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Abstract— We analyze a human and multi-robot collabora-
tion system and propose a method to optimally schedule the
human attention when a human operator receives collaboration
requests from multiple robots at the same time. We formulate
the human attention scheduling problem as a binary optimiza-
tion problem which aims to maximize the overall performance
among all the robots, under the constraint that a human has
limited attention capacity. We first present the optimal schedule
for the human to determine when to collaborate with a robot
if there is no contention occurring among robots’ collaboration
requests. For the moments when contentions occur, we present a
contention-resolving Model Predictive Control (MPC) method
to dynamically schedule the human attention and determine
which robot the human should collaborate with first. The
optimal schedule can then be determined using a sampling
based approach. The effectiveness of the proposed method is
validated through simulation that shows improvements.

I. INTRODUCTION

Recent advances in robotics have enabled the reduction in
price, size, and operational complexity of robots. A natural
outgrowth of these advances are systems comprised of large
numbers of robots that collaborate autonomously in diverse
applications. However, even though the autonomous task
execution capabilities of robots have progressed rapidly, the
human’s advantage in high-level reasoning and planning is
still needed. As a consequence, the form of human and
multi-robot collaboration systems has become a popular and
important topic [1], [2]. For human and robots collaboration
systems, as the human labor cost increases, it can be en-
visioned that the number of robots that one human needs
to work with will increase to a large extent. However, a
human has limitation on attention capacity. In psychology
studies [3]–[5], researchers discovered that a human can pay
attention to only two to four items at the same time. There-
fore, when a human is collaborating with multiple robots, the
human operator cannot effectively serve or collaborate with
all robots at the same time. Which robot the human operator
should collaborate with first is a general question for human
and multi-robot collaboration systems.

How to allocate or schedule a human’s attention to each
robot is a research topic studied in real-time scheduling.
Well-known scheduling policies, such as Rate Monotonic
Scheduling (RMS), Earliest Deadline First (EDF) and First

Yao and Zhang were partially supported by ONR grants N00014-
19-1-2556, N00014-19-1-2266 and N00014-16-1-2667; NSF grants OCE-
1559475, CNS-1828678, and S&AS-1849228; NRL grants N00173-17-1-
G001 and N00173-19-P-1412 ; and NOAA grant NA16NOS0120028.

Ningshi Yao and Fumin Zhang are with the School of Electrical and
Computer Engineering, Georgia Institute of Techonology, Atlanta, GA
30308, USA. Email: {nyao6, fumin}@gatech.edu

Come First Serve (FCFS) [6] scheduling algorithms, are
widely used in real-time systems. These algorithms are opti-
mal in the sense that they can maximize the number of tasks
that can be scheduled before their deadlines. However, they
are not designed to achieve an optimal control performance.
Inappropriately scheduling a human operator to collaborate
with robots has been found to have a negative effect on
overall performance in human-robot systems [7]. Numerous
research efforts have explored how to better schedule a
human’s attention to robots. In [8], the authors compared two
types of scheduling methods, Open-Queue (OP) and Shortest
Job First (SJF) scheduling, and showed that SJF scheduling
can provide more stable robot performance. In [9], the au-
thors proposed a Highest Trust First (HTS) scheduling based
on a robot performance model from [10] and a human–robot
mutual trust model, to determine the human operator’s sched-
ule to interact with one robot at each time such that the
human–robot trust level can always be maintained within
a proper range. However, both the SJF and HTS cannot
guarantee that the overall performance of robots can be
optimized. Murray et al. formulated an integer programming
problem to effectively schedule multiple unmanned aerial ve-
hicles and humans to time-sensitive geographically-dispersed
tasks and optimize the overall system performance [11]. The
integer optimization problem was solved by the IBM CPLEX
solver. Although this method can ensure optimiality, a major
disadvantage is the computation requirement.

Our earlier work established a contention-resolving Model
Predictive Control (MPC) framework for co-designing
scheduling and control law for systems with constrained
resource [12], [13]. For a human and multi-robot collabo-
ration system, the limited human attention is viewed as the
constrained resource. In this paper, we present a contention-
resolving MPC design to find the optimal schedule for human
attention. We assume that the collaboration between the
human and a robot is non-preemptive, which is different from
the work [9] where the collaboration between the human
operator and a robot can be interrupted. This constraint
gives the advantage to reduce the collaboration switches
for the human operator and avoid human delays [14]. The
contributions of this paper are as follows: (i) We rigorously
show that for the case where no contention occurs among
robots, the optimal schedule for a robot to maximize its
performance is to start the collaboration with a human
operator once the collaboration request is generated. For the
case where contentions occur, the optimal schedule for a
robot i is to start the collaboration right after the time instant
when all contended robots that are scheduled to collaborate
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before robot i complete their collaborations. This property,
which we call Condition of Immediate Access or CIA, ensures
that the human attention scheduling problem satisfies the
fundamental assumptions in a real-time scheduling theory.
(ii) Based on the non-preemptive collaboration setup, a
new analytical timing model is established to determine the
significant moments during the human attention scheduling
process and accurately compute the time delays caused
by contentions given a specific schedule of which robot
gets to collaborate with human first. (iii) We formulate an
integer optimization problem to design an optimal schedule
of human and robot collaboration when contentions occur, in
order to maximize the overall performances of all robots. We
propose a discrete-time contention-resolving MPC method to
solve the integer optimization problem. And we show that
the delays introduced by contentions will increase cost in
the optimization problem, which guarantees that contention-
resolving MPC can find the optimal solution. The effec-
tiveness of our method is verified through simulations and
compared with the HTF scheduling strategy.

II. PROBLEM FORMULATION

Consider one human operator collaborating with N robots.
The human is the expert so if the human is collaborating
with a robot, then the human can help the robot to improve
its performance. For a robot i where i = 1, ..., N , we first
introduce a dynamic model describing its performance as

Pi(k)=(1−ui(k)) [(1−ki,R)Pi(k−1)+ki,RPi,min]

+ui(k) [(1−ki,H)Pi(k−1)+ki,HPi,max] (1)

where k denotes the discrete time step and i denotes the
index of a robot. The parameters Pi,min and Pi,max are the
minimal and maximal values of the performance value of
robot i. The control variable ui(k) only has two values, 0
or 1. If ui(k) = 1, then the robot is in collaborative mode
with the human operator. If ui(k) = 0, then the robot is in
autonomous mode without the collaboration with the human
operator. The parameters ki,R and ki,H are coefficients for
autonomous and collaborative mode, respectively, satisfying
0 < ki,H < ki,R < 1. The model (1) guarantees that Pi(k)
is bounded between [Pi,min, Pi,max], given that the initial
performance value Pi(k0) is within [Pi,min, Pi,max]. The
performance value Pi(k) will decrease under the autonomous
mode because it is a convex combination of Pi(k−1) and
Pi,min. And Pi(k) will increase under the collaborative mode
because it is a convex combination of Pi(k−1) and Pi,max.

Based on the performance model, we introduce the human-
to-robot trust. We utilize the human-to-robot trust model in
[9] to quantify how good the collaboration experience is for
the human operator. The trust is modeled as

Ti(k)=AiTi(k−1)+BiPi(k)−CiPi(k−1) (2)

where the function Ti(k) represents the trust level from the
human operator to robot i at time k. It is determined by
the previous trust level Ti(k− 1), the robot performance
measures Pi(k) and Pi(k−1). The parameters Ai, Bi and Ci

are constant coefficients whose values depend on the human
operator, robot i and the corresponding collaborative task.
The trust level should be within a proper range, i.e.

Ti,min≤Ti(k)≤Ti,max for all k∈ [k0, kf ] (3)

where Ti,min > 0 and Ti,max > 0 are the lower and upper
bounds of the trust level for robot i, respectively and the
times k0 and kf are the starting and ending time of the
scheduling time horizon.

For all N robots, each one needs to execute a sequence
of tasks Γi={τi,1, τi,2, ..., τi,ni

, ...} where i is the index of
a robot and ni is the task index of robot i. We assume the
tasks are all periodic and use the notation Ti to denote the
period. Let αi(ni) denote the time when robot i starts the
collaboration request of nith task. For any index ni, Ci(ni) is
the collaboration time that robot i requires to collaborate with
the human operator within the time window [αi(ni), αi(ni)+
Ti) satisfying 1≤Ci(ni)<Ti for all i and ni. And at each
time αi(ni), the performance value Pi(αi(ni)) of robot i
is reinitialized to be P 0

i (ni)∈ [Pi,min, Pi,max], because each
task in task sequence Γi may be different from each other. A
collaboration completion time γi(ni) is the time step when
robot i finishes collaborating with the human operator. Since
the system is modeled in discrete time, parameters αi, Ci,
Ti and γi are all integers.

Remark 1: In problem setup, it is not required that the
human and robot collaboration needs to start at the mo-
ment αi(ni), but we will show in Section II-B that the
collaboration starting at αi(ni) is optimal to maximize
robot performance value if the human attention limitation
is ignored is relaxed.

Assumption 1: For each task τi,ni
, once the collaboration

starts between the human and robot i at time k, it will only
ends at time k + Ci(ni).
This assumption indicates that the collaboration between the
human operator and a robot is non-preemptive.

A contention time is defined to be a time when two or
more robots request to collaborate with the human operator
at the same time. At a contention time, due to the human
attention limitation, we make the following assumption

Assumption 2: At any given time, at most one robot can
be in collaborative mode with the human operator and all
the other robots are in autonomous mode, i.e.,

N∑
i=1

ui(k)≤1 for all k. (4)

Because of contentions, we introduce the delay variable
δi(ni) ≥ 0 so that γi(ni) = αi(ni) + δi(ni) +Ci(ni). The
time delay variables δi(ni) depend on Ci(ni), Ti and ui(k).
In Section III, we will present a timing model which can
accurately compute δi(ni) given ui(k) for all i and k.

A. Formulation of Model Predictive Control

We formulate a human attention allocation problem to
compute optimal scheduling u∗(k) = (u∗1(k), ..., u∗N(k)) on
a time interval [k0, kf ]. Given initial human-robot trust level
(T1(k0), ..., Ti(k0), ..., TN(k0)) and initial robot performance
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value (P1(k0), ..., Pi(k0), ..., PN(k0)) for all i, the optimal
scheduling problem is to find values for the optimal u∗(k)
by solving the optimization problem

min
u(k)

N∑
i=1

kf∑
k=k0

[Pi,max−Pi(k)] subject to (1), (2), (3), (4)

ui(k)=0, k∈ [αi(ni), αi(ni)+δi(ni)(u(k))− 1],

ui(k)=1, k∈ [αi(ni)+δi(ni)(u(k)), γi(ni)(u(k))] and
ui(k)=0, k∈ [γi(ni)(u(k))+1, αi(ni+1)−1]

for all ni such that k0≤αi(ni) and αi(ni+1)≤kf (5)

where δi(ni)(u(k)) and γi(ni)(u(k)) represent that these
time instants are implicit functions of u(k). The cost function
aims to increase the robot performance as much as possible
to reach the upper bounds. Equations (1) and (2) are system
dynamic equations. Constraint (3) aims to maintain the trust
level within the range and (4) is the contention constraint
where ui(k)’s are coupled. Since u(k) is a vector of binary
integers, the problem is binary optimization problem which
is non-convex and difficult to solve.

B. Optimal Solution Without Considering Contention

We will first relax the trust level constraint (3) and the
human attention limitation constraint (4) in the problem
formulation (5) to find the optimal solution u(k) to maximize
the overall robot performance value among the time horizon
[k0, kf ]. After relaxing the two constraints, the problem (5)
can be decoupled and is equivalent to

N∑
i=1

Ni∑
ni=1

max
δi(ni)

αi(ni+1)−1∑
k=αi(ni)

Pi(k) subject to (1) with P 0
i (ni) and

ui(k)=


0, k∈ [αi(ni),αi(ni)+δi(ni)−1]

1, k∈ [αi(ni)+δi(ni),αi(ni)+δi(ni)+Ci−1]

0, k∈ [αi(ni)+δi(ni)+Ci,αi(ni+1)−1]

(6)

where Ni is the largest index of tasks satisfying αi(Ni)<kf .
Theorem 1: (CIA condition) The optimal solution for

problem (6) is δi(ni) = 0 for all 1≤ni≤Ni.
Proof. We first define the cost for robot i within the
time window [αi(ni), αi(ni+1)−1] to be Ji,ni(δi(ni)) =∑αi(ni+1)−1
k=αi(ni)

Pi(k). Then we will show that the derivative
of Ji,ni(δi(ni)) is less than 0, so Ji,ni(δi(ni)) is strictly
decreasing as δi(ni) increases. For simplification, we will
use P 0

i to represent P 0
i (ni) in the rest of this proof.

During the time k∈ [αi(ni), αi(ni) + δi(ni)−1], we have
ui(k) = 0. The dynamic of robot i’s performance value is
Pi(k) = (1− ki,R)Pi(k− 1) + ki,RPi,min when ui(k) = 0
according to (1). Then for any k∈ [αi(ni), αi(ni)+δi(ni)],
Pi(k) = (1 − ki,R)k−αi(ni)P 0

i + ki,RPi,min

∑k−1
κ=αi(ni)

(1 −
ki,R)k−1−κ = (1− ki,R)k−αi(ni)

(
P 0
i −Pi,min

)
+Pi,min. The

sum of costs among time [αi(ni), αi(ni) + δi(ni)] is
J1
i,ni

(δi(ni)) =
∑αi(ni)+δi(ni)
k=αi(ni)

Pi(k) = Pi,min [δi(ni)+1] +

(P 0
i −Pi,min)

1−(1−ki,R)δi(ni)+1

ki,R
.

Let t1 denote the time step αi(ni) + δi(ni) and P 1
i

denote Pi(t1) which can be computed as Pi(t1) = (1−
ki,R)δi(ni)

(
P 0
i −Pi,min

)
+Pi,min, which is the initial value

for the time interval k ∈ [αi(ni)+δi(ni), αi(ni)+δi(ni)+
Ci(ni)−1]. With ui(k)=1 for k ∈ [αi(ni)+δi(ni), αi(ni)+
δi(ni)+Ci(ni)−1], the dynamic of robot i’s performance
value is Pi(k) = (1− ki,H)Pi(k− 1) + ki,HPi,max. Then
for any k ∈ [αi(ni)+δi(ni)+1, αi(ni)+δi(ni)+Ci(ni)],
we have Pi(k) = (1−ki,H)k−t1P 1

i +ki,HPi,max

∑k−1
κ=t1

(1−
ki,H)k−1−κ=(1−ki,H)k−t1

(
P 1
i −Pi,max

)
+Pi,max. The costs

among the time interval [αi(ni)+δi(ni)+1, αi(ni)+δi(ni)+

Ci(ni)] is J2
i,ni

(δi(ni)) =
∑αi(ni)+δi(ni)+Ci(ni)
k=αi(ni)+δi(ni)+1

Pi(k) =
1−ki,H
ki,H

[
1−(1−ki,H)Ci(ni)

](
P 1
i −Pi,max

)
+Ci(ni)Pi,max.

Let t2 denote the time step αi(ni) + δi(ni) + Ci(ni)
and P 2

i denote Pi(t2) = (1− ki,H)Ci(ni)
(
P 1
i −Pi,max

)
+

Pi,max = (1−ki,H)Ci(ni)(1−ki,R)δi(ni)
(
P 0
i −Pi,min

)
+(1−

ki,H)Ci(ni)(Pi,min−Pi,max) +Pi,max. For k ∈ [αi(ni) +
δi(ni) + Ci(ni) + 1, αi(ni + 1) − 1], we have ui(k) =
0, which leads to Pi(k) = (1− ki,R)k−t2

(
P 2
i −Pi,min

)
+

Pi,min. The costs among the time interval [αi(ni) +
δi(ni) + Ci(ni) + 1, αi(ni + 1) − 1] is J3

i,ni
(δi(ni)) =∑αi(ni+1)−1

k=αi(ni)+δi(ni)+Ci(ni)]+1
Pi(k) = (t3−δi(ni))Pi,min +

1−ki,R
ki,R

[
1−(1−ki,R)t3−δi(ni)

](
P 2
i −Pi,min

)
. where t3 =

Ti − 1 − Ci(ni). If we denote ai =
1−ki,R
ki,R

> 0, bi =
1−ki,H
ki,H

> 0, ci = P 0
i −Pi,min ≥ 0, di = (1−ki,R)Ci(ni) >

0, ei = (1 − ki,H)Ci(ni) > 0, xi = ln(1 − ki,R) < 0,
yi = (1 − ki,R)δi(ni) > 0 and then take the derivative
of Ji,ni

(δi(ni)), we have dJi,ni
(δi(ni))

dδi(ni))
= (bi − ai)(1 −

ei)cixiyi + ai(ei − 1)xi(1− ki,R)t3−δi(ni)(Pi,min −Pi,max).
Since ki,H < ki,R, we have bi−ai > 0. And it is trivial
that ei− 1 < 0, therefore (bi− ai)(1− ei)cixiyi ≤ 0 and
ai(ei−1)xi(1−ki,R)t3−δi(ni)(Pi,min−Pi,max)<0, from which
we can conclude that dJi,ni

(δi(ni))

dδi(ni))
< 0. Therefore, when

δi(ni)=0, Ji(δi(ni))=Jmax
i , which leads to (7). �

Based on Theorem 1, when there is no contention among
robots, the optimal solution for ui(k) is

ui(k)=

{
1, k ∈ [αi(ni), αi(ni)+Ci(ni)−1],

0, k ∈ [αi(ni)+Ci(ni), αi(ni+1)−1],
(7)

for all ni such that k0≤αi(ni) and αi(ni+1)≤kf . And it is
trivial that γi(ni)=αi(ni)+Ci(ni). However, if a contention
occurs when robot i starts the request to collaborate with the
human, then constraint (4) cannot be relaxed and equality
γi(ni) = αi(ni)+Ci(ni) will not hold because it may be
delayed by the collaboration between the human and other
robots, i.e. δi(ni) 6=0. And from the proof of Theorem 1, we
know that the derivative dJi,ni

(δi(ni))

dδi(ni))
is strictly less than

0, which means the larger time delay δi(ni) will further
increase the cost in (5). Therefore, we need a timing model
to compute the minimal value which the time delay variable
δi(ni) can take without violating the contention constraint.
This CIA property also ensures that the human attention
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scheduling problem is analogous to the classic real-time
scheduling problems.

III. ANALYTICAL TIMING MODEL

Due to the constraint of the human attention, the collab-
oration request generation times αi(ni), the time instants
when robots starts to collaborate with human αi(ni)+δi(ni),
and the collaboration completion times γi(ni) are more
significant than other moments. To obtain these significant
moments, it is important to compute each δi(ni), which is not
easy to compute. We leverage scheduling theory and model
the human attention scheduling as one classical schedul-
ing discipline, the non-preemptive scheduling discipline. In
scheduling theory [15], if an on-going task (with process
time Ci(ni) can be interrupted by the generation of other
tasks, the scheduling type is called preemptive. In work [9],
the collaboration tasks are modeled as preemptive tasks on a
single processor, which can results in a schedule where the
human operator needs to constantly switch among different
robots and can increase difficulty for the human to work
with robots. Therefore, in this paper, we add in a constraint
that the collaboration between a robot and a human is non-
preemptive, where a non-preemptive task means that an on-
going task cannot be interrupted by the generation of other
tasks, to reduce the workload of the human operator.

A. Timing States
In [9], [16], we developed a Significant Moment Analysis

(SMA) method and timing models that can compute the time
delays in the preemptive model. In [17], a continuous-time
timing model was developed for non-preemptive model. Here
we derive a discrete-time analytical timing model.

At each time k on time horizon [k0, kf ] of the optimiza-
tion problem, we define the timing state variable Z(k) =
(D(k), R(k), O(k), ID(k)) as follows.

Definition 1: The deadline variable is D(k) =
(d1(k), ..., di(k), ..., dN (k)), where di(k) is defined to
be how long after time k the next generation time αi(ni)
of task τi,ni will be generated. The remaining time
variable is R(k) = (r1(k), ..., ri(k), ..., rN (k)), where
ri(k) denotes the remaining collaboration time after time
k that is needed to complete the collaboration of the
most recently generated task τi,ni

. The delay variable is
O(k) = (o1(k), ..., oi(k), ..., oN (k)), where oi(k) is how
long the collaboration completion of task τi,ni has been
delayed from its most recent request time αi(ni) to time
k. The index variable ID(k) is index of the robot that is
collaborating with the human operator at time k, where
ID(k) 6= 0 implies that the human attention is occupied by
one robot and ID(k)=0 implies that no robot is occupying
the human attention at time k.

To support the dynamic timing model, we redefine the
collaboration time of a task as follows:

Definition 2: For all i, ni≥0, and k∈ [αi(ni), αi(ni+1)],
we set Ci(k)=Ci(ni) for k∈ [αi(ni), αi(ni+1)).

The evolution rules for Z(k) can be expressed by an
analytical model that is efficient to compute which supports
the implementation of contention-resolving MPC.

B. Timing Model for Human Attention Scheduling
We divide the scheduling time horizon [k0, kf ]

into sub-intervals [kw, kw+1] such that kw+1 − kw =
sgn(ID(kw)) min{rID(kw), d1(kw), ..., dN (kw), kf−kw} +
(1−sgn(ID(kw))) min{d1(kw), ..., dN (kw), kf−kw} for all
w, where rID(k) is a simplified notation for the remaining
time rID(k)(k) of robot ID(k) at time k.

At time kw, if rID(kw−1) > 1, which means the robot
ID(kw − 1) that was occupying the human attention has
not completed the collaboration at time kw, then ID(kw) is
the same as ID(kw−1) because the collaboration is non-
preemptive. If rID(kw − 1) = 1, which means the robot
ID(kw − 1) completed the collaboration at time kw, then
ID(kw) needs to switch to the robot which is scheduled to
collaborate with the human operator, i.e. the robot i with
ui(kw) = 1. Combining these two cases, the evolution rule
for the timing state ID can be expressed as ID(kw) =
ID(kw − 1) sgn(rID(kw − 1)− 1) + argmaxi {ui(kw)}

[
1−

sgn(rID(kw − 1)− 1)
]

where sgn(q) = 1 if q > 0 and
sgn(q) = 0 if q = 0. If

∑N
i=1 ui(kw) = 0, then ID(kw) = 0.

At time kw, the values of the variables di, ri and oi
have jumps for some i. If the deadline variable of robot
i satisfies di(kw − 1) = 1, then di(kw) = Ti, ri(kw) =
Ci(kw) and oi(kw) = 0. If di(kw−1) > 1, then there are
no jumps for the timing states for robot i and we have
di(kw)=di(kw−1)−1, ri(kw)=ri(kw−1)−1(ID(kw−1)= i)
and oi(kw) = oi(kw−1)+sgn(ri(kw−1)) where 1(·) is an
indicator function which is defined to be 1 if the condition
ID(kw−1) = i holds and 0 otherwise. Combining the two
cases depending on the different values of di(kw−1), the
evolution rules of the timing state variables di, ri and oi at
the times kw can be summarized as di(kw)=di(kw−1)−1+[
1−sgn(di(kw−1)−1)

]
Ti, ri(kw)=sgn(di(kw−1)−1)

[
ri(kw−

1)−1(ID(kw−1)= i)
]
+
[
1−sgn(di(kw−1)−1)

]
Ci(kw) and

oi(kw)=
[
oi(kw−1)+sgn(ri(kw−1))

]
sgn(di(kw−1)−1).

During any time kw+∆k ∈ [kw+1, kw+1−1], the state
ID(kw + ∆k) remains unchanged because kw+1 − kw ≤
rID(kw). If ID(kw) 6= 0, the evolution rules for robot
ID(kw) are dID(kw+∆k)=dID(kw)−∆k, rID(kw+∆k)=
rID(kw)−∆k and oID(tw + ∆t) = oID(tw) + ∆t where
dID(k) and oID(k) are defined analogously to rID(k). And
during this time window, we have uID(kw+∆k) = 1. For
robot i 6= ID(kw), the evolution rules are di(kw+∆k) =
di(kw)−∆k, ri(kw + ∆k) = ri(kw) and oi(kw + ∆k) =
oi(kw)+sgn(ri(kw))∆k. During this time window, for robot
i 6= ID(kw), we have ui(kw+∆k)=0.

Combining all of the evolution rules above leads to the
timing model of non-preemptive human attention scheduling,
which provides the value of Z(k) at each time k, given the
initial state variable Z(k0), the vehicle timing parameters
Ci(ni) and Ti for all i and ni, and the value of u(k0∼k),
where u(k0 ∼ k) is a simplified notation for the decision
variable u at all time steps in the interval [k0, k]

Z(k)=H(k;Z(k0), (Ci(ni), Ti)i=1,...,N ,u(k0∼k)). (8)

Then the definition of the variable O(k) gives δi(ni) =
oi(αi(ni+1)−1)+sgn(ri(αi(ni+1−1))−Ci(ni).
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Remark 2: Notice that the only times when the values
of timing state depend on the decision variable ui are at
the significant moments kw. Therefore, we only need to
determine the value of ui at those times.

IV. CONTENTION-RESOLVING MPC ALGORITHM

In this section, we consider the original problem formula-
tion where constraints (3) and (4) are not relaxed. We convert
the problem formulated by (5) into a path planning problem
that can be solved iteratively. The conversion is based on the
insight that value of the decision variable u only needs to be
decided at the significant moments when contention occurs.

A. Construction of Decision Tree

We use the timing model to determine when contentions
occur by checking the following condition:

Proposition 1: A contention starts at time k if
and only if the following three conditions hold
1)

∑N
i=1 [1−sgn(Ci(k)−ri(k))]≥ 2, 2) rID(k − 1)≤ 1 and

3) k=kw for some i and some w where kw is a significant
moment computed by (8).
Proof. A collaboration request from robot i is waiting
at a time k or is generated at time k if and only if
ri(k) = Ci(k), i.e., 1− sgn(Ci(k)−ri(k)) = 1. Therefore,∑N

i=1 [1−sgn(Ci(k)−ri(k))]≥2 if and only if two or more
robots are waiting to collaborate with the human operator
at time k or generating requests at time k. Therefore, if a
contention starts at time k, then k is one significant moment
kw for some i and w. And the robot that was collaborating
with the human one time step before k will either finish the
collaboration at time k, i.e., rID(k−1)=1 or the human was
not collaborating with any robot one time step before k, i.e.,
rID(k−1) = 0, so rID(k−1) ≤ 1 holds. Conversely, if the
three conditions are satisfied, then at time k, multiple robots
are in contention to collaborate with the human which is a
necessary condition, so a contention starts at time k. �

Based on the contention times, we can construct a decision
tree. Figure 1 shows an example of decision tree. In the de-
cision tree, each leaf represents a contention time satisfying
Proposition 1. We denote the contention times by kcl where
l is the index of its corresponding leaf. The construction of
the entire decision tree is not necessary for the contention re-
solving MPC algorithm. However, for the purposes of clearly
presenting the sampling based optimization method, we now
briefly describe how the tree can be fully constructed.

The decision tree construction starts from the root v0
associated with the MPC starting time k0. The construction
is performed iteratively. During the construction, if a leaf
has no branches pointing out from it, then it is called unex-
panded. At each iteration, new branches are generated from
unexpanded leaves and new leaves are generated at the end
of each branch. For an unexpanded leaf l, let Λ

(
kcl
)

denote
the set of indices of robots having contentions at a contention
time kcl in an increasing order. We also define M to be the
number of elements in Λ

(
kcl
)
. For leaf l, we generate M

branches from it. Each branch corresponds to a unique vector
um

(
kcl
)
=
(
um,1

(
kcl
)
, um,2

(
kcl
)
, ..., um,N

(
kcl
))

. Let i be the

Fig. 1. Decision tree to solve the integer optimization problem for a finite
time window. The blue circle represents the root v0, and grey circles and
dots represent leaves. The decision tree is expanded in the direction of the
arrows, which represent the branches. The colored rectangles in the lower
part of the figure represent the time delay δi. The starting time of the colored
rectangles is the request generation time α. The shaded colored rectangles
represent the human attention occupation time of each robot.

mth element in set Λ
(
kcl
)
. Then in vector um

(
kcl
)
, we define

um,i

(
kcl
)
=1 and um,q

(
kcl
)
=0 for all q=1, ..., N and q �= i.

The mth branch expands from vl and connects to a new
leaf vj+m based on um, where j is the number of existing
leaves in the tree before we generate new branches from leaf
vl. The contention time represented by leaf vj+m is the next
contention time that occurs after kcl as scheduled by um. The
iterative construction terminates when the contention times
of all unexpanded leaves are greater or equal to kf . Then we
call these unexpanded leaves terminal leaves.

B. Branch Cost

After constructing the decision tree, we define a cost for
each branch. Along one branch (l, j) connecting leaves vl
and vj , since the decision variables u(k) are determined
for all i and k ∈ [kcl , k

c
j ], we can calculate the significant

moments γi(ni) for all i and ni such that kcl ≤γi(ni)≤kcj as

Z(k)=H
(
k;Z(kcl ), (Ci(ni), Ti)i=1,...,N ,um

)
and γi(ni)=

αi(ni)+ oi(αi(ni+1)− 1)+ sgn(ri(αi(ni+1− 1)) where
ri(αi(ni +1)− 1) and oi(αi(ni +1)− 1) for each ni are
generated by the timing model except with a known um.
Then the branch cost wl,j is defined as wl,j =

∑N
i=1w

i
l,j

where wi
l,j is the cost of robot i. For each i such that there

is a completion time γi(ni+1)∈(tcl , t
c
j ], let ni be the smallest

index ni satisfying γi(ni+1)>kcl and ni be the largest index
ni satisfying γi(ni+1)≤kcj . Then we set

wi
l,j=

γi(ni)−1∑
k=γi(ni)

[Pi,max−Pi(k)] , k∈ [γi(ni), γi(ni)−1]. (9)

If no collaboration of robot i is completed within [tcl , t
c
j ],

i.e. ni > ni, then we define wl,j = 0. And if for any time
k ∈ [tcl , t

c
j ], we have Ti(k)< Ti,min or Ti(k)> Ti,max, then

we define wl,j = +∞. The meaning of (9) is as follows.
If γi(ni) ∈ (kcl , k

c
j ], i.e., the nith collaboration of robot i

is completed between the contention times kcl and kcj , then
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the cost of the nith task is included in the branch cost wl,j .
This branch cost formulation ensures that all costs included
in one branch are determined and will not be changed by
the decision variable u at or after time kcj . The cost of an
uncompleted (ni+1)st collaboration will be included by the
branches following the branch (l, j). Based on the decision
tree, the integer optimization problem in (5) can now be
converted to the problem of finding a path from k0 to kf
such that the whole cost along the path is lowest. In our pre-
vious work [12], we presented a contention-resolving MPC
algorithm that leverages the A-star algorithm to search for an
optimal path in the decision tree. We define the same stage
cost g(vl) to be the same as [12]. And the heuristic future
cost ĥ(vl) to be ĥ(vl)=

∑N
i=1

∑kf
k=γi(ni)

[Pi,max−Pi(k)] with
ui(k) satisfying (7) for all ni such that kcl ≤ αi(ni) and
αi(ni+1)≤kf . This cost considers cases without contention
constraints and is less than or equal to the true future with
contention constraints, as we explained in Theorem 1. We
have showed in [12] that the minimal cost path is guaranteed
to be found with these defined costs. The search algorithm
only efficiently generates a subtree without losing optimality.

V. SIMULATION RESULTS

We simulate three robots collaborating with one hu-
man operator. The starting and ending time instants
are k0 = 0 and kf = 120 respectively. The ini-
tial values of trust level are [T1(0), T2(0), T3(0)] =
[1.93, 1.9, 1.98]. The lower and upper bounds for trust
level are [T1,min, T2,min, T3,min] = [1.55, 1.65, 1.7] and
[T1,max, T2,max, T3,max] = [2.15, 2.35, 2.1]. The parame-
ters for trust model are Ai = 1, Bi = 0.605 and
Ci = 0.6 for all i. The initial values of robot per-
formance are [P 0

1 (ni), P
0
2 (ni), P

0
3 (ni)] = [0.7, 0.7, 0.7]

for all ni. The parameters for the robot performance
model are [k1,R, k2,R, k3,R] = [0.25, 0.25, 0.25] and
[k1,H , k2,H , k3,H ] = [0.1, 0.13, 0.15]. The lower and upper
bounds are [P1,min, P2,min, P3,min] = [0.6, 0.65, 0.65] and
[P1,max, P2,max, P3,max] = [0.75, 0.75, 0.75]. The timing pa-
rameters are [C1(ni), C2(ni), C3(ni)] = [6, 6, 6] for all ni
and [T1, T2, T3] = [20, 30, 40]. The human attention occupa-
tion result is shown in Figure 2. The robot performance is
shown in Figure 3. Five contentions occur in the time interval
[0, 120]. The cost under optimal schedule is 31.4262, which
is 11.99% less than the HTS scheduling. The simulation
results show that our method performs better than HTS.
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