : pj(ty) < pi(ty)} is the set of
all indices of control systems which have higher priorities than
control system i at time t,,. The function max guarantees that it
will not give a negative result. Therefore, the remaining time of
7; at time t,, + At is

ri(ty, + At) =

max 4 0, ri(t,) — max 3 0, At — Z rq(tw) . (13)
qeHP;(ty)

For the deadline variable o;(t), we know that o;(t) will contin-
uously increase before 7; finishes the occupation of the shared
resource. Therefore, if 7; has finished the occupation before t,,
i.e. ri(t,,) = 0, we have

Oi(tw + At) = Oi(tw)~ (14)

On the other hand, if 7; has not finished the occupation before t,,,
i.e. ri(t,,) > 0, then we have that

Oi(tw + At) = Oi(tw) -+ min At, ri(tw) + Z rq(tw)
qeHP;(tw)

where

ri(tw)"’ Z rq(tw)

qeHP;(tw)

denotes the time needed for t; to complete its most recently
generated task. Our use of the min guarantees that the increase
of oi(t) on [t,, t, + A) will not exceed At. Based on the above
analysis, obtain

Oi(tw + At) =

: (15)
0i(ty) + sgn(ri(t,)) min § At, ri(t,)+ Y rilty)
qeHP;(tw)

Combining all of the evolution rules in (11)-(15) leads to the

timing model (7) of preemptive scheduling.
3.4. Timing model for non-preemptive network

The work (Shi & Zhang, 2017) presented a timing model for
the CAN bus, which is a non-preemptive communication network.
Here, we propose evolution rules for general non-preemptive
real-time systems. We divide [to, t;] into sub-intervals [t,,, t,1]
such that tasks are only generated at t,, but not at any other
time instant within (t,, t,+1). Also the occupation is the shared
resource can only be completed at t,, not at any other time
within (t,, t,+1). If the shared resource is not occupied at time
ty, i.e. 1—sgn(ID(t,)) = 1, then it is the same case as preemptive
scheduling where t,,,1 — t,, = min {dy(t,), ..., dy(tw), tr — tu}.

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 7

;ic L C_
tot] 1 L3¢

Fig. 2. Decision tree to solve the co-design problem for preemptive scheduling
within a finite time window. The blue circle represents the root vy, and gray
circles and dots represent internal leaves. The decision tree is expanded in the
direction of the arrows, which represent branches. The integers in brackets
represent the priorities. The bottom sub-figure shows the schedule along the
green path. Colored rectangles without diagonal lines in the lower figure
represent the time delay §;. Colored rectangles with diagonal lines represent
times when each control system occupies the resource. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

If the shared resource is occupied by task ID(t,) at time t,,
i.e. sgn(ID(t,)) = 1, then we will require that t, . — t, <
min {dy(t,), ..., dn(tw), tr — t,}, and in addition, t,1 — t,
should be less than or equal to rp(t,) so that the occupation
completion time t,, + rp(ty) > t,4+1. Here rp(t) is a simplified
notation for the remaining time rip)(t) of timing state variable
ID at any t. Summarizing the above two cases, we have

tyt1 — by = (16)
SQn(ID(tw))min {rlD(tw)» d](tll))v) dN(tw)s tf - tw
+ (1 —sgn(ID(t,,))) min {di(t,), ..., dy(tw), tr — tu}

for all w. The evolution rules of the timing state variables Z(t) can
also be derived through two steps.

At t,,: The changes of variables d;, r; and o; at the times t,, are the
same as (11). For the timing state variable ID, if rip(t,;) > 0, which
means the task ID(t,,) that was occupying the shared resource has
not completed the occupation at time t,,, then ID(t,,) is the same
as ID(t,,) because the system is non-preemptive. If rp(t,) = 0,
which means the task ID(t;) completed the occupation of the
shared resource at time t,,, then ID(t,) needs to switch to the
task which is scheduled to access the shared resource. Combining
these two cases, the evolution rule for the timing state ID can be
expressed as

ID(t,,) = ID(t,,) sgn(rin(t,,))

+ (argmin pi(tw)> (1= sgn(rn(t;,))) (17)
i€ Aty)
when A(t,) # 0, where A(t,) = {i € {1,..., N} :ri(ty) = G(ty)}
is the set of all indices of control systems which request access
to the shared resource at time t,,. If the set A(t,,) is empty, then
ID(t,,) = 0.

On (t,, t,+1): The state ID(t,, + At) remains unchanged because
twr1 — tw < np(ty). If ID(t,) # O, the evolution rules for control
system ID(t,,) are

dip(t, + At) = dip(t,) — At,

rp(ty + At) = rp(ty) — At
and opp(ty, + At) = opp(ty) + At

where dip(t) and opp(t) are defined analogously to rp(t). For a
control system i where i # ID(t,,), the evolution rules are

di(ty, + At) = dj(t,) — At, 1i(ty, + At) = 1i(ty)
and oi(t,, + At) = o0i(t,) + sgn(ri(ty))At. (18)
Combining all of the evolution rules in (16)-(18) leads to the

timing model (7) of non-preemptive scheduling.

3.5. Summary of constraints

We have refined the contention-resolving MPC design prob-
lem by making the constraints related to timing more explicit. In
summary, the co-design problem is

N
min " Vi(xi(t. Plto ~ 1), ui(to ~ t),
i=1

P(t),u(t) —
ui(t, Pty ~ 1)) (19a)
stZ(t) =]I-]I(t; Z(to). S, Pty ~ r)),
8ilk] = oj(ilk + 117) — Gilk],
vilk] = ai[k] + Gi[k] + &i[k] for k =1, ..., K;; (19b)
x(t) = filxi(6), ui(t)), yi(t) = g(x:(t)),
with ui(t) = ui(to), t € [1[0], y:[1]) and
ui(t) = k] for all t € [yi[k], yilk + 1]),
k=1,...,K; (19¢)
ui(t) € Us; (19d)
P(t) € P({1,...,N}); (19e)

where K; is the largest index k satisfying y;[k + 1] < tr and we
define y;[0] = ¢, for all i. Eq. (19b) is the timing model to compute
8i[k] which has been introduced in Sections 3.3 and 3.4. Eq. (19¢)
represents the system dynamics, which summarizes (1) and (5).
Eq. (19d) represents the state and control constraints. Eq. (19e)
dictates that the priority assignments are constrained to be in the
set P({1, ..., N}) of all permutations of {1, 2, ..., N} following
Definition 2.1.

4. Solutions to the contention-resolving MPC

In this section, we propose a novel method to solve the
mixed integer programming problem associated with contention-
resolving MPC formulated in Section 2.2 and introduce a general
framework for the contention-resolving MPC algorithm. The pro-
posed method converts the difficult MIP into a path planning
problem that can be solved iteratively. The key idea of this
method is based on two insights. First, we only need to assign
priorities at the significant moments when contentions occur,
which are a finite number of time instances on [ty, tf]. Besides,
at each contention moment, there are only a finite number of
customers competing for the resource. Each assignment of the
priority to the finite number of customers will produce a branch
of a decision tree, as illustrated by Fig. 2. The tree will contain
a finite number of branches, and an optimal solution must be a
path from the root of the tree at the starting time t, to one of the
leaves at time t;. There are only finitely many such paths that can
be searched. Second, among the finitely many paths, not all need
to be searched to find the optimal solution. A search algorithm
such as the A-star can efficiently search the branches that most
likely constructing the optimal path.

8 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

4.1. Contention detection

The first step of our method is to find the significant mo-
ments when contentions occur. The significant moment anal-
ysis and timing model offer a natural way to detect the con-
tention moments. The following propositions explain how to
detect contentions:

Proposition 4.1. In preemptive scheduling, a contention starts at
time t if and only if the following three conditions hold:

N
sgn(ri(t)) = 2, Y sgn(r(t™)) < 1, and

i i=1
t = aj[k] for some i and some k.

-

Proof. Based on Definition 3.2, if a control system i has not
finished the current task at t, then ri(t) > 0 and sgn(ri(t)) =
1. Since ri(t) is always non-negative, sgn(r;(t)) > 0 for all t.
Therefore,

N
> " sgn(r(t)) > 2
i=1

is equivalent to two or more customers wanting to access the
shared resource, which means a contention is occurring at time
t. Since

N
> san(r(t7)) < 1
i=1

means that no contention happens at time instants before t that
are close to t, the result follows. O

Proposition 4.2. In non-preemptive scheduling, a contention starts
at time t if and only if t is a significant moment t,, that satisfies the
following two conditions hold:

N
D 11— sgn(Glty) — riltw))] = 2, rin(t,) =0 (20)
i=1

where t,, is a significant moment computed by Eq. (16).

Proof. For non-preemptive scheduling, a task for a control system
i is waiting to get access to the shared resource at a time t
or is generated at time t if and only if r;(t) = G(t), ie, 1 —
sgn(Ci(t) — ri(t)) = 1. Therefore, Zf; [1 —sgn(Ci(t) — ri(t))] >
2 if and only if two or more control systems are waiting for
access to the shared resource at time t or generating tasks at
time t. Therefore, for necessity, if a contention starts at time ¢,
then t is one significant moment t,, for some i and w, and the
highest prioritized control system among the contending control
systems at time t will either finish a task at time t and then
start a new task at time t using the shared resource, or else it
will go from not occupying the shared resource to occupying the
shared resource at time t, so the condition rp(t~) = 0 from (20)
holds. For sufficiency, if the two conditions (20) are satisfied, then
at time t,, multiple control systems are in contention for the
shared resource which must be a time when some control system
requests usage of the shared resource, so a contention starts at
timet. O

Based on the contention moments, we introduce a tree struc-
tured directed graph which will be used to model how differ-
ent priority assignments affect the system behavior and analyze
our algorithm. Fig. 2 shows an example of decision tree. In the
decision tree, each leaf represents a contention time satisfying
Propositions 4.1 or 4.2. We denote the contention times by tf

where [is the index of its corresponding leaf. At each contention
time, there are only a finite number of control systems competing
for the resource. Each possible assignment of the priority to the
finite number of control systems will produce a branch of a
decision tree.

Remark 4.1. The construction of the entire decision tree is not
necessary for contention resolving MPC to search for an optimal
solution. However, for the purpose of clearly presenting the con-
cept for the sampling based optimization method, we will discuss
how the tree can be fully constructed.

4.2. Construction of decision tree

The decision tree construction starts from the root vy associ-
ated with the MPC starting time t,. The construction is performed
iteratively. During the construction, if a leaf has no branches
pointing out from it, then it is called unexpanded. At each iter-
ation, new branches are generated from each unexpanded leaf
and new leaves are generated at the end of each branch. For an
unexpanded leaf I, let A(t{) denote the set of control systems
having contentions at a contention time t;, where A(t;) =
{ie{1,....N}:r(tf) > 0} for preemptive scheduling and
A(tf) = {i € {1,...,N} : ri(t{) = G(tf)} for non-preemptive
scheduling. Also, M is the number of elements of A(t;). Let P, de-
note the mth permutation in P({1,...,M}), so
m € {1,2,...,M!}. For leaf |, we generate M! branches from
it. Each branch corresponds to a unique choice of the priority
assignment in P({1, ..., M}). The mth branch expands from v,
and connects to a new leaf v, based on Py, where j is the
number of existing leaves in the tree before we generate new
branches from leaf v;. We say that the leaf vj;n, is a child leaf of v,
or leaf v; is the parent leaf of vj; . The contention time associated
with the leaf vj, is the next contention time occurring after tf
that is scheduled by priority assignment P,,. Different branches
may end with different next contention times after t/. The iter-
ative construction terminates when the contention times of all
unexpanded leaves are greater than or equal to tr. We call these
unexpanded leaves terminal leaves and assign t; to them as their
contention times.

Let us revisit the example shown in Fig. 2. Contentions happen
four times across the time interval [to, tf]. At the first contention
time t{, control system 1 and 2 have a contention. The leaf
1 has two branches corresponding to the 2! = 2 different
priority assignments. Similarly, at each of the following three
contention times, two control systems have contentions, and each
leaf has two branches corresponding to two different priority
assignments.

4.3. Branch cost

After constructing the decision tree, we define a cost for each
branch. Along one branch (I, j) whose associated priority assign-
ment is Py, we first calculate the significant moments y;[k] for all
i and k such that t; < yi[k] < tjf,

Z(t) = H(t;Z(tf), s, Pm),
and y;[k] = o;[k] + 0i(ei[k + 1]7) (21)

where o;(j[k + 1]7) for each k is generated by the timing model
except with a known priority assignment P, instead of all possi-
ble priority assignments as in (19b). Then the branch cost wy; is
defined as

N
wyj = Zwli’j (22)
i=1

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 9

1 1
W1 20— W5 10——»

w7 w3 Al , -
Blue path :J:m 7 B — 77
i w} o w151 S Wig 91" :
tof; I #o Ty
.<7”i” ; w; 1y]
'm;«:—wﬁ P Py N — 4
Greenpath =V il om
I 3 3 . i 3 I
o Wy 2 H Ws11 T H W11 22 F
il .
toTS R i 7

Fig. 3. Illustration of branch cost along a path. The ending time of the colored
rectangles with diagonal lines represents the task completion time y;. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

where w,’ is the cost of control system i and it can be computed
by solving the following optimization problem based on the sig-
nificant moments calculated along a branch. For each i such that
there is a completion time y;[k+1] € (tf, tjc], let k; be the smallest
index k satisfying yi[k + 1] > ¢/ and ki be the largest index k
satisfying y;[k + 1] < tj‘. Then we set

ki
whj =Y min Vi@s[K; xi(eulkD), ylk], yilk + 11 (23)
k=k;

subject to (19¢) and (19d).

The meaning of (23) is as follows. If the (k + 1)st task of control
system i is completed between the contention times t{ and t]?,
ie. ik + 11 € (ff, tf], then the cost within the time interval
[vilk], yilk + 1]1] is included in the branch cost wy;. If no task
request of control system i is completed within (¢, t].c], then we
set wj; = 0. This branch cost formulation ensures that all costs
included in one branch are determined and will not be changed
by the priority assignments at or after time tjc. The cost of the

uncompleted (k; + 1)st task will be included by the branches
following the branch (I, j).

Fig. 3 shows an illustration of the defined branch cost for
the blue path and green path in Fig. 2. The different priority
assignments at t; caused different branch cost computation. In
the blue path, the second cost of control system 1 considers a
shorter time interval than the second cost of control system 1 in
the green path.

Remark 4.2. Along any arbitrary path in the decision tree, all
the significant moments are deterministic and can be computed
by the timing model. For any y;[k + 1] along this path, we can
always find the consecutive contention times ¢/ and t; such that
vilk+1] € [t], tjc) and the cost of the task before y;[k+ 1] is added
in the branch cost.

Remark 4.3. The optimal control design is embedded in the
branch cost calculation. To calculate w;,j in (23), we need to solve
the optimization problem (23) by optimizing the control law u;(t).
Since the priority along one branch is already known, we can
use the MPC design methods from Rawlings and Mayne (2009)
and Wang (2009) to solve (23) and compute uj(t). After solving
(23) for each control system i, we obtain the optimal control u*(t)
between two successive contention time instants.

Based on the decision tree model, the MIP formulated in (19a)
can now be converted to the problem of finding a path from the
root vy to a terminal leaf such that the cost along the entire path
is the lowest. The constructed decision tree contains multiple

paths and the total path cost has the same formula as the cost
function in (19a). Among all the paths, the lowest cost path can
be found by path planning algorithms (LaValle, 2006) and the
priority assignments and control commands along the lowest cost
path will be solutions for the MIP problem.

However, constructing the entire decision tree would be ex-
haustive and unrealistic when considering a relatively large num-
ber of control systems or a long time window. This motivates
Section 4.4, where we propose a search algorithm that only needs
to construct a subtree of the decision tree while searching for
an optimal path. This method is inspired by the A-star algo-
rithm (Hart et al., 1968) that has been widely used for online path
planning in robotics, which has been found to significantly reduce
computation time. We present proofs to show that optimality is
guaranteed using our proposed algorithm in Section 4.6.

4.4. Costs for search algorithm

The A-star algorithm will iteratively generate and search the
leaves starting from the root and terminate when it reaches a
terminal leaf. To use the A-star algorithm, we define leaves in two
categories: (i) If a leaf has been generated and all its child leaves
have been generated by the search algorithm, then we call such
a leaf closed. (ii) If a leaf has been generated and at least one of
its child leaves has not been generated by the search algorithm,
then we call such a leaf open. If a leaf is open and its parent leaf
is closed, then the leaf is called a frontier leaf. All frontier leaves
are added to a set called the frontier list, which keeps track of the
leaves that can be expanded by the A-star algorithm. The frontier
list is a sorted list where all the leaves in it are sorted according
to a function

Cr(vr) = Cg(vr) + Gp(vy) (24)

from the smallest to largest value where [is the index of a leaf.
The function Gg(v;) is called the stage cost, which is the sum of
branch costs along the path starting from the root to the current
leaf v; and Cy(v;) is the minimal future cost from the current leaf
vy to a terminal leaf where the minimization is over all priority
assignments and allowable controls.

Since the path from the root vg to a leaf v; is unique, the stage
cost can be computed using Cg(v;) = Cg(vp) + wp, where p is the
index of the parent leaf of v;. For the A-star algorithm to work,
an estimation Cy(v;) of future cost (also called the heuristic cost)
is needed for which Cy(v)) < Cy(v) for all v, so the estimated
cost Gr(v;) = Cg(vi) + Gy(vy) is equal to the actual cost Cy(v;)
when v; is a terminal leaf. The value of the MPC cost function may
be increased because of the contentions. Using this monotone
property of the cost function, we can estimate the future cost
Cn(vy) by solving the following MPC optimization problem

Ch(vl) = min Vl(ulh(t)7 Xi(tlc)a ui(tlc)v tlca tf)! (25)

s.t. Xi(t) = fi(xi(t), ul(e)), ul(t) € U;, for all ¢
where u'(t) = (ufi(t), ..., ul(t), ..., ul(t)) is Lebesgue measur-
able and essentially bounded (as defined for instance in Folland,
1984), and t{ is the contention time instant corresponding to leaf
v;. Notice that the above optimization problem does not have the
contention constraints from (19b).

During the search, all leaves v in the frontier list are sorted
according to their C¢(v) value, from the smallest to the largest. At
each iteration, the algorithm expands the leaf with the smallest 6f
by generating all its child leaves and then removes the expanded
leaf from the frontier list. All of its child leaves are added to the
frontier list. The heuristic cost Cp(v;) will make it possible to search

10 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

Algorithm 1 Main Program

Algorithm 2 Reconstruct

1: Data: ty, tr, i for 1 <i <N, x(tp), u(ty), Z(to)
2: Result: P*(t), u*(t)
3: Let frontier list=generated set= {vg};
4: Gr(vo) = Cp(vo), t = to;
5: while f < t; do
6: v is the leaf in frontier list with minimal 6f cost;
7: tf is the contention time instant corresponding to vj;
8: Let p = PT(v)); > vp is the parent leaf of leaf v;.
9: if tf =t; then
10: return Reconstruct(v,); Break;
11: else
12: j is the number of elements in generated set;
13: for mth permutation P, e P({1, ..., M}) do
14: (Vjm, tf+m wyj+m)=Expand(vy, Py, t);
15: Add vy, into frontier list and generated set;
16: Ce(vjym) = Ce(vr) + 1€l,j+m:
17: Solve (25) to obtain Cy(vjym);
18: Cr(Vjym) = Cg(Vjitm) + Cu(Vjym)s
19: PT(vjtm) =1,
20: Remove v; from frontier list;

the most promising paths first, and the optimal solution can be
found without examining all possible paths. Therefore, the search
algorithm leveraging A-star does not generate the entire decision
tree.

In addition to the frontier list, we also have a generated set
which consists of all leaves that have been generated by the A-
star algorithm. Each leaf v; in the generated set is also assigned
a pointer PT(v;) which equals the index of its parent leaf so that
the A-star algorithm can backtrack from it to its parent leaf.

4.5. Contention-resolving MPC algorithm

Algorithms 1-3 present the pseudocode for our proposed al-
gorithm based on the A-star algorithm to solve the optimization
problem (3). Algorithm 1 presents the search algorithm. The
optimal path search starts from the root vg. The search algorithm
keeps updating two sets, which are the frontier list and the gen-
erated set. At the beginning of the search algorithm, the root leaf
vp is added in the frontier list. The generated set only contains the
root leaf vy initially. Let Cs(vo) equal the heuristic cost Cy(vo). At
each iteration of the main program in Algorithm 1, the algorithm
determines which leaf to expand further by selecting the leaf v
with minimal C; cost in the frontier list. After selecting the leaf
vy, there are two cases that need to be considered:

(1) If the contention time instant of the selected leaf equals ty,
then the search algorithm has found the path from the root
leaf to a terminal leaf with the lowest Cy cost, which equals
the actual cost Cy. The search algorithm is terminated.

(2) If the contention time instant of the selected leaf does not
equal tr, then leaf v; will be expanded by generating its
children leaves and all of its children leaves are added to
frontier list and generated set. Then the algorithm calculates
the costs C; for the children leaves. Since the leaf v; has child
leaves after the expansion, it is not a frontier leaf. The search
algorithm removes the expanded leaf v, from frontier list.
Then the algorithm goes to the next iteration.

Algorithm 2 backtracks the path from the selected terminal
leaf to vy when case (1) is satisfied in the search algorithm.

: Data: v;
: Lett =t and p = PT(vy);
: while t > ty do

Let P*(t) be the priority assigned to the branch that con-
nects v, and v, from the contention time tg of leaf v, to the
contention time t{ of v;

Let | = p and p = PT(vp);

Let t be the corresponding contention time of vj;
7: return P*(t);

B W N =

o9

Algorithm 3 Expand

1: Data: v, Py, t

2: Find the next contention time under priority P,,, and denote
this contention time as t;, . ;

3: Solve the optimization formulated by (23) to obtain u;}(t) and
compute w;"j+m foreachi=1,...,N;

4: Compute wy jy, using (22);

5: TtUrn vjim, ty . Wijym;

The backtracking starts from the terminal leaf v; and utilizes the
pointer PT(v;) to obtain the parent leaf v,. The optimal priority
assignment P*(t) for the time interval between the contention
time instants of v, and v; equals the priority assignment along
the branch connecting v, and v;. Then we repeat this process with
v and v, replaced by v, and the parent leaf of v,, respectively.
We repeat the backtracking process to obtain the optimal priority
assignment P*(t) until the contention time instant equals .
Algorithm 2 returns the optimal priority assignment P*(t) for all
t € [to, tf] to the main program in Algorithm 1.

Algorithm 3 expands the selected leaf from the frontier list
when case (2) is satisfied in the search algorithm. It utilizes
Propositions 4.1 or 4.2 to determine the next contention time
after a contention time t. Then it solves the optimization problem
(23) to obtain the optimal control u;(t) and compute the branch
cost wyjim. Algorithm 3 returns the child leaf vj.,, the next
contention time t;,, and the branch cost wijim to the main
program in Algorithm 1.

Fig. 4 is an illustration of the subtree constructed by our
algorithm described above, using the same example as Fig. 2.
Compared with the entire decision tree in Fig. 2, some internal
leaves in the subtree are open because our algorithm does not
expand every leaf but intelligently expands a subset of leaves
without losing optimality. Once the construction of the subtree
reaches the terminal leaf, our algorithm backtracks the path along
the red arrows. The total number of branches generated by the
algorithm is 11, reducing the computational workload for gener-
ating the entire tree which has totally 30 branches as shown in
Fig. 2.

4.6. Proof of optimality

In this subsection, we prove that our algorithm finds the opti-
mal solutions P*(t) and u*(t) which minimize (3). To this end, first
note that since there are no state constraints in our optimization
problems for each fixed choice of the priority assignments (except
for the initial state and terminal state constraints), all of the
optimization problems we solve have solutions, and this ensures
recursive feasibility. Next, we show that the heuristic cost Cp(v;)
defined in Section 4.4 satisfies the requirements for the A-star
algorithm.

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 11

B >*®%@
’ ?@”éh(va)-n__n“ © (.21

3 el 1
£)

Fig. 4. Illustration of the subtree constructed by the proposed search algorithm.
The blue circle represents the root vy and the red circle represents the
terminal leaf. Green circles represent leaves in the frontier list. Solid black
arrows represent branches generated by the algorithm and dashed green arrows
represent the estimate cost éh(ul). The red arrows represent the path with lowest
cost. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Proposition 4.3. The condition fh(v,) < Cp(v;) holds for all v, in
the decision tree.

Proof. The estimated cost 6;1(1)1) is obtained by solving the opti-
mization problem (25). The actual future cost Cp(v;) is obtained
by solving the optimization problem defined by (3) given the
initial condition x(t;). Comparing (25) and (3) with x(t{), these
two optimization problems have the same cost function and
initial conditions. The differences are that the decision variable
u(t) in (3) is constrained to be piecewise constant function that
depends on the priorities, while u”(t) in (25) can be any arbitrary
real valued function as long as it is Lebesgue measurable and
essentially bounded. Therefore, the optimal solution u*(t) in (3)
must be feasible but may not be an optimal solution for (25).
Hence, Cy(v;) is less than or equal to Cy(v;) for all v. O

Theorem 4.1. Algorithm 1 finds an optimal solution P*(t) and u*(t)
for the optimization problem (19a).

Proof. From Hart et al. (1968, Theorem 1), the A-star algorithm
finds the minimal total cost from vg to a terminal leaf if Cp(v;) <
Cn(vy) for all v,. Since we already showed that this condition is
satisfied in Proposition 4.3, the theorem follows.

Remark 4.4. Since P({1,...,M}) contains all possible priority
assignments, it also includes the priorities following RMS, EDF
and FCFS rules. Therefore, the priorities assigned by the RMS, EDF
or FCFS strategies are represented by paths in the decision tree,
but not necessarily the path with the minimal cost. Therefore, our
method guarantees that we find a better or the same solution as
these strategies.

5. Simulation results

This section presents simulation results obtained by the pro-
posed method implemented in MATLAB. We simulate an NCS
consisting of four scalar systems. The first three are linear systems
xi(t) = aix;(t) + ui(t),i = 1,2, 3 with parameters (a;, az, as) =
(1,2, %). The fourth system is nonlinear x4(t) = x3(t) + us(t).
The initial conditions are x;(0) = 1 and u;(0) = 0 for each i.
The control constraints are u;(t) € [—3,3] fori = 1,...,4.
The output of each plant is the state x;(t). The time horizon
[to, tr] for the simulation is from 0 to 6 s. The cost function
is Vi(x;(0),0) = 1 [7{x¥(¢) + 0.0001u%(t)}d¢ + x2(6) and the
reference signal is A;(t) = O for all i and t € [0, 6]. The task
parameters are (Cq[k], Co[k], Cs[k], C4[k]) = (0.3,0.3,0.2,0.2)
and (Tq[k], T2[k], Ta[k], T4[k]) = (1, 1.25, 1.5, 2) in seconds. The
four plants are all stabilizable from the initial condition if no
contention exists.

Tﬁ_7
|
|
i

0.5 1 1.5
Fig. 5. Communication network occupation of scheduling four scalar systems
under preemptive scheduling. The occupation value 1 means the system is
occupying the network, 0 means the system does not require access to the

network, and 0.5 means the system access request is delayed by contention.
Black crosses mark times when a contention occurs.

5.1. Preemptive scheduling

For the preemptive scheduling, we compare the optimal pri-
ority assignment computed by our proposed algorithm with the
priority assignments under RMS and EDF. The priorities assigned
by EDF are P(t) = (1,2, 3,4) for all t, which are the same as
the priorities assigned by RMS. The optimal priority assignments
computed by our method are different from priorities assigned
by RMS and EDF. The communication network occupation result
scheduled by the optimal priority assignments is shown in Fig. 5.
Eight contentions occur in time window [0, 6], represented by the
crosses in the figure. At time 0, the first contention occurs among
the four systems and the optimal priority assignment computed
by our method is that P*(t) = (4,3,2,1) for t € [0, 1.25) s,
i.e. system 4 has highest priority and system 1 has lowest priority.
Therefore, system 4 gains access to the communication network
at time 0 and all the other three systems are delayed. At time 1.25,
the second contention occurred between systems 1 and 2. The
contention-resolving MPC assigns system 1 with higher priority
than system 2. System 1 gain access to the network and system
2 is delayed for 0.05 s.

5.2. Non-preemptive scheduling

For non-preemptive scheduling, we compare the optimal pri-
ority assignment computed by our proposed algorithm with the
priority assignments under RMS. The priorities assigned by RMS
are P(t) = (1, 2, 3, 4) for all t. The optimal priority assignments
computed by our method are different from priorities assigned
by RMS. The communication network occupation result sched-
uled by the optimal priority assignments is shown in Fig. 6.
Five contentions occur in time window [0, 6], represented by
the crosses in the figure. Similar to the preemptive scheduling
case, for t € [0, 1) s, system 4 has highest priority and system
1 has lowest priority. At time 2, the second contention occurs
between system 1 and 4. The contention-resolving MPC assigns
system 4 with higher priority than system 1. System 4 gains
access to the network and system 1 is delayed for 0.2 s. At time
3, the third contention occurs between systems 1 and 3. The
contention-resolving MPC assigned system 3 a higher priority
than system 1. For the fourth and fifth contentions at times 4
and 5 s, the contention-resolving MPC assigns system 1 a higher
priority, which is different from the first three contentions.

12 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

System 1

N ol e

2'58yst?ém 23"5 |
I ~1°
25 3 35 4 55 6
‘System3 ‘

.

L JT
2 25 3 35 . 6
System 4
T2 AR | B =) B
0 6

05 1 15 25 3 35 4 45 5 55

b
»
3

. . .

I\J}:

Fig. 6. Communication network occupation of scheduling four scalar systems
under non-preemptive scheduling discipline. Black crosses mark times when a
contention occurs.

System 1

System 2

2 3 4 5 6
System 4

----- EDF (RMS) output

— — uunder EDF (RMS)

=== Optimal output

—-—-u under optimal priority

A D o d s o o
\,
)‘.
- .

Fig. 7. Outputs of four scalar systems. The red solid lines show the output under
optimal priority assignment, and the blue solid lines show the outputs under
EDF. The outputs under RMS are the same as EDF. The dashed lines show the
control u; computed by the MPC in each case.

5.3. Control performance

The outputs of the four scalar systems under preemptive
scheduling are presented in Fig. 7. Systems 3 and 4 are unstable
under the priorities assigned by RMS and EDF, because the third
and fourth systems have lower priorities and longer delays. Under
the optimal priority assignment, the four systems are all stable
because the optimal priority assignment slightly sacrifices the
control performance of system 1, by assigning system 1 the
lowest priority, the nonlinear system 4 with the highest priority,
and the most unstable linear system 3 with second highest
priority from O to 1 s. The outputs of the four scalar systems
under non-preemptive scheduling are the same as Fig. 7, except
that us3(t) = —2.69 during time interval [0.4, 1.8] for the non-
preemptive scheduling case, while u3(t) = —2.76 during time
interval [0.4, 1.7] for the preemptive scheduling case.

6. Conclusions

While model predictive control has gained popularity in pro-
cess engineering and networked control systems, the previously
available methods had difficulties coping with the co-design of
optimal controls and priority assignments that occur in coupled
control systems with shared resources. Resolving contentions in
coupled control systems with shared resources is a challenging
problem that is of compelling ongoing engineering interest. This
paper leads to new insights in scheduling and control co-design
methods under contentions. We presented a novel algorithm to
design optimal priority assignments, which we applied to optimal
control for networked control systems, considering both pre-
emptive and non-preemptive scheduling disciplines. We showed

how our algorithm is admissible for finding an optimal priority
assignment associated with an optimal control computed by MPC.
The simulation results demonstrated significant improvements
using our proposed method, compared with the RMS and EDF
scheduling strategies. In future work, we hope to develop ro-
bust contention-resolving MPC that can quantify the effects of
perturbations that are caused by unpredictable events such as
package drops in communication networks. Also, we hope to
apply the contention-resolving MPC algorithm to an intersection
management problem.

References

Afram, Abdul, & Janabi-Sharifi, Farrokh (2014). Theory and applications of HVAC
control systems-A review of model predictive control (MPC). Building and
Environment, 72, 343-355.

Astrom, Karl J., & Bernhardsson, Bo M. (2002). Comparison of Riemann and
Lebesgue sampling for first order stochastic systems. In Proceedings of the
41st IEEE conference on decision and control (pp. 2011-2016). http://dx.doi.
org/10.1109/CDC.2002.1184824.

Baruah, Sanjoy K., & Chakraborty, Samarjit (2006). Schedulability analysis of non-
preemptive recurring real-time tasks. In Proceedings of the 20th international
parallel and distributed processing symposium. IEEE.

Baskar, Lakshmi, De Schutter, Bart, & Hellendoorn, Hans (2008). Model-based
predictive traffic control for intelligent vehicles: Dynamic speed limits
and dynamic lane allocation. In Proceedings of the IEEE intelligent vehicles
symposium (pp. 174-179). Eindhoven, Netherlands. http://dx.doi.org/10.1109/
1VS.2008.4621307.

Bellemans, T., De Schutter, B., & De Moor, B. (2006). Model predictive control
for ramp metering of motorway traffic: A case study. Control Engineering
Practice, 14(7), 757-767.

Chen, Wei, Yao, Jing, & Qiu, Li (2019). Networked stabilization of multi-input
systems over shared channels with scheduling/control co-design. Automatica,
99, 188-194.

Chu, Yunfei, & You, Fengqi (2014). Moving horizon approach of integrating
scheduling and control for sequential batch processes. AIChE Journal, 60(5),
1654-1671.

Conway, Richard W., Maxwell, William L., & Miller, Louis W. (2003). Theory of
scheduling. Chelmsford, MA: Courier Corporation.

Engell, Sebastian, & Harjunkoski, liro (2012). Optimal operation: Scheduling,
advanced control and their integration. Computers and Chemical Engineering,
47, 121-133.

Farnam, Arash, & Esfanjani, Reza Mahboobi (2014). Improved stabilization
method for networked control systems with variable transmission delays
and packet dropout. ISA Transactions, 53(6), 1746-1753.

Fayazi, S. Alireza, & Vahidi, Ardalan (2017). Vehicle-in-the-loop (VIL) verification
of a smart city intersection control scheme for autonomous vehicles. In
Proceedings of the IEEE conference on control technology and applications (pp.
1575-1580). IEEE.

Folland, G. (1984). Real analysis. New York, NY: Wiley and Sons.

Frejo, José Ramén Dominguez, & Camacho, Eduardo Fernindez (2012). Global
versus local MPC algorithms in freeway traffic control with ramp metering
and variable speed limits. IEEE Transactions on Intelligent Transportation
Systems, 13(4), 1556-1565.

Gaid, M. E. Mongi Ben, Cela, Arben, & Hamam, Yskandar (2006). Optimal
integrated control and scheduling of networked control systems with
communication constraints: application to a car suspension system. [EEE
Transactions on Control Systems Technology, 14(4), 776-787.

Gaid, Mohamed ElI Mongi Ben, Cela, Arben S., & Hamam, Yskandar (2009).
Optimal real-time scheduling of control tasks with state feedback resource
allocation. IEEE Transactions on Control Systems Technology, 17(2), 309-326.

Gao, Huijun, Chen, Tongwen, & Lam, James (2008). A new delay system approach
to network-based control. Automatica, 44(1), 39-52.

George, Laurent, Rivierre, Nicolas, & Spuri, Marco (2016). Preemptive
and non-preemptive real-time uniprocessor scheduling. HAL Preprints
INRIA-00073732.

Hart, Peter E., Nilsson, Nils J., & Raphael, Bertram (1968). A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2), 100-107.

Hespanha, Jodo, Naghshtabrizi, Payam, & Xu, Yonggang (2007). A survey of recent
results in networked control systems. Proceedings of the IEEE, 95(1), 138-162.

Hirsch, Morris, Smale, Stephen, & Devaney, Robert (2004). Differential equations,
dynamical systems, and an introduction to chaos. San Deigo, CA: Academic
Press.

Karlof, John K. (2006). Integer programming: Theory and practice. Boca Raton, FL:
CRC Press.

LaValle, Steven M. (2006). Planning algorithms. Cambridge, UK: Cambridge
University Press.

http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://dx.doi.org/10.1109/CDC.2002.1184824
http://dx.doi.org/10.1109/CDC.2002.1184824
http://dx.doi.org/10.1109/CDC.2002.1184824
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://dx.doi.org/10.1109/IVS.2008.4621307
http://dx.doi.org/10.1109/IVS.2008.4621307
http://dx.doi.org/10.1109/IVS.2008.4621307
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb8
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb8
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb8
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb12
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb16
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb16
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb16
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb19
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb19
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb19
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb21
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb21
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb21
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb22
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb22
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb22

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 13

Lawler, Eugene L, & Wood, David E. (1966). Branch-and-bound methods: A
survey. Operations Research, 14(4), 699-719.

Lee, Joyoung, & Park, Byungkyu (2012). Development and evaluation of a coop-
erative vehicle intersection control algorithm under the connected vehicles
environment. [EEE Transactions on Intelligent Transportation Systems, 13(1),
81-90.

Liu, Chung Laung, & Layland, James W. (1973). Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the ACM,
20(1), 46-61.

Liu, Guoping, Sun, Jian, & Zhao, Yunbo (2013). Design, analysis and real-time
implementation of networked predictive control systems. Acta Automatica
Sinica, 39(11), 1769-1777.

Liu, Guoping, Xia, Yuanqing, Chen, Jie, Rees, David, & Hu, Wenshan (2007). Net-
worked predictive control of systems with random network delays in both
forward and feedback channels. IEEE Transactions on Industrial Electronics,
54(3), 1282-1297.

LjeSnjanin, Merid, Quevedo, Daniel E., & NeSi¢, Dragan (2014). Packetized
MPC with dynamic scheduling constraints and bounded packet dropouts.
Automatica, 50(3), 784-797.

Malikopoulos, Andreas A., Cassandras, Christos G., & Zhang, Yue]. (2018). A
decentralized energy-optimal control framework for connected automated
vehicles at signal-free intersections. Automatica, 93, 244-256.

Mayne, David Q., Rawlings, James B., Rao, Christopher V., & Scokaert, Pierre O.
M. (2000). Constrained model predictive control: Stability and optimality.
Automatica, 36(6), 789-814.

Mazumder, Sudip K. Acharya, Kaustuva, & Tahir, Muhammad (2009). Joint
optimization of control performance and network resource utilization in
homogeneous power networks. IEEE Transactions on Industrial Electronics,
56(5), 1736-1745.

Negenborn, Rudy R., De Schutter, Bart, & Hellendoorn, Hans (2008). Multi-agent
model predictive control for transportation networks: Serial versus parallel
schemes. Engineering Applications of Artificial Intelligence, 21(3), 353-366.

Nesic, Dragan, Teel, Andrew, & Carnevale, Daniele (2009). Explicit computation of
the sampling period in emulation of controllers for nonlinear sampled-data
systems. IEEE Transactions on Automatic Control, 54(3), 619-624.

Papadimitriou, Christos H., & Steiglitz, Kenneth (1998). Combinatorial optimiza-
tion: Algorithms and complexity. Mineola, NY: Dover.

Peng, Chen, & Yang, Tai Cheng (2013). Event-triggered communication and
Hoo control co-design for networked control systems. Automatica, 49(5),
1326-1332.

Pop, Traian, Pop, Paul, Eles, Petru, Peng, Zebo, & Andrei, Alexandru (2008). Timing
analysis of the flexray communication protocol. Real-Time Systems, 39(1-3),
205-235.

Rawlings, James Blake, & Mayne, David Q. (2009). Model predictive control: Theory
and design. Madison, WI: Nob Hill Pub..

Robert Bosch GmbH (1991). CAN specification (Version 2.0).

Roy, Debayan, Zhang, Licong, Chang, Wanli, Goswami, Dip, &
Chakraborty, Samarjit (2016). Multi-objective co-optimization of FlexRay-
based distributed control systems. In 2016 IEEE real-time and embedded
technology and applications symposium (pp. 1-12). IEEE.

Sha, Lui, Abdelzaher, Tarek, Arzén, Karl-Erik, Cervin, Anton, Baker, Theodore,
Burns, Alan, et al. (2004). Real time scheduling theory: A historical
perspective. Real-Time Systems, 28(2-3), 101-155.

Shi, Lin, Bart De, Schutter, Yugeng, Xi, & Hans, Hellendoorn (2011). Fast model
predictive control for urban road networks via MILP. IEEE Transactions on
Intelligent Transportation Systems, 12(3), 846-856.

Shi, Zhenwu, Yao, Ningshi, & Zhang, Fumin (2017). Scheduling feasibility of
energy management in micro-grids based on significant moment analysis.
In Houbing Song, Danda Rawat, Sabina Jeschke, & Christian Brecher (Eds.),
Cyber-physical systems (pp. 431-449). New York, NY: Elsevier.

Shi, Zhenwu, & Zhang, Fumin (2013). Predicting time-delays under real-time
scheduling for linear model predictive control. In Proceedings of the 2013
international conference on computing, networking and communications (pp.
205-209). IEEE.

Shi, Zhenwu, & Zhang, Fumin (2017). Model predictive control under timing
constraints induced by controller area networks. Real-Time Systems, 53(2),
196-227.

Touretzky, Cara R., & Baldea, Michael (2014). Integrating scheduling and control
for economic MPC of buildings with energy storage. Journal of Process Control,
24(8), 1292-1300.

Walsh, Gregory C., Hong, Ye, & Bushnell, Linda G. (2002). Stability analysis of
networked control systems. IEEE Transactions on Control Systems Technology,
10(3), 438-446.

Wang, Liuping (2009). Model predictive control system design and implementation
using MATLAB. London, UK: Springer-Verlag London Limited.

Wang, Xiaotian, Shi, Zhenwu, Zhang, Fumin, & Wang, Yue (2015). Dynamic real-
time scheduling for human-agent collaboration systems based on mutual
trust. Cyber-Physical Systems, 1(2-4), 76-90.

Yan, Fei, Dridi, Mahjoub, & El Moudni, Abdellah (2013). An autonomous ve-
hicle sequencing problem at intersections: A genetic algorithm approach.
International Journal of Applied Mathematics and Computer Science, 23(1),
183-200.

Yao, Leehter, Chang, Wen-Chi, & Yen, Rong-Liang (2005). An iterative deepening
genetic algorithm for scheduling of direct load control. IEEE Transactions on
Power Systems, 20(3), 1414-1421.

Yao, Ningshi, Malisoff, Michael, & Zhang, Fumin (2017). Contention resolving
optimal priority assignment for event-triggered model predictive controllers.
In Proceedings of the 2017 American control conference (pp. 2357-2362). IEEE.

Zhang, Yue], Malikopoulos, Andreas A., & Cassandras, Christos G. (2016).
Optimal control and coordination of connected and automated vehicles at
urban traffic intersections. In Proceedings of the American control conference
(pp. 6227-6232). IEEE.

Zhang, Fumin, Shi, Zhenwu, & Mukhopadhyay, Shayok (2013). Robustness
analysis for battery-supported cyber-physical systems. ACM Transactions on
Embedded Computing Systems, 12(3), 69.

Zhang, Fumin, Szwaykowska, Klementyna, Wolf, Wayne, & Mooney, Vincent
(2008). Task scheduling for control oriented requirements for cyber-physical
systems. In Real-time systems symposium, 2008 (pp. 47-56). IEEE.

Zhao, Yang, Lu, Yuehong, Yan, Chengchu, & Wang, Shengwei (2015). MPC-based
optimal scheduling of grid-connected low energy buildings with thermal
energy storages. Energy and Buildings, 86, 415-426.

Zhou, Chuan, Du, Mingli, & Chen, Qingwei (2012). Co-design of dynamic
scheduling and H-infinity control for networked control systems. Applied
Mathematics and Computation, 218(21), 10767-10775.

Ningshi Yao received the B.S. degree from Zhejiang
University, Hangzhou, China, in 2014. She has been
pursuing a Ph.D. degree from the School of Electrical
and Computer Engineering at Georgia Institute of Tech-
nology, Atlanta, USA, since 2014. Her research interests
include control theory and human robot interaction.

Michael Malisoff is the Roy Paul Daniels Professor #3
in the Louisiana State University College of Science. He
earned his Ph.D. in Mathematics in 2000 from Rutgers
University. He received the First Place Student Best
Paper Award at the 1999 IEEE Conference on Decision
and Control and 7 NSF research grants at PL. He is an
associate editor of Asian Journal of Control, Discrete
and Continuous Dynamical Systems Series B, European
Journal of Control, and SIAM Journal on Control and
Optimization.

Fumin Zhang is a professor in the School of Electrical
and Computer Engineering at the Georgia Institute of
Technology. He received a Ph.D. degree in 2004 from
the University of Maryland (College Park) in Electri-
cal Engineering, and held a postdoctoral position in
Princeton University from 2004 to 2007. His research
interests include mobile sensor networks, maritime
robotics, control systems, and theoretical foundations
for cyber-physical systems. He received the NSF CA-
REER Award in 2009 and the ONR Young Investigator
Program Award in 2010.

http://refhub.elsevier.com/S0005-1098(20)30417-9/sb23
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb23
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb23
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb34
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb34
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb34
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb37
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb37
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb37
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb38
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb47
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb47
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb47
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56

	Contention-resolving model predictive control for coupled control systems with a shared resource
	Introduction
	Problem formulation
	Priority-based scheduling
	Formulation of model predictive control

	Significant moment analysis and timing model
	Timing states
	Delay prediction using timing model
	Timing model for preemptive network
	Timing model for non-preemptive network
	Summary of constraints

	Solutions to the contention-resolving MPC
	Contention detection
	Construction of decision tree
	Branch cost
	Costs for search algorithm
	Contention-resolving MPC algorithm
	Proof of optimality

	Simulation results
	Preemptive scheduling
	Non-preemptive scheduling
	Control performance

	Conclusions
	References

