
Automatica 122 (2020) 109219

p
a
A
c
c
p
s
i
(
C
b

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Contention-resolvingmodel predictive control for coupled control
systemswith a shared resource✩

Ningshi Yao a, Michael Malisoff b, Fumin Zhang a,∗

a School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA
b Department of Mathematics, Louisiana State University, Baton Rouge, LA, 70803, USA

a r t i c l e i n f o

Article history:
Received 29 April 2019
Received in revised form 28 March 2020
Accepted 17 July 2020
Available online 21 August 2020

Keywords:
Model predictive control
Mixed integer optimization
Event trigger
Networked control system

a b s t r a c t

Priority-based scheduling strategies are often used to resolve contentions in resource constrained
control systems. Such scheduling strategies inevitably introduce time delays into controls and may
degrade the performance of control systems. Considering the coupling between priority assignment
and control, this paper presents a method to co-design priority assignments and control laws for each
control system, which aims to minimize the overall performance degradation caused by contentions.
The co-design problem is formulated as a mixed integer optimization problem with a very large search
space, rendering difficulty in computing the optimal solution. To solve the problem, we develop a novel
contention-resolving model predictive control method to dynamically assign priorities and compute an
optimal control. The priority assignment can be determined using a sample-based approach without
excessive demand on computing resources, and optimal controls can be computed iteratively following
the order of the assigned priorities. We apply the proposed contention-resolving model predictive
control to co-design scheduling and controls in networked control systems. We present simulation
results to show the effectiveness of our proposed method.

© 2020 Elsevier Ltd. All rights reserved.
i
N
(
t
r
e
&

p
m
s
a
2
p
W
a
(
w
i
n
t
s
s
(
n

1. Introduction

In modern industry, shared resources are widely used as com-
lexity of the systems increases. When multiple systems need
ccess to a shared resource at the same time, a contention occurs.
n arbitration mechanism is needed to determine which system
an access the resource first. This is a generic problem for the
ontrol of complex systems where many control systems are cou-
led or connected and need to share resources. Examples of such
ystems include networked control systems (or NCS), swarm-
ng robots and smart grids. For NCS, the communication media
e.g., the network cable or radio frequency) is the shared resource.
ontrol loops that share the same communication media must
e scheduled to communicate at proper times to ensure success

✩ The research work is partially supported by ONR grants N00014-19-1-
2556, N00014-19-1-2266 and N00014-16-1-2667; NSF grants OCE-1559475,
CNS-1828678, and S&AS-1849228; NRL grants N00173-17-1-G001 and N00173-
19-P-1412; and NOAA grant NA16NOS0120028. The material in this paper
was partially presented at: the 2017 American Control Conference, May 24–
26, 2017, Seattle, WA, USA. the 2nd IEEE Conference on Control Technology
and Applications, August 21–24, 2018, Copenhagen, Denmark. This paper was
recommended for publication in revised form by Associate Editor M. Lagoa under
the direction of Editor Sophie Tarbouriech.

∗ Corresponding author.
E-mail addresses: nyao6@gatech.edu (N. Yao), malisoff@lsu.edu

M. Malisoff), fumin@gatech.edu (F. Zhang).
 Z

ttps://doi.org/10.1016/j.automatica.2020.109219
005-1098/© 2020 Elsevier Ltd. All rights reserved.
n transmitting messages to guarantee stability; see Hespanha,
aghshtabrizi, and Xu (2007) and Walsh, Hong, and Bushnell
2002). For the case of load management in a micro power grid,
he amount of available electric power generated is a shared
esource, and each electric load needs to be scheduled to consume
nough power over a time period to accomplish its task (Shi, Yao,
Zhang, 2017).
A common feature of these applications is that a scheduling

olicy is needed to resolve contentions. For some applications,
any feasible scheduling policies can be used. It is sometimes
ufficient to use the one that is easiest to implement or easiest to
nalyze (Sha et al., 2004; Zhang, Szwaykowska, Wolf, & Mooney,
008). However, in many applications, a choice of the scheduling
olicy may affect performance significantly (Wang, Shi, Zhang, &
ang, 2015). For example, well-known scheduling policies, such

s rate monotonic scheduling (or RMS) and earliest deadline first
or EDF) algorithms introduced in Liu and Layland (1973), are
idely used in real-time systems. These algorithms are optimal

n real-time scheduling in the sense that they can maximize the
umber of tasks that can be scheduled before deadlines. However,
hey are not optimized for control purposes. Priority assignments
cheduled by EDF and RMS can violate the stability of the whole
ystem (Yao, Malisoff, & Zhang, 2017). The first-come-first-serve
FCFS) scheduling mechanism has been used to guarantee fair-
ess; see Lee and Park (2012), Malikopoulos, Cassandras, and

hang (2018) and Zhang, Malikopoulos, and Cassandras (2016).

https://doi.org/10.1016/j.automatica.2020.109219
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109219&domain=pdf
mailto:nyao6@gatech.edu
mailto:malisoff@lsu.edu
mailto:fumin@gatech.edu
https://doi.org/10.1016/j.automatica.2020.109219

2 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

t
s
i
o
&
g
m
p
t
d
4
M
t
i
r
c
c
p
p

c
a
m
c
w

w
t
p
a
s
S

However, the FCFS mechanism is conservative, in the sense that
it prevents the scheduler from reordering the request of tasks.
It may lead to poor scheduling and possible congestion. The
drawbacks of these existing scheduling methods motivate the co-
design of scheduling and control to improve coordination among
control systems and obtain more reliable control performance.

Recent works showed encouraging results by co-designing the
scheduling and control in the scenario when multiple control
systems need to share a resource, e.g. a shared communication
media or limited power resources (Engell & Harjunkoski, 2012).
One co-design approach is to determine a specific scheduling
strategy first and then design the control law to compensate for
the time delays or packet dropout induced by the scheduling
strategy; see Chen, Yao, and Qiu (2019), Farnam and Esfanjani
(2014), Gao, Chen, and Lam (2008), Peng and Yang (2013), Shi and
Zhang (2017) and Zhou, Du, and Chen (2012). Another approach is
to use optimization-based methods to solve a mixed-integer op-
timization problem to optimize scheduling decisions along with
the control laws. There are relatively fewer studies (Gaid, Cela,
& Hamam, 2006, 2009; Mazumder, Acharya, & Tahir, 2009; Roy,
Zhang, Chang, Goswami, & Chakraborty, 2016; Yao, Chang, &
Yen, 2005) which take this approach. The co-design problems
were formulated as mixed integer quadratic programs (or MIQPs)
or mixed integer linear program (or MILP) problems, and were
solved by optimization packages such as IBM CPLEX solver. Al-
though these methods can obtain an optimal or a local optimal
solution, the major disadvantage is the computation requirement.
The optimization problem formulated for co-designing schedul-
ing and control is high dimensional and takes a long time for
optimization solvers to find an optimal solution.

Model predictive control (or MPC) offers a natural way to
solve the scheduling and control co-design challenge. Instead
of considering the whole design time window, MPC performs a
prediction-optimization procedure iteratively, using a predefined
cost function (which usually considers the overall performance
and efficiency) while receding a finite optimization time hori-
zon (Mayne, Rawlings, Rao, & Scokaert, 2000; Rawlings & Mayne,
2009). MPCs can incorporate contentions as system constraints
and coordinate all the control systems. Many works utilized MPC
to design the schedule and control laws for networked control
systems (Baskar, De Schutter, & Hellendoorn, 2008; Bellemans, De
Schutter, & De Moor, 2006; Frejo & Camacho, 2012; Lješnjanin,
Quevedo, & Nešić, 2014; Negenborn, De Schutter, & Hellendoorn,
2008; Shi, Bart De, Yugeng, & Hans, 2011), energy storage sys-
tems (Afram & Janabi-Sharifi, 2014; Touretzky & Baldea, 2014;
Zhao, Lu, Yan, & Wang, 2015) and chemical processes (Chu &
You, 2014). While promising, MPC is largely based on prediction
models that are usually nonlinear and non-convex. Therefore,
a major challenge in implementing MPC for complex control
systems is real-time computational performance.

In this paper, we propose a contention-resolving model pre-
dictive control method to co-design optimal priorities and control
in coupled control systems. The contention-resolving MPC can
dynamically assign priorities to each control system to mini-
mize the overall performance degradation caused by contentions.
Our method differs from existing methods, because we consider
priorities as independent decision variables in the objective func-
tion of the MPC, not as constraints as was done in previous
works (Gaid et al., 2006; Liu, Sun, & Zhao, 2013; Liu, Xia, Chen,
Rees, & Hu, 2007). By computing the priorities of each control
system, MPCs can achieve better performance. Although the prob-
lem can be formulated as a mixed integer optimization problem
(or MIP) with a very large search space, doing so would pro-
duce difficulty in computing an optimal solution. Therefore, this
work proposes a sample-based method to solve this optimization
problem without excessive demand on computing resources. The
major contributions in this work are as follows:
1. Sufficient and necessary condition to compute contention time
instants. We utilize the significant moment analysis published in
our previous work (Shi & Zhang, 2017) and establish analytical
timing models for both preemptive and non-preemptive real-
time systems. Based on the timing models, we present sufficient
and necessary conditions to determine the time instants when
contentions occur and compute the significant moments when a
control system actually gains access to the shared resource and
when the resource is not occupied. Based on these significant
moments, the priority assignment and control law design can
be decoupled and we can construct a decision tree to efficiently
search all of the possible priority assignments.
2. Co-design decision tree formulation. Enabled by the significant
moments computed by the timing model, the infinite dimen-
sional priority and control co-design optimization problem can
be converted into a path planning problem for a decision tree
with only finitely many leaves and branches. Our algorithm as-
signs priorities only at the significant moments when contentions
occur, which are a finite number of time instances on the MPC
optimization horizon. The tree will contain a finite number of
branches and each branch corresponds to one possible priority
assignment. The optimal control law design is embedded in the
computation of branch costs. An optimal solution of the co-design
problem must be a path from the root of the decision tree to one
of the terminal leaves. There are only finitely many such paths
that can be searched. Second, among the finitely many paths,
not all need to be searched to find the optimal solution. To the
best of our knowledge, the use of a decision tree to decouple the
coupled priority assignments and control design had not previ-
ously been documented in the literature. In addition, we present
a new formula to compute branch costs in the decision tree that
is constructed by contention-resolving MPC. Different from our
previous work (Yao et al., 2017), the cost function can handle
cases where a control system’s access to the shared resource is
delayed multiple times.
3. Co-design algorithm. We provide a significant modification of
he A-star algorithm from Hart, Nilsson, and Raphael (1968) to
earch for the optimal priority assignment. The A-star algorithm
s a sampling based algorithm that has been widely used for
nline path planning in robotics. Different from the works (Fayazi
Vahidi, 2017; Yan, Dridi, & El Moudni, 2013), which use a

enetic algorithm or an MIP solver to find optimal schedules, our
ethod searches through a greatly reduced number of possible
aths in the decision tree, which can provide scalable methods
hat eliminate the need for an exhaustive search through the full
ecision tree.
. Practical application case study. We apply contention-resolving
PC to networked control systems with shared communica-

ion media, under both preemptive and non-preemptive schedul-
ng disciplines. We evaluate the performance of the contention-
esolving MPC through simulations and compare the results with
lassical scheduling methods. The optimal priority assignment
omputed by contention-resolving MPC achieves significant im-
rovement compared to the priority assignment computed by the
opular EDF or RMS scheduling methods.
Compared to the standard MPC framework,

ontention-resolving MPC produces a computationally tractable
pproach that lends itself to optimal control and priority assign-
ent co-design. It is a theoretical framework that is general and
an be applied to many connected or coupled control systems
ith shared resources.
The rest of this paper is organized as follows. In Section 2,

e introduce the contention-resolving MPC formulation. In Sec-
ion 3, we present the analytical timing models. In Section 4, we
resent the path planning problem converted from the priority
ssignment and MPC design problem. In Section 5, we present
imulation results for applying contention-resolving MPC to NCS.
ection 6 summarizes our work.

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 3

d
f
γ

b
s
b
i
γ

t
r
a

A
T

b
o
o
A
(

2

i

γ

W
s
a
A
m
t
n
p
f
o

D
P
t
i
i
t
s

A
s

l
t
e
t

l
c
i
δ

A
f

n
p
a
a

E

(
(

a
p
1
t
p

o
w

2. Problem formulation

The proposed contention-resolving MPC is a general theoreti-
cal framework to address resource allocation for coupled control
systems. Consider N control systems that must access a shared
resource. Assume that the ith control system for i = 1, 2, . . . ,N
is modeled in the form

ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)) (1)

where xi, ui, and yi represent the state vector, control, and output,
respectively. Each control system is viewed as a customer that
must be served to access the shared resource. Here and in the
sequel, we make the following assumption about the shared
resource and our dynamics, where we use measurability and
essential boundedness in the Lebesgue measure sense of Folland
(1984):

Assumption 2.1. The function fi for i = 1, . . . ,N in (1) is
such that this holds for each i: For each measurable essentially
bounded function ui and each initial state x̄i and each T > 0, the
initial value problem for the dynamics fi and the initial condition
xi(0) = x̄i has a unique solution on [0, T].

The preceding assumption is satisfied under standard Lips-
chitzness conditions, e.g., from Hirsch, Smale, and Devaney (2004,
Chapter 7).

Assumption 2.2. At any given time, only one customer can
occupy the shared resource.

Assumption 2.2 is valid in many real world applications. In the
automotive industry, the vehicle communication buses such as
the control area network (or CAN) (Robert Bosch GmbH, 1991)
and FlexRay (Pop, Pop, Eles, Peng, & Andrei, 2008) only allow one
device to transmit messages at any time. Also, in a warehouse, a
passageway (e.g., a narrow space between two aisles) may only
allow one forklift to enter and transport packages.

The ith customer has a sequence of tasks, denoted by
{τi[1], τi[2], . . . , τi[k], . . .}, where k ≥ 1 is the task index of
customer i. The completion of each task requires a certain time
amount usage of the shared resource. The time instant when task
τi[k]’s request to the shared resource is generated is denoted by
αi[k], which uses the same index k as the task τi[k]. The amount
of time for which the task τi[k] needs to occupy the resource is
enoted by Ci[k]. The completion time instant when task τi[k]
inishes the occupation of the shared resource is denoted as
i[k]. In a real-time system, it is required that each task must
e completed before its deadline, in order for the system to be
chedulable. In our setup, we define the deadline for a task τi[k] to
e the time instant when the next task of customer i is generated,
.e., αi[k+1]. Therefore, for a task to be schedulable, the inequality
i[k] ≤ αi[k + 1] must be satisfied. We also use Ti[k] to denote
he amount of time between two successive resource occupation
equests from customer i, i.e., Ti[k] = αi[k+ 1] − αi[k], which we
ssume satisfy:

ssumption 2.3. For each i ∈ {1, . . . ,N}, there is a constant
min
i > 0 such that Ti[k] ≥ Tmin

i for all k.

Since the time interval between two successive requests is
ounded below by Tmin

i for each customer i, and since there are
nly a finitely number N of customers, it follows that there are
nly finitely many requests for access on the time interval [t0, tf].
lso, the request for the resource will be modeled by a tuple
α , C , T)[k].
i i i p
.1. Priority-based scheduling

When there are no contentions among customers, the follow-
ng equation is always satisfied:

i[k] = αi[k] + Ci[k]. (2)

hen multiple customers request the shared resource at the
ame time, a contention occurs and Eq. (2) will not hold. An ex-
mple of three systems sharing one resource is shown in Fig. 1(a).
contention occurs at time 0. The scheduling algorithm deter-
ines the order of customers’ access to the resource by assigning

hem priorities. Each customer i is assigned a unique priority
umber pi(t), in which case contentions can be resolved by com-
aring the priorities pi among all customers who are competing
or the resource. In what follows, P({1, . . . ,N}) denotes the set
f all permutations of {1, . . . ,N}.

efinition 2.1. A priority assignment is a tuple
(t) = (p1(t), . . . , pi(t), . . . , pN (t)) ∈ P({1, . . . ,N}), where pi(t) is
he priority assigned to customer i at time t and such that for each
and j in {1, . . . ,N}, we have pi(t) < pj(t) if and only if customer
is assigned higher priority than customer j at time t . For each
∈ [t0, tf], the value of pi(t) is a positive integer in {1, . . . ,N},
uch that pi(t) ̸= pj(t) if i ̸= j.

ssumption 2.4. When a contention occurs, only the control
ystem with the smallest pi will be granted access.

This assumption follows the convention in the scheduling
iterature of giving smaller numbers to the higher prioritized
asks (Conway, Maxwell, & Miller, 2003). Based on Definition 2.1,
ach task has a unique priority number. Therefore, there exist no
ies among the priority assignments when a contention occurs.

When a contention occurs, the completion times of the tasks of
ower prioritized customers are delayed by the higher prioritized
ustomers. We introduce the delay δi[k] so that αi[k]+Ci[k]+δi[k]
s the task completion time for all i and k, i.e. γi[k] = αi[k]+Ci[k]+
i[k].

ssumption 2.5. We assume that αi[k]+Ci[k]+ δi[k] ≤ αi[k+1]
or all i and k.

The previous assumption can be interpreted to mean that
o customer requests access to the shared resource until their
revious task has completed using the shared resource. This
ssumption guarantees the schedulability of the system, meaning,
ll tasks are able to be completed before or at their deadlines.

xample 2.1. Consider tasks τ1, τ2 and τ3 with

C1[k], C2[k], C3[k]) = (0.5, 1, 1.5) and
T1[k], T2[k], T3[k]) = (3, 4, 5) for all k ≥ 1

s illustrated in Fig. 1(a). Let the priority assignment be p1(t) = 1,
2(t) = 2, and p3(t) = 3. Due to the occupation times of systems
and 2, system 3 has the longest time delay. If we exchange

he priority assignments between system 1 and 3, i.e., p1(t) = 3,
2(t) = 2 and p3(t) = 1, then system 1 has the longest time delay.

This simple example shows that time delays depend on pri-
rity assignments. In Section 3, we will present a timing model
hich can accurately compute the time delays given a specific

riority assignment.

4 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219
2.2. Formulation of model predictive control

We formulate and solve a contention-resolving model predic-
tive control problem to compute optimal priority assignments
P∗(t) = (p∗

1(t), . . . , p
∗
N (t)) and an optimal control command

u∗(t) = (u∗

1(t), . . . , u
∗
N (t)) on a time interval [t0, tf]. The times t0

and tf are the starting and ending points of the MPC time horizon,
respectively, and t0 and tf will move forward in time when the
MPC is initiated. Given initial states x(t0) = (x1(t0), . . . , xN (t0)),
initial controls u(t0) = (u1(t0), . . . , uN (t0)), starting time t0 and
ending time tf , the co-design method is to find values for the
optimal P∗(t) and u∗(t) by solving the optimization problem

min
P(t),u(t)

N∑
i=1

Vi
(
xi(t, P(t0 ∼ t), ui(t0 ∼ t)), ui(t, P(t0 ∼ t))

)
(3)

over all u and P where the cost functions Vi for i = 1, 2, . . . ,N
incorporate the control effort and tracking error. The notation
P(t0 ∼ t) represents all priority assignments P(ℓ) for all ℓ ∈ [t0, t).
The term xi(t, P(t0 ∼ t), ui(t0 ∼ t)) represents that the system
state xi is an implicit function of priority assignment P(t) and
control laws u(t) from the initial time t0 to time t . Similarly,
ui(t, P(t0 ∼ t)) represents that the control law ui is also an
implicit function of priority assignment P(t) from the time t0 to
time t . The specific functions will be introduced in Section 3.5
once we presented the analytical timing model to compute the
timing and formulate the contention constraints. For example, if
the system i is linear and time-invarying, i.e., ẋi(t) = Aixi(t) +

Biui(t), then Vi can take a quadratic form

Vi
(
xi(t, P(t0 ∼ t), ui(t0 ∼ t)), ui(t, P(t0 ∼ t))

)
=

1
2

∫ tf

t0

(
|xi(t, P(t0 ∼ t), ui(t0 ∼ t)) − x̄i(t)|2Qi

+ |ui(t, P(t0 ∼ t)) − ūi(t)|2Ri
)
dt (4)

+ ρ|xi(tf , P(t0 ∼ tf), ui(t0 ∼ tf)) − x̄i(tf)|2Ki ,

where |v|
2
M = vTMv for any vector v and matrix M for which the

matrix multiplication is defined, and where Qi, Ri, and Ki are pos-
itive definite. The parameter ρ > 0 is a constant. The notations
x̄i and ūi are fixed choices of the corresponding trajectory and
control inputs that tracks a given reference signal λi(t), and x̄i(tf)
is the terminal state of the corresponding trajectory x̄i(t) at time
tf . If contentions occur, then time-varying delays can degrade
the control performance and increase the tracking errors (Shi &
Zhang, 2017).

While minimizing the cost function, a set of constraints need
to be satisfied for all t ∈ [t0, tf]. One constraint is the system
dynamics ẋi(t) = fi(xi(t), ui(t)) that must be satisfied for each i.
Then the control needs to satisfy ui(t) ∈ Ui for all t , where Ui
is a given constraint set for control commands. These constraints
appear in most MPC formulations and we assume these sets are
compact. The mathematical formulations of these constraints will
be presented in Section 3.5.

Since u(t) is a vector of real numbers and P(t) is a vector of in-
tegers at each time t , the contention-resolving MPC problem is a
mixed integer optimization problem (or MIP). It is a nonlinear and
non-convex optimization problem that is difficult to solve (Karlof,
2006). Mixed integer programming problems are usually solved
by two categories of optimization methods. The first category
is combinatorial optimization (Papadimitriou & Steiglitz, 1998),
such as genetic algorithms. However, since the decision variables
u and P are functions of time, the search space of the solution
is very large and does not lend itself to genetic algorithms in
real time. The second category of optimization algorithms com-

prise the branch-and-bound type of algorithms (Lawler & Wood,
1966). In branch-and-bound algorithms, the integers are first
relaxed to real numbers so that convex optimization algorithms
can apply, and then the real valued solutions are rounded up
to the nearest higher integer values. Multiple choices of the
integer values lead to different ‘‘branches’’ of sub-problems where
convex optimization will be applied again. The branch-and-bound
algorithm searches for branches with lower estimated cost first,
so that the optimal solution can be found without exhausting all
permutations of the integers. The branch-and-bound algorithm
is computationally efficient but cannot be used to solve the MIP
problem associated with contention-resolving MPC, for two rea-
sons. First, the priority assignments pi(t) cannot be relaxed to be
real numbers. Second, the cost function Vi for each i is not an
explicit function of the priority assignment P(t), therefore convex
optimization cannot be applied.

We now describe how to refine this problem for contention-
resolving MPC.

Assumption 2.6. A controller is triggered at each time instant
when a task is completed.

Hence, each model predictive controller only generates one
control command for each request. The resulting control com-
mand is applied to the control system, and remains constant until
the control system’s next task completion time. Therefore, the
control ui is piece-wise constant. This design follows the idea of
zeroth-order-hold (or ZOH) mechanism that is frequently used
in sampling based control (Astrom & Bernhardsson, 2002; Nesic,
Teel, & Carnevale, 2009). At each γi[k], the control command is
updated based on the measurement xi(γi[k]) of customer i and the
control value computed by MPC based on the state value xi(γi[k]).
Then with ZOH, the continuous-time control ui(t) is a piece-wise
constant function of the form

ui(t) = ui[k] for all t ∈ [γi[k], γi[k + 1]) and k, (5)

which defines the control ui at all times when customer i can
access the shared resource. As mentioned in Section 2.1, the time
delays δi[k] depend on the priority assignment among the cus-
tomers. The priority assignment and control design are coupled
through δi[k]. With this problem set up, our goal is to solve the
MPC problem formulated in Section 2.2 and compute optimal pri-
orities and optimal controls to compensate for the performance
degradation caused by contentions and delays.

3. Significant moment analysis and timing model

Even though the control systems evolve continuously in time,
there are certain moments in time that are more significant than
other moments. The moments when a control system requests
access and finishes the usage of the shared resource are called
significant moments. They are significant because the status of the
system changes at these moments due to whether access to the
shared resource is granted or not. The time instants that systems
request access to the shared resource, i.e. αi[k], are significant
because these are the times when contentions may start and new
priority vectors P(t) will be assigned. The time when a control
system finishes the usage of the shared resource, i.e., the task
completion moments γi[k], are significant because these are the
times when the control law ui(t) will be updated as shown in (5).

In order to obtain the significant moments, it is important
to compute the value of the δi[k], which is not easy to com-
pute since we need to consider how many control systems are
competing for the shared resource and whether they will be
delayed based on different scheduling disciplines. In scheduling
theory (George, Rivierre, & Spuri, 2016), priority-based schedul-
ing can be classified into two categories, preemptive and non-
preemptive scheduling. Therefore, in this paper, we model the

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 5

F
b
a

s
r

q
p
t
t
i
t
s
a
d
o
a
m
p

3

l
t
c

o

a

D
o
a
o

v

E
u
p
w
t(
3
c
i
n
T
g
t
f
F
t
d
F
3
t
T
t
t
R

c
f

D
a
o
t

C

w

c
t
m

b
t
c
p

Fig. 1. Illustration of scheduling three systems. The upper three sub-figures in
ig. 1(a) show the task request times when contentions are not considered. The
ottom sub-figure in Fig. 1(a) shows the resource occupation time after priorities
re assigned to resolve the contention that occurs at time 0.

cheduling behavior of both preemptive and non-preemptive
eal-time systems.

In preemptive scheduling, if a task with higher priority re-
uests access to the shared resource, then it interrupts a lower
rioritized task that is occupying the resource. The processing of
he low prioritized task can be resumed once the higher priori-
ized task is completed. In non-preemptive scheduling, if a task
s occupying the shared resource, no other tasks can interrupt
he current task until it completes the usage of the share re-
ource (Baruah & Chakraborty, 2006). In our previous work Shi
nd Zhang (2017) and Zhang, Shi, and Mukhopadhyay (2013), we
eveloped a significant moment analysis to show how the pri-
rity assignment changes the delays. In this section, we present
nalytical timing models which can determine all significant mo-
ents and compute the delays under both preemptive and non-
reemptive scheduling.

.1. Timing states

At each time t ∈ [t0, tf], we define the timing state variable
Z(t) = (D(t), R(t),O(t)) using the following variables from Zhang
et al. (2013), where a task is a request for access to the shared
resource:

Definition 3.1. The vector D(t) = (d1(t), . . . , di(t), . . . , dN (t)) is
the deadline variable, where di(t) denotes how long after time t
the next task of customer i will be generated, i.e.,

di(t) = αi[k + 1] − t, if t ∈ [αi[k], αi[k + 1]).

Definition 3.2. The vector R(t) = (r1(t), . . . , ri(t), . . . , rN (t)) is
the remaining time variable, where ri(t) is the remaining time
after time t that is required to complete the most recently gen-
erated task of customer i, i.e.,

ri(t) =

{
γi[k] − t, if t ∈ [αi[k], γi[k]]

0, otherwise .

Definition 3.3. The vector O(t) = (o1(t), . . . , oi(t), . . . , oN (t))
is the dynamic response time variable, where o (t) denotes the
i
ength of time from the most recent request from customer i to
he minimum of (a) the time when the most recent request from
ustomer i is completed and (b) the current time t , i.e.,

i(t) = min{γi[k], t} − αi[k], if t ∈ [αi[k], αi[k + 1]).

For non-preepmtive scheduling, in addition to the above vari-
bles, we need:

efinition 3.4. The index variable is ID(t) denotes the index
f the control system which is occupying the shared resource
t time t . We use the convention that if no control system is
ccupying the resource at time t , then ID(t) = 0 and r0(t) = 0.

Therefore, for non-preepmtive scheduling, the timing state
ariable is Z(t) = (D(t), R(t),O(t), ID(t)).
We use the example in Fig. 1 to further explain D, R and O.

xample 3.1. Again, consider the three periodic tasks are sched-
led under a priority assignment p1(t) = 1, p2(t) = 2 and
3(t) = 3. At time t = 3.25, the next tasks τ1[3], τ2[2] and τ3[2]
ill be generated at times 6, 4 and 5 respectively. Thus, according
o Definition 3.1, the deadline are

(
d1(3.25), d2(3.25), d3(3.25)

)
=

6 − 3.25, 4 − 3.25, 5 − 3.25
)

=
(
2.75, 0.75, 1.75

)
. After t =

.25, only the request of τ1[2] has not been finished and will be
ompleted at time 3.5. The remaining time for τ1[2] at time 3.25
s 3.5 − 3.25 = 0.25, i.e. r1(3.25) = 0.25. Therefore, by Defi-
ition 3.2, we have

(
r1(3.25), r2(3.25), r3(3.25)

)
=

(
0.25, 0, 0

)
.

o compute the dynamic response time, for τ1[2], its request is
enerated at 3 and will be completed at time 3.5, which is greater
han the current time 3.25. Therefore, the dynamic response time
or τ1[2] at time 3.25 is 3.25 − 3 = 0.25, i.e. o1(3.25) = 0.25.
or τ2[1], its request is generated at time 0 and is finished at
ime 1.5, which is less than the current time 3.25. Therefore, the
ynamic response time for τ2[1] at time 3.25 is 1.5 − 0 = 1.5.
or τ3[1], its request is generated at time 0 and finishes at time
, which is less than time 3.25. Therefore, the dynamic response
ime for τ3[1] at time 3.25 is 3 − 0 = 3, i.e. o3(3.25) = 3.
hus,

(
o1(3.25), o2(3.25), o3(3.25)

)
=

(
0.25, 1.5, 3

)
. Similarly, at

ime t = 5.4, if we assume that α1[3] = α2[3] = α3[3] = 7,
hen we have the timing state vectors D(5.4) =

(
0.6, 2.6, 2.6

)
,

(5.4) =
(
0, 0, 1.1

)
and O(5.4) =

(
0.5, 1.0, 0.4

)
.

To support the continuous timing model, we redefine the
haracteristics tuple of a task in the continuous time domain as
ollows:

efinition 3.5. At any time t within [t0, tf], we define Ci(t), Ti(t)
nd Pi(t) to be the execution time, the period, and the priority
f task i in continuous time domain, respectively. The values of
hese functions are

i(t) = Ci[k], Ti(t) = Ti[k] and Pi(t) = Pi[k] (6)

here k is the largest integer satisfying αi[k] ≤ t and αi[1] = t0.

By this definition, we can convert the discrete-time timing
haracteristics into piece-wise constant functions in continuous
ime, which will be used in the formulas for the analytical timing
odel.
The evolution rules for Z(t) within a time interval [t0, tf] can

e expressed by mathematical equations. These equations lead
o a timing model. It is an analytical model that is efficient to
ompute, and it supports the implementation of real-time model
redictive control.

6 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

o
a
r

T

r

F
u
r
i

o

O
i

o

w

r

d
g
o
a

C
t

3

t
H
r
s
t
r
w
t
s

3.2. Delay prediction using timing model

We use this notation to represent the timing model:

Z(t) = H
(
t; Z(t0), S, P(t0 ∼ t)

)
, (7)

where t0 is a starting time, S is the set of all triples of the form
(αi, Ci, Ti) for i = 1, 2, . . . ,N . The timing model consists of a set of
analytical algebraic and differential equations that can account for
time-varying priorities and interruption of access to the resource
by higher priority tasks. By the definition of the state variable
O(t), we have

δi[k] = oi(αi[k + 1]−) − Ci[k]

for all k and i, where αi[k + 1]− denotes the limit from the left.

3.3. Timing model for preemptive network

The work (Shi & Zhang, 2013) established a dynamic timing
model for the preemptive scheduling discipline. This section con-
sists of a brief review of the timing model from Shi and Zhang
(2013). We divide [t0, tf] into disjoint sub-intervals [tw, tw+1)
such that tasks are only generated at tw , but not at any other time
point within (tw, tw+1). The difference between two successive
task generating times is defined by

tw+1 − tw = min
{
d1(tw), . . . , dN (tw), tf − tw

}
. (8)

The following example illustrates the preceding notation:

Example 3.2. Consider the example in Fig. 1. The division of
[0, 7] into consecutive sub-intervals is carried out using the
following procedure. At the beginning of the first sub-interval,
let t0 = 0. We choose the first window length t1 − t0 =

min {d1(0), d2(0), d3(0), 7 − 0} = min {3, 4, 5, 7} = 3 and the end
f the sub-interval is t1. Then we choose the window length t2−t1
nd let the end point of this time interval be t2. The process is
epeated until one sub-interval reaches the ending time 7.

After we divide the optimization horizon into sub-intervals.
he evolution of Z(t) within any sub-interval [tw, tw+1) can be

derived as follows:
At time tw: We first discuss the value of [di(t), ri(t), oi(t)] at times
tw . For any task τi, the values of the state vector at time tw ,
i.e. [di(tw), ri(tw), oi(tw)], depend on whether a new task of τi is
released at tw .
(1) if no task of τi is released at tw , we have that di(t−w) > 0. In
this case, the state vector holds its values from t−w to tw where t−w
denotes the limit from left

dn(tw) = dn(t−w), rn(tw) = rn(t−w), on(tw) = on(t−w). (9)

(2) if a new task of τi is released at tw and the old task of τi is
completed, then we have that di(t−w) = 0 and ri(t−w) = 0. In this
case, the state vector [di(t), ri(t), oi(t)] is updated as

di(tw) = Ti(tw), ri(tw) = Ci(tw), oi(tw) = 0. (10)

According to Eqs. (9) and (10), the evolution rules at the times tw
can be summarized as:

di(tw) = di(t−w) +
(
1 − sgn(di(t−w))

)
Ti(tw),

ri(tw) = sgn(di(t−w) + ri(t−w)) ri(t−w)
+

(
1 − sgn(ri(t−w))

) (
1 − sgn(di(t−w))

)
Ci(tw),

oi(tw) = oi(t−w) sgn(di(t−w))

+ oi(t−w) sgn(ri(t−w))
(
1 − sgn(di(t−w))

)
, (11)

where sgn is defined by sgn(q) = 1 if q > 0 and sgn(q) = 0 if

q = 0 and the superscripts − indicate a limit from the left.
On the Intervals (tw, tw+1): For the deadline variable di(t), it
decreases constantly with rate ḋi(t) = −1 within time interval
(tw, tw+1). Therefore, the equation for di(tw + ∆t) for values ∆ ∈

(0, tw+1 − tw) is written as

di(tw + ∆t) = di(tw) − ∆t. (12)

For the remaining time ri(t), we know that the resource occu-
pation time of τi is preempted until the occupation of all higher
priority tasks are completed. Then, the amount of time within
[tw, tw + ∆t] that is available to τi is

max

⎧⎨⎩0, ∆t −

∑
q∈HPi(tw)

rq(tw)

⎫⎬⎭ ,

where HPi(tw) = {j ∈ {1, . . . ,N} : pj(tw) < pi(tw)} is the set of
all indices of control systems which have higher priorities than
control system i at time tw . The function max guarantees that it
will not give a negative result. Therefore, the remaining time of
τi at time tw + ∆t is

i(tw + ∆t) =

max

⎧⎨⎩0, ri(tw) − max

⎧⎨⎩0, ∆t −

∑
q∈HPi(tw)

rq(tw)

⎫⎬⎭
⎫⎬⎭ . (13)

or the deadline variable oi(t), we know that oi(t) will contin-
ously increase before τi finishes the occupation of the shared
esource. Therefore, if τi has finished the occupation before tw ,
.e. ri(tw) = 0, we have

i(tw + ∆t) = oi(tw). (14)

n the other hand, if τi has not finished the occupation before tw ,
.e. ri(tw) > 0, then we have that

i(tw + ∆t) = oi(tw) + min

⎧⎨⎩∆t, ri(tw) +

∑
q∈HPi(tw)

rq(tw)

⎫⎬⎭
here

i(tw) +

∑
q∈HPi(tw)

rq(tw)

enotes the time needed for τi to complete its most recently
enerated task. Our use of the min guarantees that the increase
f oi(t) on [tw, tw + ∆) will not exceed ∆t . Based on the above
nalysis, obtain

oi(tw + ∆t) =

oi(tw) + sgn(ri(tw)) min

⎧⎨⎩∆t, ri(tw) +

∑
q∈HPi(tw)

ri(tw)

⎫⎬⎭ (15)

ombining all of the evolution rules in (11)–(15) leads to the
iming model (7) of preemptive scheduling.

.4. Timing model for non-preemptive network

The work (Shi & Zhang, 2017) presented a timing model for
he CAN bus, which is a non-preemptive communication network.
ere, we propose evolution rules for general non-preemptive
eal-time systems. We divide [t0, tf] into sub-intervals [tw, tw+1]

uch that tasks are only generated at tw , but not at any other
ime instant within (tw, tw+1). Also the occupation is the shared
esource can only be completed at tw , not at any other time
ithin (tw, tw+1). If the shared resource is not occupied at time

w , i.e. 1−sgn(ID(tw)) = 1, then it is the same case as preemptive
cheduling where t − t = min

{
d (t), . . . , d (t), t − t

}
.
w+1 w 1 w N w f w

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 7

w
c

d

a

C
t

3

l
s

w
d
δ

r
E
d
s
D

4

m
r
f
p
p
m
p
w
a
c
p
o
a
p
l
b
t
s
l

Fig. 2. Decision tree to solve the co-design problem for preemptive scheduling
within a finite time window. The blue circle represents the root v0 , and gray
circles and dots represent internal leaves. The decision tree is expanded in the
direction of the arrows, which represent branches. The integers in brackets
represent the priorities. The bottom sub-figure shows the schedule along the
green path. Colored rectangles without diagonal lines in the lower figure
represent the time delay δi . Colored rectangles with diagonal lines represent
times when each control system occupies the resource. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

If the shared resource is occupied by task ID(tw) at time tw ,
i.e. sgn(ID(tw)) = 1, then we will require that tw+1 − tw ≤

min
{
d1(tw), . . . , dN (tw), tf − tw

}
, and in addition, tw+1 − tw

should be less than or equal to rID(tw) so that the occupation
completion time tw + rID(tw) ≥ tw+1. Here rID(t) is a simplified
notation for the remaining time rID(t)(t) of timing state variable
ID at any t . Summarizing the above two cases, we have

tw+1 − tw = (16)
sgn(ID(tw))min

{
rID(tw), d1(tw), . . . , dN (tw), tf − tw

}
+ (1 − sgn(ID(tw)))min

{
d1(tw), . . . , dN (tw), tf − tw

}
for all w. The evolution rules of the timing state variables Z(t) can
also be derived through two steps.
At tw: The changes of variables di, ri and oi at the times tw are the
same as (11). For the timing state variable ID, if rID(t−w) > 0, which
means the task ID(t−w) that was occupying the shared resource has
not completed the occupation at time tw , then ID(tw) is the same
as ID(t−w) because the system is non-preemptive. If rID(t−w) = 0,
which means the task ID(t−w) completed the occupation of the
shared resource at time tw , then ID(tw) needs to switch to the
task which is scheduled to access the shared resource. Combining
these two cases, the evolution rule for the timing state ID can be
expressed as

ID(tw) = ID(t−w) sgn(rID(t−w))

+

(
argmin
i∈Λ(tw)

pi(tw)
) (

1 − sgn(rID(t−w))
)

(17)

when Λ(tw) ̸= ∅, where Λ(tw) = {i ∈ {1, . . . ,N} : ri(tw) = Ci(tw)}
is the set of all indices of control systems which request access
to the shared resource at time tw . If the set Λ(tw) is empty, then
ID(tw) = 0.
On (tw, tw+1): The state ID(tw + ∆t) remains unchanged because
tw+1 − tw ≤ rID(tw). If ID(tw) ̸= 0, the evolution rules for control
system ID(tw) are

dID(tw + ∆t) = dID(tw) − ∆t,
rID(tw + ∆t) = rID(tw) − ∆t

and oID(tw + ∆t) = oID(tw) + ∆t
here dID(t) and oID(t) are defined analogously to rID(t). For a
ontrol system i where i ̸= ID(tw), the evolution rules are

i(tw + ∆t) = di(tw) − ∆t, ri(tw + ∆t) = ri(tw)

nd oi(tw + ∆t) = oi(tw) + sgn(ri(tw))∆t. (18)

ombining all of the evolution rules in (16)–(18) leads to the
iming model (7) of non-preemptive scheduling.

.5. Summary of constraints

We have refined the contention-resolving MPC design prob-
em by making the constraints related to timing more explicit. In
ummary, the co-design problem is

min
P(t),u(t)

N∑
i=1

Vi
(
xi(t, P(t0 ∼ t), ui(t0 ∼ t)),

ui(t, P(t0 ∼ t))
)
; (19a)

s.t Z(t) = H
(
t; Z(t0), S, P(t0 ∼ t)

)
,

δi[k] = oi(αi[k + 1]−) − Ci[k],

γi[k] = αi[k] + Ci[k] + δi[k] for k = 1, . . . , K i; (19b)
ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)),
with ui(t) = ui(t0), t ∈ [γi[0], γi[1]) and
ui(t) = ui[k] for all t ∈ [γi[k], γi[k + 1]),

k = 1, . . . , K i; (19c)

ui(t) ∈ Ui; (19d)

P(t) ∈ P({1, . . . ,N}); (19e)

here K i is the largest index k satisfying γi[k + 1] < tf and we
efine γi[0] = t0 for all i. Eq. (19b) is the timing model to compute
i[k] which has been introduced in Sections 3.3 and 3.4. Eq. (19c)
epresents the system dynamics, which summarizes (1) and (5).
q. (19d) represents the state and control constraints. Eq. (19e)
ictates that the priority assignments are constrained to be in the
et P({1, . . . ,N}) of all permutations of {1, 2, . . . ,N} following
efinition 2.1.

. Solutions to the contention-resolving MPC

In this section, we propose a novel method to solve the
ixed integer programming problem associated with contention-

esolving MPC formulated in Section 2.2 and introduce a general
ramework for the contention-resolving MPC algorithm. The pro-
osed method converts the difficult MIP into a path planning
roblem that can be solved iteratively. The key idea of this
ethod is based on two insights. First, we only need to assign
riorities at the significant moments when contentions occur,
hich are a finite number of time instances on [t0, tf]. Besides,
t each contention moment, there are only a finite number of
ustomers competing for the resource. Each assignment of the
riority to the finite number of customers will produce a branch
f a decision tree, as illustrated by Fig. 2. The tree will contain
finite number of branches, and an optimal solution must be a
ath from the root of the tree at the starting time t0 to one of the
eaves at time tf . There are only finitely many such paths that can
e searched. Second, among the finitely many paths, not all need
o be searched to find the optimal solution. A search algorithm
uch as the A-star can efficiently search the branches that most
ikely constructing the optimal path.

8 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

1
T∑
i
s
t∑
m
a

P
a
f

w

P
i

{

4.1. Contention detection

The first step of our method is to find the significant mo-
ments when contentions occur. The significant moment anal-
ysis and timing model offer a natural way to detect the con-
tention moments. The following propositions explain how to
detect contentions:

Proposition 4.1. In preemptive scheduling, a contention starts at
time t if and only if the following three conditions hold:

N∑
i=1

sgn(ri(t)) ≥ 2,
N∑
i=1

sgn(ri(t−)) ≤ 1, and

t = αi[k] for some i and some k.

Proof. Based on Definition 3.2, if a control system i has not
finished the current task at t , then ri(t) > 0 and sgn(ri(t)) =

. Since ri(t) is always non-negative, sgn(ri(t)) ≥ 0 for all t .
herefore,
N

i=1

sgn(ri(t)) ≥ 2

s equivalent to two or more customers wanting to access the
hared resource, which means a contention is occurring at time
. Since
N

i=1

sgn(ri(t−)) ≤ 1

eans that no contention happens at time instants before t that
re close to t , the result follows. □

roposition 4.2. In non-preemptive scheduling, a contention starts
t time t if and only if t is a significant moment tw that satisfies the
ollowing two conditions hold:
N∑
i=1

[1 − sgn(Ci(tw) − ri(tw))] ≥ 2, rID(t−w) = 0 (20)

here tw is a significant moment computed by Eq. (16).

roof. For non-preemptive scheduling, a task for a control system
is waiting to get access to the shared resource at a time t

or is generated at time t if and only if ri(t) = Ci(t), i.e., 1 −

sgn(Ci(t) − ri(t)) = 1. Therefore,
∑N

i=1 [1 − sgn(Ci(t) − ri(t))] ≥

2 if and only if two or more control systems are waiting for
access to the shared resource at time t or generating tasks at
time t . Therefore, for necessity, if a contention starts at time t ,
then t is one significant moment tw for some i and w, and the
highest prioritized control system among the contending control
systems at time t will either finish a task at time t and then
start a new task at time t using the shared resource, or else it
will go from not occupying the shared resource to occupying the
shared resource at time t , so the condition rID(t−) = 0 from (20)
holds. For sufficiency, if the two conditions (20) are satisfied, then
at time tw , multiple control systems are in contention for the
shared resource which must be a time when some control system
requests usage of the shared resource, so a contention starts at
time t . □

Based on the contention moments, we introduce a tree struc-
tured directed graph which will be used to model how differ-
ent priority assignments affect the system behavior and analyze
our algorithm. Fig. 2 shows an example of decision tree. In the
decision tree, each leaf represents a contention time satisfying

c
Propositions 4.1 or 4.2. We denote the contention times by tl
where l is the index of its corresponding leaf. At each contention
time, there are only a finite number of control systems competing
for the resource. Each possible assignment of the priority to the
finite number of control systems will produce a branch of a
decision tree.

Remark 4.1. The construction of the entire decision tree is not
necessary for contention resolving MPC to search for an optimal
solution. However, for the purpose of clearly presenting the con-
cept for the sampling based optimization method, we will discuss
how the tree can be fully constructed.

4.2. Construction of decision tree

The decision tree construction starts from the root v0 associ-
ated with the MPC starting time t0. The construction is performed
iteratively. During the construction, if a leaf has no branches
pointing out from it, then it is called unexpanded. At each iter-
ation, new branches are generated from each unexpanded leaf
and new leaves are generated at the end of each branch. For an
unexpanded leaf l, let Λ(tcl) denote the set of control systems
having contentions at a contention time tcl , where Λ(tcl) =

i ∈ {1, . . . ,N} : ri(tcl) > 0
}

for preemptive scheduling and
Λ(tcl) = {i ∈ {1, . . . ,N} : ri(tcl) = Ci(tcl)} for non-preemptive
scheduling. Also,M is the number of elements of Λ(tcl). Let Pm de-
note the mth permutation in P({1, . . . ,M}), so
m ∈ {1, 2, . . . ,M!}. For leaf l, we generate M! branches from
it. Each branch corresponds to a unique choice of the priority
assignment in P({1, . . . ,M}). The mth branch expands from vl
and connects to a new leaf vj+m based on Pm, where j is the
number of existing leaves in the tree before we generate new
branches from leaf vl. We say that the leaf vj+m is a child leaf of vl
or leaf vl is the parent leaf of vj+m. The contention time associated
with the leaf vj+m is the next contention time occurring after tcl
that is scheduled by priority assignment Pm. Different branches
may end with different next contention times after tcl . The iter-
ative construction terminates when the contention times of all
unexpanded leaves are greater than or equal to tf . We call these
unexpanded leaves terminal leaves and assign tf to them as their
contention times.

Let us revisit the example shown in Fig. 2. Contentions happen
four times across the time interval [t0, tf]. At the first contention
time tc1 , control system 1 and 2 have a contention. The leaf
1 has two branches corresponding to the 2! = 2 different
priority assignments. Similarly, at each of the following three
contention times, two control systems have contentions, and each
leaf has two branches corresponding to two different priority
assignments.

4.3. Branch cost

After constructing the decision tree, we define a cost for each
branch. Along one branch (l, j) whose associated priority assign-
ment is Pm, we first calculate the significant moments γi[k] for all
i and k such that tcl ≤ γi[k] ≤ tcj ,

Z(t) = H
(
t; Z(tcl), S, Pm

)
,

and γi[k] = αi[k] + oi(αi[k + 1]−) (21)

where oi(αi[k+ 1]−) for each k is generated by the timing model
except with a known priority assignment Pm instead of all possi-
ble priority assignments as in (19b). Then the branch cost wl,j is
defined as

wl,j =

N∑
wi

l,j (22)

i=1

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 9

i
r

w
b
n
t
i

T
s
i
[

r

f

t
a
t
s
t

R
t
b

i

R
b
t

p
f
b
p
p

h
b
S
t
a
r
p
c
g

4

l
t
c
h
a
i
t
i
a
l
l
t

C

f
T
b
l
v

a

c
i
a
i
c
w
b
p
C

C

w
a
1
v

c

a
e
b
l

Fig. 3. Illustration of branch cost along a path. The ending time of the colored
rectangles with diagonal lines represents the task completion time γi . (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

here wi
l,j is the cost of control system i and it can be computed

y solving the following optimization problem based on the sig-
ificant moments calculated along a branch. For each i such that
here is a completion time γi[k+1] ∈ (tcl , t

c
j], let ki be the smallest

ndex k satisfying γi[k + 1] > tcl and ki be the largest index k
satisfying γi[k + 1] ≤ tcj . Then we set

wi
l,j =

ki∑
k=ki

min
ui[k]

Vi(ui[k]; xi(αi[k]), γi[k], γi[k + 1]) (23)

subject to (19c) and (19d).

he meaning of (23) is as follows. If the (k + 1)st task of control
ystem i is completed between the contention times tcl and tcj ,
.e. γi[k + 1] ∈ (tcl , t

c
j], then the cost within the time interval

γi[k], γi[k + 1]] is included in the branch cost wl,j. If no task
equest of control system i is completed within (tcl , t

c
j], then we

set wi
l,j = 0. This branch cost formulation ensures that all costs

included in one branch are determined and will not be changed
by the priority assignments at or after time tcj . The cost of the
uncompleted (ki + 1)st task will be included by the branches
ollowing the branch (l, j).

Fig. 3 shows an illustration of the defined branch cost for
he blue path and green path in Fig. 2. The different priority
ssignments at tc5 caused different branch cost computation. In
he blue path, the second cost of control system 1 considers a
horter time interval than the second cost of control system 1 in
he green path.

emark 4.2. Along any arbitrary path in the decision tree, all
he significant moments are deterministic and can be computed
y the timing model. For any γi[k + 1] along this path, we can

always find the consecutive contention times tcl and tcj such that
γi[k+1] ∈ [tcl , t

c
j) and the cost of the task before γi[k+1] is added

n the branch cost.

emark 4.3. The optimal control design is embedded in the
ranch cost calculation. To calculate wi

n,j in (23), we need to solve
he optimization problem (23) by optimizing the control law ui(t).
Since the priority along one branch is already known, we can
use the MPC design methods from Rawlings and Mayne (2009)
and Wang (2009) to solve (23) and compute u∗

i (t). After solving
(23) for each control system i, we obtain the optimal control u∗(t)
between two successive contention time instants.

Based on the decision tree model, the MIP formulated in (19a)
can now be converted to the problem of finding a path from the
root v0 to a terminal leaf such that the cost along the entire path

is the lowest. The constructed decision tree contains multiple f
aths and the total path cost has the same formula as the cost
unction in (19a). Among all the paths, the lowest cost path can
e found by path planning algorithms (LaValle, 2006) and the
riority assignments and control commands along the lowest cost
ath will be solutions for the MIP problem.
However, constructing the entire decision tree would be ex-

austive and unrealistic when considering a relatively large num-
er of control systems or a long time window. This motivates
ection 4.4, where we propose a search algorithm that only needs
o construct a subtree of the decision tree while searching for
n optimal path. This method is inspired by the A-star algo-
ithm (Hart et al., 1968) that has been widely used for online path
lanning in robotics, which has been found to significantly reduce
omputation time. We present proofs to show that optimality is
uaranteed using our proposed algorithm in Section 4.6.

.4. Costs for search algorithm

The A-star algorithm will iteratively generate and search the
eaves starting from the root and terminate when it reaches a
erminal leaf. To use the A-star algorithm, we define leaves in two
ategories: (i) If a leaf has been generated and all its child leaves
ave been generated by the search algorithm, then we call such
leaf closed. (ii) If a leaf has been generated and at least one of

ts child leaves has not been generated by the search algorithm,
hen we call such a leaf open. If a leaf is open and its parent leaf
s closed, then the leaf is called a frontier leaf. All frontier leaves
re added to a set called the frontier list, which keeps track of the
eaves that can be expanded by the A-star algorithm. The frontier
ist is a sorted list where all the leaves in it are sorted according
o a function

f (vl) = Cg (vl) + Ch(vl) (24)

rom the smallest to largest value where l is the index of a leaf.
he function Cg (vl) is called the stage cost, which is the sum of
ranch costs along the path starting from the root to the current
eaf vl and Ch(vl) is the minimal future cost from the current leaf
l to a terminal leaf where the minimization is over all priority
ssignments and allowable controls.
Since the path from the root v0 to a leaf vl is unique, the stage

ost can be computed using Cg (vl) = Cg (vp)+ wp,l where p is the
ndex of the parent leaf of vl. For the A-star algorithm to work,
n estimation Ĉh(vl) of future cost (also called the heuristic cost)
s needed for which Ĉh(vl) ≤ Ch(vl) for all vl, so the estimated
ost Ĉf (vl) = Cg (vl) + Ĉh(vl) is equal to the actual cost Cf (vl)
hen vl is a terminal leaf. The value of the MPC cost function may
e increased because of the contentions. Using this monotone
roperty of the cost function, we can estimate the future cost

ˆh(vl) by solving the following MPC optimization problem

ˆh(vl) = min
uh(t)

N∑
i=1

Vi(uh
i (t); xi(t

c
l), ui(tcl), t

c
l , tf), (25)

s.t. ẋi(t) = fi(xi(t), uh
i (t)), u

h
i (t) ∈ Ui, for all t

here uh(t) = (uh
1(t), . . . , u

h
i (t), . . . , u

h
N (t)) is Lebesgue measur-

ble and essentially bounded (as defined for instance in Folland,
984), and tcl is the contention time instant corresponding to leaf
l. Notice that the above optimization problem does not have the
ontention constraints from (19b).
During the search, all leaves v in the frontier list are sorted

ccording to their Ĉf (v) value, from the smallest to the largest. At
ach iteration, the algorithm expands the leaf with the smallest Ĉf
y generating all its child leaves and then removes the expanded
eaf from the frontier list. All of its child leaves are added to the

ˆ
rontier list. The heuristic cost Ch(vl) will make it possible to search

10 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

a
t

4

g
p
o

A

w
P
a
(
c
c
p

a
C
l
e
w
r
t
a
a
F

4

m
n
p
f
o
r
d
a

Algorithm 1 Main Program
1: Data: t0, tf , λi for 1 ≤ i ≤ N , x(t0), u(t0), Z(t0)
2: Result: P∗(t), u∗(t)
3: Let frontier list=generated set= {v0};
4: Ĉf (v0) = Ĉh(v0), t = t0;
5: while tcl ≤ tf do
6: vl is the leaf in frontier list with minimal Ĉf cost;
7: tcl is the contention time instant corresponding to vl;
8: Let p = PT (vl); ▷ vp is the parent leaf of leaf vl.
9: if tcl = tf then

10: return Reconstruct(vl); Break;
11: else
12: j is the number of elements in generated set;
13: for mth permutation Pm ∈P({1, . . . ,M}) do
14: (vj+m, tcj+m, wl,j+m)=Expand(vl, Pm, tcl);
15: Add vj+m into frontier list and generated set;
16: Cg (vj+m) = Cg (vl) + wl,j+m;
17: Solve (25) to obtain Ĉh(vj+m);
18: Ĉf (vj+m) = Cg (vj+m) + Ĉh(vj+m);
19: PT (vj+m) = l;
20: Remove vl from frontier list;

the most promising paths first, and the optimal solution can be
found without examining all possible paths. Therefore, the search
algorithm leveraging A-star does not generate the entire decision
tree.

In addition to the frontier list, we also have a generated set
which consists of all leaves that have been generated by the A-
star algorithm. Each leaf vl in the generated set is also assigned
pointer PT (vl) which equals the index of its parent leaf so that
he A-star algorithm can backtrack from it to its parent leaf.

.5. Contention-resolving MPC algorithm

Algorithms 1–3 present the pseudocode for our proposed al-
orithm based on the A-star algorithm to solve the optimization
roblem (3). Algorithm 1 presents the search algorithm. The
ptimal path search starts from the root v0. The search algorithm

keeps updating two sets, which are the frontier list and the gen-
erated set. At the beginning of the search algorithm, the root leaf
v0 is added in the frontier list. The generated set only contains the
root leaf v0 initially. Let Ĉf (v0) equal the heuristic cost Ĉh(v0). At
each iteration of the main program in Algorithm 1, the algorithm
determines which leaf to expand further by selecting the leaf vl
with minimal Ĉf cost in the frontier list. After selecting the leaf
vl, there are two cases that need to be considered:

(1) If the contention time instant of the selected leaf equals tf ,
then the search algorithm has found the path from the root
leaf to a terminal leaf with the lowest Ĉf cost, which equals
the actual cost Cf . The search algorithm is terminated.

(2) If the contention time instant of the selected leaf does not
equal tf , then leaf vl will be expanded by generating its
children leaves and all of its children leaves are added to
frontier list and generated set. Then the algorithm calculates
the costs Ĉf for the children leaves. Since the leaf vl has child
leaves after the expansion, it is not a frontier leaf. The search
algorithm removes the expanded leaf vl from frontier list.
Then the algorithm goes to the next iteration.

Algorithm 2 backtracks the path from the selected terminal
leaf to v when case (1) is satisfied in the search algorithm.
0
Algorithm 2 Reconstruct
1: Data: vl
2: Let t = tf and p = PT (vl);
3: while t > t0 do
4: Let P∗(t) be the priority assigned to the branch that con-

nects vp and vl, from the contention time tcp of leaf vp to the
contention time tcl of vl;

5: Let l = p and p = PT (vp);
6: Let t be the corresponding contention time of vl;
7: return P∗(t);

Algorithm 3 Expand
1: Data: vl, Pm, t
2: Find the next contention time under priority Pm, and denote

this contention time as tcj+m;
3: Solve the optimization formulated by (23) to obtain u∗

i (t) and
compute wi

l,j+m for each i = 1, . . . ,N;
4: Compute wl,j+m using (22);
5: return vj+m, tcj+m, wl,j+m;

The backtracking starts from the terminal leaf vl and utilizes the
pointer PT (vl) to obtain the parent leaf vp. The optimal priority
assignment P∗(t) for the time interval between the contention
time instants of vp and vl equals the priority assignment along
the branch connecting vp and vl. Then we repeat this process with
vl and vp replaced by vp and the parent leaf of vp, respectively.
We repeat the backtracking process to obtain the optimal priority
assignment P∗(t) until the contention time instant equals t0.
lgorithm 2 returns the optimal priority assignment P∗(t) for all

t ∈ [t0, tf] to the main program in Algorithm 1.
Algorithm 3 expands the selected leaf from the frontier list

hen case (2) is satisfied in the search algorithm. It utilizes
ropositions 4.1 or 4.2 to determine the next contention time
fter a contention time t . Then it solves the optimization problem
23) to obtain the optimal control u∗

i (t) and compute the branch
ost wl,j+m. Algorithm 3 returns the child leaf vj+m, the next
ontention time tcj+m and the branch cost wl,j+m to the main
rogram in Algorithm 1.
Fig. 4 is an illustration of the subtree constructed by our

lgorithm described above, using the same example as Fig. 2.
ompared with the entire decision tree in Fig. 2, some internal
eaves in the subtree are open because our algorithm does not
xpand every leaf but intelligently expands a subset of leaves
ithout losing optimality. Once the construction of the subtree
eaches the terminal leaf, our algorithm backtracks the path along
he red arrows. The total number of branches generated by the
lgorithm is 11, reducing the computational workload for gener-
ting the entire tree which has totally 30 branches as shown in
ig. 2.

.6. Proof of optimality

In this subsection, we prove that our algorithm finds the opti-
al solutions P∗(t) and u∗(t) which minimize (3). To this end, first
ote that since there are no state constraints in our optimization
roblems for each fixed choice of the priority assignments (except
or the initial state and terminal state constraints), all of the
ptimization problems we solve have solutions, and this ensures
ecursive feasibility. Next, we show that the heuristic cost Ĉh(vl)
efined in Section 4.4 satisfies the requirements for the A-star
lgorithm.

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 11

T
f

P
f

a
a
o
b
m
t

5

p
c
x(
T

F
u
o
n
B

5

o
p
b
t
c
b
s
E
c
t
b
i
T
a
t
c
t
2

5

o
p
a
c
b
u
F
t
c
1
b
s
a
3
c
t
a
p

Fig. 4. Illustration of the subtree constructed by the proposed search algorithm.
The blue circle represents the root v0 and the red circle represents the
terminal leaf. Green circles represent leaves in the frontier list. Solid black
arrows represent branches generated by the algorithm and dashed green arrows
represent the estimate cost Ĉh(vl). The red arrows represent the path with lowest
cost. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Proposition 4.3. The condition Ĉh(vl) ≤ Ch(vl) holds for all vl in
the decision tree.

Proof. The estimated cost Ĉh(vl) is obtained by solving the opti-
mization problem (25). The actual future cost Ch(vl) is obtained
by solving the optimization problem defined by (3) given the
initial condition x(tcl). Comparing (25) and (3) with x(tcl), these
two optimization problems have the same cost function and
initial conditions. The differences are that the decision variable
u(t) in (3) is constrained to be piecewise constant function that
depends on the priorities, while uh(t) in (25) can be any arbitrary
real valued function as long as it is Lebesgue measurable and
essentially bounded. Therefore, the optimal solution u∗(t) in (3)
must be feasible but may not be an optimal solution for (25).
Hence, Ĉh(vl) is less than or equal to Ch(vl) for all vl. □

heorem 4.1. Algorithm 1 finds an optimal solution P∗(t) and u∗(t)
or the optimization problem (19a).

roof. From Hart et al. (1968, Theorem 1), the A-star algorithm
inds the minimal total cost from v0 to a terminal leaf if Ĉh(vl) ≤

Ch(vl) for all vl. Since we already showed that this condition is
satisfied in Proposition 4.3, the theorem follows.

Remark 4.4. Since P({1, . . . ,M}) contains all possible priority
ssignments, it also includes the priorities following RMS, EDF
nd FCFS rules. Therefore, the priorities assigned by the RMS, EDF
r FCFS strategies are represented by paths in the decision tree,
ut not necessarily the path with the minimal cost. Therefore, our
ethod guarantees that we find a better or the same solution as

hese strategies.

. Simulation results

This section presents simulation results obtained by the pro-
osed method implemented in MATLAB. We simulate an NCS
onsisting of four scalar systems. The first three are linear systems

˙i(t) = aixi(t) + ui(t), i = 1, 2, 3 with parameters (a1, a2, a3) =

1, 6
5 ,

4
3

)
. The fourth system is nonlinear ẋ4(t) = x24(t) + u4(t).

The initial conditions are xi(0) = 1 and ui(0) = 0 for each i.
he control constraints are ui(t) ∈ [−3, 3] for i = 1, . . . , 4.

The output of each plant is the state xi(t). The time horizon
[t0, tf] for the simulation is from 0 to 6 s. The cost function
is Vi(xi(0), 0) =

1
2

∫ 6
0

{
x2i (t) + 0.0001u2

i (t)
}
dt + x2i (6) and the

reference signal is λi(t) = 0 for all i and t ∈ [0, 6]. The task
parameters are (C1[k], C2[k], C3[k], C4[k]) = (0.3, 0.3, 0.2, 0.2)
and (T1[k], T2[k], T3[k], T4[k]) = (1, 1.25, 1.5, 2) in seconds. The
four plants are all stabilizable from the initial condition if no
contention exists.
ig. 5. Communication network occupation of scheduling four scalar systems
nder preemptive scheduling. The occupation value 1 means the system is
ccupying the network, 0 means the system does not require access to the
etwork, and 0.5 means the system access request is delayed by contention.
lack crosses mark times when a contention occurs.

.1. Preemptive scheduling

For the preemptive scheduling, we compare the optimal pri-
rity assignment computed by our proposed algorithm with the
riority assignments under RMS and EDF. The priorities assigned
y EDF are P(t) = (1, 2, 3, 4) for all t , which are the same as
he priorities assigned by RMS. The optimal priority assignments
omputed by our method are different from priorities assigned
y RMS and EDF. The communication network occupation result
cheduled by the optimal priority assignments is shown in Fig. 5.
ight contentions occur in time window [0, 6], represented by the
rosses in the figure. At time 0, the first contention occurs among
he four systems and the optimal priority assignment computed
y our method is that P∗(t) = (4, 3, 2, 1) for t ∈ [0, 1.25) s,
.e. system 4 has highest priority and system 1 has lowest priority.
herefore, system 4 gains access to the communication network
t time 0 and all the other three systems are delayed. At time 1.25,
he second contention occurred between systems 1 and 2. The
ontention-resolving MPC assigns system 1 with higher priority
han system 2. System 1 gain access to the network and system
is delayed for 0.05 s.

.2. Non-preemptive scheduling

For non-preemptive scheduling, we compare the optimal pri-
rity assignment computed by our proposed algorithm with the
riority assignments under RMS. The priorities assigned by RMS
re P(t) = (1, 2, 3, 4) for all t . The optimal priority assignments
omputed by our method are different from priorities assigned
y RMS. The communication network occupation result sched-
led by the optimal priority assignments is shown in Fig. 6.
ive contentions occur in time window [0, 6], represented by
he crosses in the figure. Similar to the preemptive scheduling
ase, for t ∈ [0, 1) s, system 4 has highest priority and system
has lowest priority. At time 2, the second contention occurs
etween system 1 and 4. The contention-resolving MPC assigns
ystem 4 with higher priority than system 1. System 4 gains
ccess to the network and system 1 is delayed for 0.2 s. At time
, the third contention occurs between systems 1 and 3. The
ontention-resolving MPC assigned system 3 a higher priority
han system 1. For the fourth and fifth contentions at times 4
nd 5 s, the contention-resolving MPC assigns system 1 a higher
riority, which is different from the first three contentions.

12 N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219

s
u
a
t
b
c
l
a
p
u
t
p
i

6

c
a
o
c
c
p
p
m
d
c
e

A

B

B

B

C

C

C

E

F

F

F
F

G

G

G

G

H

H

H

K

L

Fig. 6. Communication network occupation of scheduling four scalar systems
under non-preemptive scheduling discipline. Black crosses mark times when a
contention occurs.

Fig. 7. Outputs of four scalar systems. The red solid lines show the output under
optimal priority assignment, and the blue solid lines show the outputs under
EDF. The outputs under RMS are the same as EDF. The dashed lines show the
control ui computed by the MPC in each case.

5.3. Control performance

The outputs of the four scalar systems under preemptive
cheduling are presented in Fig. 7. Systems 3 and 4 are unstable
nder the priorities assigned by RMS and EDF, because the third
nd fourth systems have lower priorities and longer delays. Under
he optimal priority assignment, the four systems are all stable
ecause the optimal priority assignment slightly sacrifices the
ontrol performance of system 1, by assigning system 1 the
owest priority, the nonlinear system 4 with the highest priority,
nd the most unstable linear system 3 with second highest
riority from 0 to 1 s. The outputs of the four scalar systems
nder non-preemptive scheduling are the same as Fig. 7, except
hat u3(t) = −2.69 during time interval [0.4, 1.8] for the non-
reemptive scheduling case, while u3(t) = −2.76 during time
nterval [0.4, 1.7] for the preemptive scheduling case.

. Conclusions

While model predictive control has gained popularity in pro-
ess engineering and networked control systems, the previously
vailable methods had difficulties coping with the co-design of
ptimal controls and priority assignments that occur in coupled
ontrol systems with shared resources. Resolving contentions in
oupled control systems with shared resources is a challenging
roblem that is of compelling ongoing engineering interest. This
aper leads to new insights in scheduling and control co-design
ethods under contentions. We presented a novel algorithm to
esign optimal priority assignments, which we applied to optimal
ontrol for networked control systems, considering both pre-
mptive and non-preemptive scheduling disciplines. We showed
how our algorithm is admissible for finding an optimal priority
assignment associated with an optimal control computed by MPC.
The simulation results demonstrated significant improvements
using our proposed method, compared with the RMS and EDF
scheduling strategies. In future work, we hope to develop ro-
bust contention-resolving MPC that can quantify the effects of
perturbations that are caused by unpredictable events such as
package drops in communication networks. Also, we hope to
apply the contention-resolving MPC algorithm to an intersection
management problem.

References

Afram, Abdul, & Janabi-Sharifi, Farrokh (2014). Theory and applications of HVAC
control systems–A review of model predictive control (MPC). Building and
Environment, 72, 343–355.

strom, Karl J., & Bernhardsson, Bo M. (2002). Comparison of Riemann and
Lebesgue sampling for first order stochastic systems. In Proceedings of the
41st IEEE conference on decision and control (pp. 2011–2016). http://dx.doi.
org/10.1109/CDC.2002.1184824.

aruah, Sanjoy K., & Chakraborty, Samarjit (2006). Schedulability analysis of non-
preemptive recurring real-time tasks. In Proceedings of the 20th international
parallel and distributed processing symposium. IEEE.

askar, Lakshmi, De Schutter, Bart, & Hellendoorn, Hans (2008). Model-based
predictive traffic control for intelligent vehicles: Dynamic speed limits
and dynamic lane allocation. In Proceedings of the IEEE intelligent vehicles
symposium (pp. 174–179). Eindhoven, Netherlands. http://dx.doi.org/10.1109/
IVS.2008.4621307.

ellemans, T., De Schutter, B., & De Moor, B. (2006). Model predictive control
for ramp metering of motorway traffic: A case study. Control Engineering
Practice, 14(7), 757–767.

hen, Wei, Yao, Jing, & Qiu, Li (2019). Networked stabilization of multi-input
systems over shared channels with scheduling/control co-design. Automatica,
99, 188–194.

hu, Yunfei, & You, Fengqi (2014). Moving horizon approach of integrating
scheduling and control for sequential batch processes. AIChE Journal, 60(5),
1654–1671.

onway, Richard W., Maxwell, William L., & Miller, Louis W. (2003). Theory of
scheduling. Chelmsford, MA: Courier Corporation.

ngell, Sebastian, & Harjunkoski, Iiro (2012). Optimal operation: Scheduling,
advanced control and their integration. Computers and Chemical Engineering,
47, 121–133.

arnam, Arash, & Esfanjani, Reza Mahboobi (2014). Improved stabilization
method for networked control systems with variable transmission delays
and packet dropout. ISA Transactions, 53(6), 1746–1753.

ayazi, S. Alireza, & Vahidi, Ardalan (2017). Vehicle-in-the-loop (VIL) verification
of a smart city intersection control scheme for autonomous vehicles. In
Proceedings of the IEEE conference on control technology and applications (pp.
1575–1580). IEEE.

olland, G. (1984). Real analysis. New York, NY: Wiley and Sons.
rejo, José Ramón Domínguez, & Camacho, Eduardo Fernández (2012). Global

versus local MPC algorithms in freeway traffic control with ramp metering
and variable speed limits. IEEE Transactions on Intelligent Transportation
Systems, 13(4), 1556–1565.

aid, M. E. Mongi Ben, Cela, Arben, & Hamam, Yskandar (2006). Optimal
integrated control and scheduling of networked control systems with
communication constraints: application to a car suspension system. IEEE
Transactions on Control Systems Technology, 14(4), 776–787.

aid, Mohamed El Mongi Ben, Cela, Arben S., & Hamam, Yskandar (2009).
Optimal real-time scheduling of control tasks with state feedback resource
allocation. IEEE Transactions on Control Systems Technology, 17(2), 309–326.

ao, Huijun, Chen, Tongwen, & Lam, James (2008). A new delay system approach
to network-based control. Automatica, 44(1), 39–52.

eorge, Laurent, Rivierre, Nicolas, & Spuri, Marco (2016). Preemptive
and non-preemptive real-time uniprocessor scheduling. HAL Preprints
INRIA-00073732.

art, Peter E., Nilsson, Nils J., & Raphael, Bertram (1968). A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2), 100–107.

espanha, Joäo, Naghshtabrizi, Payam, & Xu, Yonggang (2007). A survey of recent
results in networked control systems. Proceedings of the IEEE, 95(1), 138–162.

irsch, Morris, Smale, Stephen, & Devaney, Robert (2004). Differential equations,
dynamical systems, and an introduction to chaos. San Deigo, CA: Academic
Press.

arlof, John K. (2006). Integer programming: Theory and practice. Boca Raton, FL:
CRC Press.

aValle, Steven M. (2006). Planning algorithms. Cambridge, UK: Cambridge
University Press.

http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb1
http://dx.doi.org/10.1109/CDC.2002.1184824
http://dx.doi.org/10.1109/CDC.2002.1184824
http://dx.doi.org/10.1109/CDC.2002.1184824
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb3
http://dx.doi.org/10.1109/IVS.2008.4621307
http://dx.doi.org/10.1109/IVS.2008.4621307
http://dx.doi.org/10.1109/IVS.2008.4621307
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb5
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb6
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb7
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb8
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb8
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb8
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb9
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb10
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb11
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb12
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb13
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb14
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb15
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb16
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb16
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb16
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb17
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb18
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb19
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb19
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb19
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb20
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb21
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb21
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb21
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb22
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb22
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb22

N. Yao, M. Malisoff and F. Zhang / Automatica 122 (2020) 109219 13

W

W

Y

Y

Y

Z

Z

Z

Z

Z

Lawler, Eugene L., & Wood, David E. (1966). Branch-and-bound methods: A
survey. Operations Research, 14(4), 699–719.

Lee, Joyoung, & Park, Byungkyu (2012). Development and evaluation of a coop-
erative vehicle intersection control algorithm under the connected vehicles
environment. IEEE Transactions on Intelligent Transportation Systems, 13(1),
81–90.

Liu, Chung Laung, & Layland, James W. (1973). Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the ACM,
20(1), 46–61.

Liu, Guoping, Sun, Jian, & Zhao, Yunbo (2013). Design, analysis and real-time
implementation of networked predictive control systems. Acta Automatica
Sinica, 39(11), 1769–1777.

Liu, Guoping, Xia, Yuanqing, Chen, Jie, Rees, David, & Hu, Wenshan (2007). Net-
worked predictive control of systems with random network delays in both
forward and feedback channels. IEEE Transactions on Industrial Electronics,
54(3), 1282–1297.

Lješnjanin, Merid, Quevedo, Daniel E., & Nešić, Dragan (2014). Packetized
MPC with dynamic scheduling constraints and bounded packet dropouts.
Automatica, 50(3), 784–797.

Malikopoulos, Andreas A., Cassandras, Christos G., & Zhang, Yue J. (2018). A
decentralized energy-optimal control framework for connected automated
vehicles at signal-free intersections. Automatica, 93, 244–256.

Mayne, David Q., Rawlings, James B., Rao, Christopher V., & Scokaert, Pierre O.
M. (2000). Constrained model predictive control: Stability and optimality.
Automatica, 36(6), 789–814.

Mazumder, Sudip K., Acharya, Kaustuva, & Tahir, Muhammad (2009). Joint
optimization of control performance and network resource utilization in
homogeneous power networks. IEEE Transactions on Industrial Electronics,
56(5), 1736–1745.

Negenborn, Rudy R., De Schutter, Bart, & Hellendoorn, Hans (2008). Multi-agent
model predictive control for transportation networks: Serial versus parallel
schemes. Engineering Applications of Artificial Intelligence, 21(3), 353–366.

Nesic, Dragan, Teel, Andrew, & Carnevale, Daniele (2009). Explicit computation of
the sampling period in emulation of controllers for nonlinear sampled-data
systems. IEEE Transactions on Automatic Control, 54(3), 619–624.

Papadimitriou, Christos H., & Steiglitz, Kenneth (1998). Combinatorial optimiza-
tion: Algorithms and complexity. Mineola, NY: Dover.

Peng, Chen, & Yang, Tai Cheng (2013). Event-triggered communication and
H∞ control co-design for networked control systems. Automatica, 49(5),
1326–1332.

Pop, Traian, Pop, Paul, Eles, Petru, Peng, Zebo, & Andrei, Alexandru (2008). Timing
analysis of the flexray communication protocol. Real-Time Systems, 39(1–3),
205–235.

Rawlings, James Blake, & Mayne, David Q. (2009). Model predictive control: Theory
and design. Madison, WI: Nob Hill Pub..

Robert Bosch GmbH (1991). CAN specification (Version 2.0).
Roy, Debayan, Zhang, Licong, Chang, Wanli, Goswami, Dip, &

Chakraborty, Samarjit (2016). Multi-objective co-optimization of FlexRay-
based distributed control systems. In 2016 IEEE real-time and embedded
technology and applications symposium (pp. 1–12). IEEE.

Sha, Lui, Abdelzaher, Tarek, Årzén, Karl-Erik, Cervin, Anton, Baker, Theodore,
Burns, Alan, et al. (2004). Real time scheduling theory: A historical
perspective. Real-Time Systems, 28(2–3), 101–155.

Shi, Lin, Bart De, Schutter, Yugeng, Xi, & Hans, Hellendoorn (2011). Fast model
predictive control for urban road networks via MILP. IEEE Transactions on
Intelligent Transportation Systems, 12(3), 846–856.

Shi, Zhenwu, Yao, Ningshi, & Zhang, Fumin (2017). Scheduling feasibility of
energy management in micro-grids based on significant moment analysis.
In Houbing Song, Danda Rawat, Sabina Jeschke, & Christian Brecher (Eds.),
Cyber-physical systems (pp. 431–449). New York, NY: Elsevier.

Shi, Zhenwu, & Zhang, Fumin (2013). Predicting time-delays under real-time
scheduling for linear model predictive control. In Proceedings of the 2013
international conference on computing, networking and communications (pp.
205–209). IEEE.

Shi, Zhenwu, & Zhang, Fumin (2017). Model predictive control under timing
constraints induced by controller area networks. Real-Time Systems, 53(2),
196–227.

Touretzky, Cara R., & Baldea, Michael (2014). Integrating scheduling and control
for economic MPC of buildings with energy storage. Journal of Process Control,
24(8), 1292–1300.

Walsh, Gregory C., Hong, Ye, & Bushnell, Linda G. (2002). Stability analysis of
networked control systems. IEEE Transactions on Control Systems Technology,
10(3), 438–446.
ang, Liuping (2009). Model predictive control system design and implementation
using MATLAB. London, UK: Springer-Verlag London Limited.

ang, Xiaotian, Shi, Zhenwu, Zhang, Fumin, & Wang, Yue (2015). Dynamic real-
time scheduling for human-agent collaboration systems based on mutual
trust. Cyber-Physical Systems, 1(2–4), 76–90.

an, Fei, Dridi, Mahjoub, & El Moudni, Abdellah (2013). An autonomous ve-
hicle sequencing problem at intersections: A genetic algorithm approach.
International Journal of Applied Mathematics and Computer Science, 23(1),
183–200.

ao, Leehter, Chang, Wen-Chi, & Yen, Rong-Liang (2005). An iterative deepening
genetic algorithm for scheduling of direct load control. IEEE Transactions on
Power Systems, 20(3), 1414–1421.

ao, Ningshi, Malisoff, Michael, & Zhang, Fumin (2017). Contention resolving
optimal priority assignment for event-triggered model predictive controllers.
In Proceedings of the 2017 American control conference (pp. 2357–2362). IEEE.

hang, Yue J., Malikopoulos, Andreas A., & Cassandras, Christos G. (2016).
Optimal control and coordination of connected and automated vehicles at
urban traffic intersections. In Proceedings of the American control conference
(pp. 6227–6232). IEEE.

hang, Fumin, Shi, Zhenwu, & Mukhopadhyay, Shayok (2013). Robustness
analysis for battery-supported cyber-physical systems. ACM Transactions on
Embedded Computing Systems, 12(3), 69.

hang, Fumin, Szwaykowska, Klementyna, Wolf, Wayne, & Mooney, Vincent
(2008). Task scheduling for control oriented requirements for cyber-physical
systems. In Real-time systems symposium, 2008 (pp. 47–56). IEEE.

hao, Yang, Lu, Yuehong, Yan, Chengchu, & Wang, Shengwei (2015). MPC-based
optimal scheduling of grid-connected low energy buildings with thermal
energy storages. Energy and Buildings, 86, 415–426.

hou, Chuan, Du, Mingli, & Chen, Qingwei (2012). Co-design of dynamic
scheduling and H-infinity control for networked control systems. Applied
Mathematics and Computation, 218(21), 10767–10775.

Ningshi Yao received the B.S. degree from Zhejiang
University, Hangzhou, China, in 2014. She has been
pursuing a Ph.D. degree from the School of Electrical
and Computer Engineering at Georgia Institute of Tech-
nology, Atlanta, USA, since 2014. Her research interests
include control theory and human robot interaction.

Michael Malisoff is the Roy Paul Daniels Professor #3
in the Louisiana State University College of Science. He
earned his Ph.D. in Mathematics in 2000 from Rutgers
University. He received the First Place Student Best
Paper Award at the 1999 IEEE Conference on Decision
and Control and 7 NSF research grants at PI. He is an
associate editor of Asian Journal of Control, Discrete
and Continuous Dynamical Systems Series B, European
Journal of Control, and SIAM Journal on Control and
Optimization.

Fumin Zhang is a professor in the School of Electrical
and Computer Engineering at the Georgia Institute of
Technology. He received a Ph.D. degree in 2004 from
the University of Maryland (College Park) in Electri-
cal Engineering, and held a postdoctoral position in
Princeton University from 2004 to 2007. His research
interests include mobile sensor networks, maritime
robotics, control systems, and theoretical foundations
for cyber–physical systems. He received the NSF CA-
REER Award in 2009 and the ONR Young Investigator
Program Award in 2010.

http://refhub.elsevier.com/S0005-1098(20)30417-9/sb23
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb23
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb23
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb24
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb25
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb26
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb27
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb28
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb29
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb30
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb31
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb32
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb33
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb34
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb34
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb34
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb35
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb36
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb37
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb37
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb37
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb38
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb39
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb40
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb41
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb42
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb43
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb44
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb45
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb46
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb47
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb47
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb47
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb48
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb49
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb50
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb51
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb52
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb53
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb54
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb55
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56
http://refhub.elsevier.com/S0005-1098(20)30417-9/sb56

	Contention-resolving model predictive control for coupled control systems with a shared resource
	Introduction
	Problem formulation
	Priority-based scheduling
	Formulation of model predictive control

	Significant moment analysis and timing model
	Timing states
	Delay prediction using timing model
	Timing model for preemptive network
	Timing model for non-preemptive network
	Summary of constraints

	Solutions to the contention-resolving MPC
	Contention detection
	Construction of decision tree
	Branch cost
	Costs for search algorithm
	Contention-resolving MPC algorithm
	Proof of optimality

	Simulation results
	Preemptive scheduling
	Non-preemptive scheduling
	Control performance

	Conclusions
	References

