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The Capacity of Private Information Retrieval From
Uncoded Storage Constrained Databases
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Abstract— Private information retrieval (PIR) allows a user to
retrieve a desired message from a set of databases without reveal-
ing the identity of the desired message. The replicated database
scenario, where N databases store each of the K messages was
considered by Sun and Jafar, and the optimal download cost
was characterized as
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work, we consider the problem of PIR from uncoded storage
constrained databases. Each database has a storage capacity of
μKL bits, where L is the size of each message in bits, and
μ ∈ [1/N, 1] is the normalized storage. The novel aspect of
this work is to characterize the optimum download cost of PIR
from uncoded storage constrained databases for any “normalized
storage” value in the range μ ∈ [1/N, 1]. In particular,
for any (N, K), we show that the optimal trade-off between
normalized storage, μ, and the download cost, D(μ), is a
piece-wise linear function given by the lower convex hull of the N
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for t = 1, 2, . . . , N .

To prove this result, we first present a storage constrained PIR
scheme for any (N, K). Next, we obtain a general lower bound
on the download cost for PIR, which is valid for any arbitrary
storage architecture. The uncoded storage assumption is then
applied which allows us to express the lower bound as a linear
program (LP). Finally, we solve the LP to obtain tight lower
bounds on the download cost for different regimes of storage,
which match the proposed storage constrained PIR scheme.

Index Terms— Private information retrieval, distributed stor-
age, capacity, uncoded storage, storage constrained databases.

I. INTRODUCTION

W ITH the paradigm-shifting developments towards dis-
tributed storage systems (DSS), assuring privacy while

retrieving information from public databases has become a
crucial need for users. This problem, also referred to as private
information retrieval (PIR) has direct practical applications
in cloud storage, social networking, privately accessing stock
market records or bank loans, or even activists seeking files
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that might be considered anti-regime. The original formulation
of the PIR problem involves N non-colluding and replicated
databases, each storing K messages. Upon receiving queries
from the legitimate user, the databases answer truthfully with
the required information, which means they are curious but
honest. Successful PIR must satisfy two properties: first, each
of the N queries sent from the user to the N databases
must reveal nothing about the identity of the message being
requested; and second, the user must be able to correctly
decode the message of interest from the answers received from
the N databases.

A trivial solution to PIR is to download all the messages
from the databases, but it is highly impractical especially
when the number of messages K is too large. The goal is to
design an efficient protocol, which is characterized by the total
upload/download cost the user has to pay in order to download
a message privately. The PIR problem has been studied exten-
sively within the computer science community [1]–[5]. In the
pioneering work by Chor et al. [1], the authors considered
PIR with one bit length messages, where the databases are
assumed to be computationally unbounded. The privacy cost
is calculated based on the total amount of communication
between the user and the databases, i.e., the upload cost which
is the size of the N queries, and the download cost which is
the size of the N answers. It was shown in [1] that achieving
perfect privacy while retrieving from a single computationally
unbounded database requires downloading all the messages.
Single database PIR was studied in [3]–[5] where the database
is assumed to be computationally bounded.

The Shannon theoretic approach for this problem is to
allow the size of the messages to be arbitrary large, and
therefore the upload cost is considered negligible with respect
to the download cost [6]–[8]. This case is more suitable
compared to the original formulation in [1] when the size of
the files/messages to be retrieved (download cost) is large.
Based on the Shannon theoretic formulation, the rate of a
PIR scheme is the ratio between the number of desired vs
downloaded bits, and PIR capacity is then defined as the
maximum achievable rate. In a recent interesting work by Sun
and Jafar [7], the exact capacity of PIR (or the inverse of
optimum download cost) for any (N, K) was characterized as
(1 + 1

N + 1
N2 + · · · + 1

NK−1 )−1.
Since the appearance of [7], significant recent progress

has been made on a variety of variations of the basic PIR
problem. The case of T -colluding PIR (or TPIR in short)
was investigated by Sun and Jafar in [9], where any T
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databases out of N are able to collude by sharing their
received queries. The problem of PIR with databases storing
coded messages, using (N, M) MDS codes, was considered
by Tajeddine and El-Rouayheb in [10] and the capacity was
subsequently characterized by Banawan and Ulukus in [11] to
take the value (1 + M

N + M2

N2 + · · · + MK−1

NK−1 )−1. This setting
was further investigated for the scenario where any T out of
N databases can collude while any subset of M databases
out of N fail to respond, also referred to as MDS-TPIR
[12], [13]. The exact capacity of robust MDS-TPIR for any
(T, N, M, K) and N ≥ M ≥ T was characterized in [9] as
(1 + T

N + T 2

N2 + · · · + T K−1

NK−1 )−1.
The capacity of cache aided PIR (PIR with side information)

was recently characterized in [14], where the user has a
local cache of limited storage 0 ≤ S ≤ K and contents
known to the databases. It was shown that memory sharing
between full storage and no-cache-aided PIR schemes is
information-theoretically optimal. The capacity of PIR with
private side information, or PIR-PSI [15]–[17], was charac-
terized in [17] to take the value (1 + 1

N + 1
N2 + · · · +

1
NK−M−1 )−1, where M is the number of messages known
as side information to the user. The capacity of multi-round
PIR, where the queries in each round are allowed to depend
on the answers received in previous rounds, was characterized
by Sun and Jafar in [18]. Although no advantage in terms of
capacity of having multi-rounds as opposed to the single round
case considered in [7], it was shown that the multi-round
queries can help in reducing the storage overhead at the
databases.

Many other variations of PIR have been considered recently
including: Symmetric PIR (SPIR) [19], [20] where the user
must be able to retrieve the message of interest privately, while
at the same time the databases must avoid any information
leakage to the user about the remaining messages; The case
of multi-message PIR (or MPIR) [21], [22] in which the
user wants to privately retrieve P ≥ 1 out of K messages
in one communication round; PIR with Byzantine databases
(or BPIR) [23], [24] where any subset of databases are
adversarial and they can respond with incorrect answers;
PIR through wiretap channel (or PIR-WTC) [25] where the
user wants to retrieve a single message in the presence of
an external eavesdropper; and PIR with asymmetric traffic
constraint for the databases in [26].

A. PIR From Uncoded Storage Constrained Databases

The replicated databases assumption, where each database
stores all the K messages, incurs substantial storage over-
head especially for significant large number of messages K .
Moreover, in practice, different databases obtained by various
servers might not necessarily be replicated, i.e, they may not
store the same set of messages/files. In this work, we con-
sider the problem of PIR from uncoded storage constrained
databases. Each database has a storage capacity of μKL bits,
where K is the number of messages, L is the size of each
message in bits, and μ ∈ [1/N, 1] is the normalized storage.
On one extreme, μ = 1/N is the minimum storage at
databases so that the user can retrieve any required message.

If the user is interested in retrieving a message, then all the
K messages from databases must be downloaded to achieve
privacy. This can be viewed through the independence of the
storage contents across databases, i.e., each database stores
distinct information. In this case, each database is treated
independently as a small PIR problem with one database,
where all data in that database has be downloaded to achieve
privacy. On the other hand, μ = 1 is the replicated databases
case settled in [7], where the download cost is minimal.
Thus, we aim to characterize this trade-off for any value of μ
between these two extremes.

For the storage placement strategy at the databases, we focus
on the following special settings:
• As a first step towards solving the problem for any arbitraty
storage at the databases, we assume the special case where the
storage placement at the databases is centrally optimized. It is
important to notice here that while the storage at the databases
can be centrally designed in the placement phase, the databases
cannot share the received queries from the users in the data
delivery phase, i.e., non-colluding databases. The ultimate goal
is to extend this study to the problem where the storage at the
databases can be made arbitrary.
• We also assume the case where the databases can only
store uncoded functions of the messages, i.e., uncoded storage.
The works in [10]–[13] focused on the use of MDS coded
databases to satisfy the M -out-of-N recoverability, which is
not within the scope of this article. However, the results
in [11] suggests the benefits of using codes in DB storage
to reduce the download cost. Later in Section 3, we conduct a
comparison between the results in [11] and our results for
storage constrained PIR to show the significance of using
coded storage at the databases.

Majority of classical works on PIR assume the presence
of replicated databases. Indeed, exceptions to this statement
include [18] which investigated the problem of limited storage
PIR for the special case of K = 2 messages and N = 2
databases. The authors presented interesting lower and upper
bounds on the capacity for this special case, and show the
optimality of the proposed scheme for the case of linear
schemes. In [27], the authors proposed a non-linear scheme
for the canonical case K = 2 and N = 2, showing that the
proposed non-linear scheme uses less storage than the optimal
linear scheme when the retrieval rate is kept optimal.

It is worth mentioning here that our work was extended to
the case of decentralized storage constrained databases [28],
where the storage placement is done independently. The
authors of [28] show that uniform and random caching scheme
originally proposed for decentralized coded caching in [29],
along with the retrieval scheme which is originally proposed
for PIR from replicated databases [7], surprisingly, result in the
optimal download cost. Moreover, the extension to the case of
heterogeneous storage constrained databases was considered
in [30], where databases have limited and heterogeneous
sizes. Surprisingly, the authors in [30] show that the optimal
download cost matches our results for homogeneous databases
having same average storage constraint. Both the works [28]
and [30] apply the general lower bound derived in our work
to prove the optimality of their proposed schemes.
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Summary of Contributions– In this work, we charac-
terize the optimal PIR download cost from uncoded stor-
age constrained databases as a piece-wise linear function
given by the lower convex hull of N storage-cost pairs(

t
N , 1 + t

N + t2

N2 + · · · + tK−1

NK−1 )−1
)

, where t ∈ [1 : N ]. The
achievablility proof, which was presented in parts in [31],
works as follows: For the discrete storage values μ = t

N where
t ∈ [1 : N ], the storage design at the databases is inspired by
storage design schemes in the caching literature [32], where
the users prefetch popular content into memories to reduce
peak traffic rates when downloading from a single server.
As opposed to caching schemes, the storage placement for
storage constrained PIR scheme occurs at the databases which
should span the whole set of files. Our storage design allows
dividing the PIR scheme into blocks of smaller PIR systems
where only a subset of databases of size t is involved. The
storage points in between the discrete storage values can be
achieved by a memory sharing argument, which is given by
the lower convex hull of the achieved rate-storage pairs.

As a first step in understanding the fundamental limits,
we proved in [33] the optimality of our storage constrained
scheme for the special case of K = 3 messages, N = 3
databases, and any storage value at the databases, under
uncoded and symmetric assumptions for the storage placement.
Our second main contribution of this article is to show that
the proposed scheme is information-theoretically optimal for
any (N, K, μ), under uncoded storage placement assumption.
The key technical challenge in proving the lower bounds is
dealing with all possible components of storage at the data-
bases limited by the storage and the message size constraints,
which significantly go beyond the techniques introduced in [7].
To this end, we tailor the mutual information of the key
components used in [7] for the full storage setting to the
case of limited storage. We factorize these terms to arrive to
the first universal lower bound on the download cost, which
is valid for any arbitrary storage. Next, we specialize the
obtained lower bound to uncoded placement strategies with
homogeneous storage constrained databases. This bounding
technique is inspired by the methodology recently proposed
in [34] for uncoded caching systems, and later applied in our
previous work on coded data shuffling [35], [36], and uncoded
caching systems with secure delivery [37]. Applying these
ideas helps in obtaining a linear program (LP) subject to the
storage and message size constraints, which can be solved for
different regimes of storage to provide a set of lower bounds
on the download cost, and to show that these bounds exactly
match the download cost of the proposed storage-constrained
PIR scheme.

B. Notation

The notation [n1 : n2] for n1 < n2, and n1, n2 ∈ N

represents the set of all integers between n1, and n2,
i.e., {n1, n1 + 1, . . . , n2}. The combination coefficient(
n
k

)
= n!

(n−k)!k! equals zero for k > n, or k < 0. Elements
of ordered sets are placed between round brackets (), while
for regular sets we use curly brackets {}. We use bold letters
to represent ordered sets, and calligraphy letters for regular

Fig. 1. Storage constrained private information retrieval.

sets. In order to describe subsets of ordered sets, we use the
subscript to give the indexes of the elements being chosen
from the set, e.g., for the ordered set π = (π1 . . . , πn),
π[1:4] = (π1, π2, π3, π4). We denote Random Variables (RVs)
by capital letters, and ordered sets of RVs by capital bold
letters. The set in the subscript of a set of ordered RVs is
used for short notation of a subset of the set of RVs, e.g.,
for an ordered set of RVs Z = (Z1, . . . , Zn), we use ZW to
denote the all the random variables Zi where i ∈ W .

II. STORAGE CONSTRAINED PIR: PROBLEM STATEMENT

We consider the PIR problem with N non-colluding data-
bases, labeled as DB1, DB2, . . . , DBN , and K independent
messages, labeled as W1, W2, . . . , WK , where each message
is of size L bits, i.e.,

H(W1) = H(W2) = · · · = H(WK) = L. (1)

We assume that each database has a storage capacity of μKL
bits. If we denote Z1, Z2, . . . , ZN as the contents stored across
the databases, where Zn is the storage content of DBn, then
we have the following storage constraint for each database:

H(Z1) = H(Z2) = · · · = H(ZN ) ≤ μKL. (2)

We assume that the storage strategy employed by the user is
completely public, i.e., each database knows which contents
are stored at all the other databases. The normalized storage
μ can take values in the range 1/N ≤ μ ≤ 1. The case when
μ = 1 is the setting of replicated databases, with each database
storing all the K messages. The lower bound μ ≥ 1/N is in
fact a necessary condition for reliable decoding.

The storage-constrained PIR model is shown in Figure 1.
To request a message, a user privately selects a number k
between 1 and K corresponding to the desired message Wk.
Then the user generates N queries Q

[k]
1 , Q

[k]
2 , . . . , Q

[k]
N , where

Q
[k]
n is sent to the nth database (DBn), and the queries are

independent of the messages, i.e.,

I(W1, . . . , WK ; Q[k]
1 , . . . , Q

[k]
N ) = 0, ∀k ∈ [1 : K]. (3)

Upon receiving the query Q
[k]
n , DBn returns an answer A

[k]
n to

the user, which is a function of the corresponding query and
the data stored in the DBn, i.e.,

H(A[k]
n |Q[k]

n , Zn) = 0, ∀k ∈ [1 : K], ∀n ∈ [1 : N ]. (4)
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From all the answers from databases, the user must be able
to correctly decode the desired message Wk with a small
probability of error Pe as the message size L approaches
infinity, i.e., the following correctness constraint must be
satisfied

H(Wk|A[k]
1 , . . . , A

[k]
N , Q

[k]
1 , . . . , Q

[k]
N ) = o(L), ∀k ∈ [1 : K],

(5)

where o(L) represents a function of L such that o(L)/L
approaches 0 as L approaches infinity. In order to prevent the
database DBn from learning the identity of requested message,
privacy must be guaranteed through the following statistical
equivalence constraints for all k1 �= k2 ∈ [1 : K]:

(Q[k1]
n ,A[k1]

n , W1, . . . , WK , Z1, . . . , ZN )

∼ (Q[k2]
n , A[k2]

n , W1, . . . , WK , Z1, . . . , ZN ). (6)

For a normalized storage μ, let φμ : {W[1:K] → Z[1:N ]}
be the storage placement function mapping the message bits
to the database storage. Let us denote the average number of
download bits (over all random queries) needed to retrieve
a file Wk for k ∈ [1 : K] privately by D

[k]
μ , i.e., D

[k]
μ ≥

H(A[k]
[1:N ]|Q[k]

[1:N ]). Finally, we denote the average number
of download bits (over all possible messages) as Dμ =
1
K

∑
k∈[1:K] D

[k]
μ . For a placement function φμ, we say that

a pair (Dμ, L) is achievable if there exists a PIR scheme
with storage, querying, and decoding functions, which satisfy
the storage, correctness and privacy constraints in (2), (5)
and (6), respectively. The performance of a PIR scheme is
characterized by the number of bits of desired information per
one downloaded bit. In particular, if Dμ is the total number
of downloaded bits, and L is the size of the desired message,
then the download cost is Dμ/L. In other words, the PIR rate
is L/Dμ. The goal is to characterize the optimal download
cost as a function of the database normalized storage μ:

D∗(μ) = min{Dμ/L : (Dμ, L) is achievable}. (7)

The storage-constrained capacity of PIR is the inverse of the
download cost,

C∗(μ) = max {L/Dμ : (Dμ, L) is achievable}. (8)

We next present Claim 1 which shows that the optimal
download cost D∗(μ) (or the inverse of capacity 1/C∗(μ))
is a convex function of the normalized storage μ. The proof
of Claim 1 is in Appendix A.

Claim 1: The optimal download cost D∗(μ) is a convex
function of μ. In other words, for any (μ1, μ2), and α ∈ [0, 1],
the following inequality is true:

D∗(αμ1 + (1 − α)μ2) ≤ αD∗(μ1) + (1 − α)D∗(μ2). (9)

A. Storage Constrained PIR: Uncoded Storage Assumption

Now, we specialize the above system model for the storage
constrained PIR using uncoded storage assumption, where
the databases only store uncoded functions of the K mes-
sages subject to the storage constraint. We consider a generic

uncoded placement strategy such that if we consider a mes-
sage Wk, we denote Wk,S as the set of bits of Wk that are
fully stored at the databases in the set S ⊆ [1 : N ], where
|S| ≥ 1, and are not stored at any of the other databases in
the set [1 : N ] \ S. That is:

Wk,S = Wk ∩ ZS ∩ (Wk \ Z[1:K]\S
)
, (10)

where Wk \ Z[1:K]\S denotes the parts of Wk that is not
available in the storage of databases in the set [1 : K] \ S.
As a result, we can write the content of DBn, Zn as

Zn = ∪
k∈[1:K]

∪
S⊆[1:N ]

n∈S
Wk,S . (11)

Furthermore, the message Wk consists of 2N − 1 partitions,
Wk,S , for S ∈ P([1 : N ]), where P([1 : N ]) is the power
set of all possible subsets of the set [1 : N ] not including the
empty set. Therefore, the message Wk can also be equivalently
expressed as

Wk = ∪
S⊆[1:N ]
|S|≥1

Wk,S . (12)

Now, let us consider Wk,S as a random variable with entropy

H(Wk,S) = |Wk,S |L, (13)

where |Wk,S | is the size of Wk,S normalized by the mes-
sage size L. Therefore, the following two constraints are
obtained:
• Message size constraint: The first constraint is related to
the total size of all the messages, Wk and k ∈ [1 : K], given
by KL bits,

1 =
1

KL
H(W[1:K]) =

1
KL

H(W1, W2, · · · , WK)

(a)
=

1
KL

K∑
k=1

H(Wk)
(b)
=

1
KL

K∑
k=1

∑
S⊆[1:N ]
|S|≥1

H(Wk,S)

=
N∑

�=1

1
K

K∑
k=1

∑
S⊆[1:N ]
|S|=�

|Wk,S |

=
N∑

�=1

(
N

�

)
1

K
(
N
�

) K∑
k=1

∑
S⊆[1:N ]
|S|=�

|Wk,S |

︸ ︷︷ ︸
�x�

=
N∑

�=1

(
N

�

)
x�,

(14)

where (a) follows since the messages are independent, (b)
follows from (12), and x� ≥ 0 is defined as

x�
Δ=

1
K
(
N
�

) K∑
k=1

∑
S⊆[1:N ]
|S|=�

|Wk,S |, � ∈ [1 : N ]. (15)

• Storage constraint: The second constraint is related to the
total storage of all the N databases, which cannot exceed
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μNKL bits for μ ∈ [ 1
K , 1],

μN ≥ 1
KL

N∑
n=1

H(Zn)
(a)
=

1
KL

N∑
n=1

K∑
k=1

∑
S⊆[1:N ]

n∈S

H(Wk,S)

(b)
=

1
K

K∑
k=1

∑
S⊆[1:N ]
|S|≥1

|S| |Wk,S |

=
N∑

�=1

�

K

K∑
k=1

∑
S⊆[1:N ]
|S|=�

|Wk,S |(c)=
N∑

�=1

�

(
N

�

)
x�, (16)

where (a) follows from (11), (b) is true because when we
sum up the contents of the storage at all the databases,
the chunk Wk,S is counted |S| number of times, which is the
number of databases storing this chunk, and (c) follows from
the definition of x� in (15). The message size and storage
constraints defined in this sub-section will be used in the
converse proofs for PIR from uncoded storage constrained
databases.

Remark 1 (Implication of Uncoded Storage Assumption):
The uncoded storage assumption of the storage in (11) implies
that for any subset K ∈ [1 : K] of messages, WK, and subset
N ∈ [1 : N ] of databases, ZN , there is a Markov chain
WK − ZN − W[1:K]\K. In other words the messages WK
and the messages W[1:K]\K are independent given the storage
contents of the databases, i.e.,

H(WK|ZN ,W[1:K]\K) = H(WK|ZN ). (17)

That is due to the fact that messages are i.i.d., and due to the
nature of uncoded storage placement, where W[1:K]\K cannot
be used to decode any information of WK from ZN .

III. MAIN RESULT AND DISCUSSIONS

Our first result is a general information theoretic lower
bound on the download cost of the PIR problem with any
arbitrary storage at the databases.

Theorem 1: For the storage constrained PIR problem with
N databases, K messages (of size L bits each), and arbitrary
storage Z1, Z2, . . . , ZN at the N databases, the optimal down-
load cost is lower bounded as follows,

D∗(μ) ≥ 1 +
N∑

n1=1

λ(N−n1,1)

n1
+

N∑
n1=1

N∑
n2=n1

λ(N−n1,2)

n1n2

+ · · · +
N∑

n1=1

. . .

N∑
nK−1=nK−2

λ(N−n1,K−1)

n1 × · · · × nK−1
, (18)

where λ(n,k) is defined as follows,

λ(n,k)
Δ=

1
KL

(
K−1

k

)(
N
n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

H(Wj |ZN ,WK),

(19)

for n ∈ [0 : N ] and k ∈ [0 : K].
The complete proof of Theorem 1 is presented in

Section IV.

Boundary Conditions on the function λ(n,k):

• We notice that when n = N or k = K , then we get all
the messages in the conditioning of the entropy terms of
λ(n,k) in (19), and therefore we get the following boundary
conditions on λ(n,k):

λ(n=N,k) = 0, ∀k ∈ [0 : K],
λ(n,k=K) = 0, ∀n ∈ [0 : N ]. (20)

• We further notice that for n = 0 and all k ∈ [0 : K], then
we only have messages in the conditioning of the entropy
terms in (19) which are i.i.d., therefore, we get another set of
boundary conditions on λ(n,k) for all k ∈ [0 : K]:

λ(n=0,k) =
1

KL
(
K−1

k

)(
N
n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

H(Wj)

=
1

KL
(
K−1

k

)(
N
n

) K∑
j=1

∑
K⊆[1:K]\j

|K|=k

∑
N⊆[1:N ]
|N|=n

L = 1.

(21)

• For the replicated databases case, considered in [7] where
every database stores all the files, then for the function λ(n,k)

where n ∈ [1 : N ], we retain all the messages in the
conditioning of the entropy terms in (19), which gives the
following conditions over λ(n,k):

λ(n,k) = 0, ∀n ∈ [1 : N ], ∀k ∈ [0 : K]. (22)

Remark 2 (Replicated Databases as a Special Case of
Theorem 1): We notice that for the replicated databases case
considered in [7], by applying the boundary conditions in (21)
and (22) to the general lower bound in Theorem 1, we get the
lower bound previously obtained in [7] as follows,

D∗(μ = 1) ≥ 1 +
N∑

n1=1

λ(N−n1,1)

n1
+

N∑
n1=1

N∑
n2=n1

λ(N−n1,2)

n1n2

+ · · · +
N∑

n1=1

. . .
N∑

nK−1=nK−2

λ(N−n1,K−1)

n1 × · · · × nK−1

(a)
= 1 +

N∑
n1=N

λ(N−n1,1)

n1
+

N∑
n1=N

N∑
n2=n1

λ(N−n1,2)

n1n2

+ · · · +
N∑

n1=N

. . .

N∑
nK−1=nK−2

λ(N−n1,K−1)

n1 × · · · × nK−1

= 1 +
λ(0,1)

N
+

λ(0,2)

N2
+ · · · + λ(0,K−1)

NK−1

(b)
= 1 +

1
N

+
1

N2
+ · · · + 1

NK−1
, (23)

where (a) follows from the boundary conditions on λ(n,k)

from replicated databases in (22), and (b) follows from the
boundary condition in (21).

The following Theorem summarizes the second main result
of this article, which characterizes the information theoreti-
cally optimal download cost of the PIR problem from uncoded
storage constrained databases as a function of the available
storage.

Authorized licensed use limited to: The University of Arizona. Downloaded on January 30,2021 at 20:39:51 UTC from IEEE Xplore.  Restrictions apply. 



6622 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

Fig. 2. The optimal trade-off between storage and download cost for uncoded
storage constrained PIR.

Theorem 2: For the uncoded storage constrained PIR
problem with K messages (of size L bits each), and N
homogeneous storage constrained databases of μKL bits,
the information-theoretically optimal trade-off between storage
and download cost is a piece-wise linear function given by
the lower convex hull of the following (μ, D∗(μ)) pairs, for
t = 1, 2, . . . , N :(

μ =
t

N
, D∗(μ) = D̃(t)

)
, (24)

where D̃(t) is defined as follows for t ∈ [1 : N ]:

D̃(t) Δ=
K−1∑
k=0

1
tk

. (25)

The general achievable scheme for any (N, K) and any μ
is described in Section VI. The converse proof of Theorem 2
is an application to Theorem 1 for the special case of homo-
geneous uncoded storage constrained databases with the proof
in details presented in Section V.

The optimal trade-off resulting from Theorem 2 is illustrated
in Figure 2. The smallest value of μ = 1/N corresponds to
the parameter t = 1, for which the optimal download cost is
maximal and is equal to K , corresponding to download all
the messages from the databases. The other extreme value of
storage is μ = 1, corresponding to t = N , i.e., the setting of
full storage in which every database can store all the messages.
For this case, the optimal download cost was characterized
in [7] as (1 + 1

N + 1
N2 + · · · + 1

NK−1 ). The PIR download
cost for the storage values in between outperforms memory
sharing between the two extremes, i.e., lower than the line
joining between them.

Remark 3 (Applications of Theorem 1 for Other Variants of
PIR With Uncoded Storage): The converse proof of Theorem 2
for homogeneous uncoded storage constrained databases is a
direct application of Theorem 1. The term λ(n,k) in Theorem 1
signifies the normalized average remaining entropy in a mes-
sage after conditioning on k other messages and the storage
from n databases. We note that the result in Theorem 1 can
be applied to other models beyond homogeneous uncoded

Fig. 3. Optimal trade-off between download and storage for uncoded storage
constrained PIR compared to MDS-PIR where (N, K) = (4, 4).

storage databases. Recently, the lower bound in Theorem 1 was
applied in [28] to characterize the capacity of decentralized
uncoded storage constrained databases where the databases
can design their own storage independently at random. The
lower bound in Theorem 1 was also proven tight for the case
of heterogeneous uncoded storage constrained databases [30],
where databases have heterogeneous sizes.

Remark 4 (Significance of Coded Storage to Further Reduce
Download Cost): The problem of PIR with databases storing
(N, M) MDS coded (or MDS-PIR) messages was considered
in [10] to satisfy the M out of N recoverability constraint.
In the MDS-PIR scheme, each database stores μMDSKL bits,
where μMDS = 1/M and the PIR scheme of [10] achieves
the optimal download cost given as D∗

MDS(μMDS) = 1 + M
N +

M2

N2 + · · ·+ MK−1

NK−1 . In Figure 3, we plot the tradeoff between
storage and download cost for the MDS-PIR by varying the
value of M in the range M ∈ [1 : N ] and compare to the
optimal tradeoff for uncoded storage constrained PIR given
in Theorem 2 for N = K = 4. We notice that our scheme
achieves better download cost for higher storage values μ ≥
0.5. At a first glance, it might appear that optimal MDS coded
scheme should be better than (or at least same as) our uncoded
storage scheme in terms of download cost. However, due to
the additional recoverability constraint, MDS-PIR capacity is
lower than SC-PIR for some storage values. For storage
values μ < 0.5, MDS-PIR scheme performs better in terms
of download cost and has the added benefit of data recov-
erability. While the two schemes are optimal under different
assumptions, this comparison shows that coded storage can be
beneficial in general to further reduce the download cost.

We briefly describe here the main elements of the proofs of
Theorems 1 and 2 through an example of N = 3 databases
and K = 3 messages.

A. Sketch Proof of Theorem 1 for N = K = 3

We start by using following bound on D
[1]
μ which was first

found in [7, Lemma 1] for N = K = 3:

D[1]
μ − L + o(L) ≥ I(W[2:3];Q

[1]
[1:3],A

[1]
[1:3]|W1). (26)
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The above bound can be interpreted as follows: given message
W1 is requested, then the privacy penalty Dμ−L is bounded by
the amount of information the queries and answers tell about
the remaining messages W[2:3] after successfully decoding
message W1. Later, we prove a more general form of this
bound in Lemma 2 (Section IV).

Using the chain rule for mutual information in all possi-
ble orders for a permutation ρ : (1, 2, 3) → (σ1, σ2, σ3),
we expand the RHS of the bound in (26) as,

I(W[2:3];Q
[1]
[1:3],A

[1]
[1:3]|W1)

=I(W[2:3]; Q[1]
σ1

, A[1]
σ1
|W1)

+ I(W[2:3]; Q[1]
σ2

, A[1]
σ2
|W1, Q

[1]
σ1

, A[1]
σ1

)

+ I(W[2:3]; Q[1]
σ3

, A[1]
σ3
|W1,Q[1]

σ[1:2]
,A[1]

σ[1:2]
) (27)

(a)

≥ I(W[2:3]; Q[1]
σ1

, A[1]
σ1
|W1) + I(W[2:3]; Q[1]

σ2
, A[1]

σ2
|W1, Zσ1)

+ I(W[2:3]; Q[1]
σ3

, A[1]
σ3
|W1, Zσ1 , Zσ2)

(b)
= I(W[2:3]; Q[2]

σ1
, A[2]

σ1
|W1) + I(W[2:3]; Q[2]

σ2
, A[2]

σ2
|W1, Zσ1)

+ I(W[2:3]; Q[2]
σ3

, A[2]
σ3
|W1, Zσ1 , Zσ2), (28)

where (a) follows by bounding the second and the third terms
in (27) separately where later in Lemma 1 (Section IV),
we generally prove that the mutual information terms with
queries and answers of some databases in the conditioning can
be lower bounded by replacing the queries and the answers
with the corresponding databases storage random variables;
and (b) follows from the privacy constraint in (6) where the
individual queries and answers are invariant with respect to the
requested message index. We would like to point out here that
in the original PIR model (replicated databases), the second
and third terms in (28) were lower bounded by zero. This was
tight in that setting with any DB storage in the conditioning
having all the messages, and hence the mutual information
terms will be zero. However, for the SC-PIR model in this
article, these terms will not be zero as the storage constrained
DB may not contain all the messages.

Next, we sum (28) over all possible permutations ρ ∈ [3!]
to get the following bound:

I(W[2:3];Q
[1]
[1:3],A

[1]
[1:3]|W1)

≥ 1
3

3∑
i=1

I(W[2:3]; Q
[2]
i , A

[2]
i |W1)

+
1
6

3∑
i=1

∑
j∈[1:3]\i

I(W[2:3]; Q
[2]
j , A

[2]
j |W1, Zi)

+
1
3

3∑
i=1

I(W[2:3]; Q
[2]
i , A

[2]
i |W1,Z[1:3]\i)

(a)

≥ 1
3

3∑
i=1

H(A[2]
i |W1, Q

[2]
i )

+
1
6

3∑
i=1

∑
j∈[1:3]\i

H(A[2]
j |W1, Zi, Q

[2]
j )

+
1
3

3∑
i=1

H(A[2]
i |W1,Z[1:3]\i, Q

[2]
i )

(b)

≥ 1
3
H(A[2]

[1:3]|W1,Q
[2]
[1:3])

+
1
6

3∑
i=1

H(A[2]
[1:3]\i|W1, Zi,Q

[2]
[1:3])

+
1
3

3∑
i=1

H(A[2]
i |W1,Z[1:3]\i,Q

[2]
[1:3])

(c)
=

1
3
I(W[2:3];A

[2]
[1:3]|W1,Q

[2]
[1:3])

+
1
6

3∑
i=1

I(W[2:3];A
[2]
[1:3]\i|W1, Zi,Q

[2]
[1:3])

+
1
3

3∑
i=1

I(W[2:3]; A
[2]
i |W1,Z[1:3]\i,Q

[2]
[1:3])

(d)
=

1
3
I(W[2:3]; W2,Q

[2]
[1:3],A

[2]
[1:3]|W1)

+
1
6

3∑
i=1

I(W[2:3]; W2,Q
[2]
[1:3],A

[2]
[1:3]\i|W1, Zi)

+
1
3

3∑
i=1

I(W[2:3]; W2,Q
[2]
[1:3], A

[2]
i |W1,Z[1:3]\i) + o(L)

=
1
3
H(W2|W1) +

1
6

3∑
i=1

H(W2|W1, Zi)

+
1
3

3∑
i=1

H(W2|W1,Z[1:3]\i)

+
1
3

I(W3;Q
[2]
[1:3],A

[2]
[1:3]|W[1:2])︸ ︷︷ ︸

�Term1

+
1
6

3∑
i=1

I(W3;Q
[2]
[1:3]\i,A

[2]
[1:3]\i|W[1:2], Zi)︸ ︷︷ ︸

�Term2

+
1
3

3∑
i=1

I(W3; Q
[2]
i , A

[2]
i |W[1:2],Z[1:3]\i)︸ ︷︷ ︸
�Term3

+o(L), (29)

where (a) and (c) follow since any answer A
[2]
i is a function

of the messages W[1:K] and the query Q
[2]
i ; (b) follows

from the union bound and since conditioning reduces entropy;
and (d) follows from the fact that queries are independent
from the messages, then from the decoding constraint in (7)
where W2 is decodable from Q[2]

[1:3], A[2]
[1:3]\N and ZN for any

N ⊆ [1 : 3].
Next, we can lower bound the three terms, Term1, Term2

and Term3, in (29) in a similar manner to get the following
bounds:

Term1 ≥ 1
3
H(W3|W[1:2]) +

1
6

3∑
i=1

H(W3|W[1:2], Zi)

+
1
3

3∑
i=1

H(W3|W[1:2],Z[1:3]\i) + o(L),

Term2 ≥ 1
2
H(W3|W[1:2], Zi)

+
1
2

∑
j∈[1:3]\i

H(W3|W[1:2],Z[1:3]\j) + o(L),

Term3 ≥ H(W3|W[1:2],Z[1:3]\i) + o(L),
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and plug these back in (29) to arrive at the following bound:

D[1]
μ ≥L +

1
3
H(W2|W1) +

1
9
H(W3|W[1:2])

+
1
6

3∑
i=1

H(W2|W1, Zi) +
1
3

3∑
i=1

H(W2|W1,Z[1:3]\i)

+
5
36

3∑
i=1

H(W3|W[1:2], Zi)

+
11
18

3∑
i=1

H(W3|W[1:2],Z[1:3]\i) + o(L). (30)

By repeating the bounding procedure in (26) with any per-
mutation of the messages indexes π : (1, 2, 3) → (π1, π2, π3),
and then sum up over all permutations π ∈ [3!], we obtain the
following bound on the average number of downloaded bits
Dμ,

Dμ ≥ L + o(L) +
1
6

∑
K⊆[1:3]
|K|=1

∑
k∈[1:3]\K

(
1
3
H(Wk|WK)

+
1
6

3∑
i=1

H(Wk|WK, Zi) +
1
3

3∑
i=1

H(Wk|WK,Z[1:3]\i)

)

+
1
6

∑
K⊆[1:3]
|K|=2

∑
k∈[1:3]\K

(
2
9
H(Wk|WK)

+
5
18

3∑
i=1

H(Wk|WK, Zi)+
11
9

3∑
i=1

H(Wk|WK,Z[1:3]\i)

)

= L +
1
3
λ(0,1)L +

1
2
λ(1,1)L + λ(2,1)L +

2
18

λ(0,2)L

+
5
12

λ(1,2)L +
11
6

λ(2,2)L + o(L), (31)

where λ(n,k) is defined in (19).
Since the bound in (31) is valid for any achievable pair

(Dμ, L), it is also a valid bound on the optimal download
cost, D∗(μ), as defined in (7), where μ ∈ [13 , 1]. Therefore,
by taking the limit L → ∞, we obtain the following bound
on D∗(μ):

D∗(μ) ≥1 +
1
3
λ(0,1) +

1
2
λ(1,1) + λ(2,1) +

2
18

λ(0,2)

+
5
12

λ(1,2) +
11
6

λ(2,2), (32)

which satisfies the bound in Theorem 1 for N = K = 3.

B. Sketch Proof of Theorem 2 for N = K = 3 - Converse
Proof

Following Theorem 2, the optimal trade-off for the case
N = K = 3 has three corner points as shown in Figure 4:
The corner point P1 (μ = 1/3) where the optimal scheme is
to download all messages to ensure privacy; the corner point
P3 (μ = 1) which corresponds to the replicated databases case
considered in [7]; and the middle corner point P2 (μ = 1/2)
where the optimal trade-off outperforms memory sharing
between P1 and P3.

Fig. 4. Optimal trade-off between download and storage for (N, K) =
(3, 3). Following Theorem 2, the trade-off has three corner points, labeled as
P1, P2 and P3.

From Figure 4, it is clear that we need to need to prove the
following two lower bounds on the download cost:

D∗(μ) ≥ 17 − 15μ

4
, D∗(μ) ≥ 85 − 33μ

36
. (33)

To this end, we now specialize the lower bound in (31) for the
case of uncoded storage placement using Remark 1 as follows:

Dμ ≥ L +
1
6

∑
K⊆[1:3]
|K|=1

∑
k∈[1:3]\K

(
1
3
H(Wk) +

1
6

3∑
i=1

H(Wk|Zi)

+
1
3

3∑
i=1

H(Wk|Z[1:3]\i)

)

+
1
6

∑
K⊆[1:3]
|K|=2

∑
k∈[1:3]\K

(
2
9
H(Wk) +

5
18

3∑
i=1

H(Wk|Zi)

+
11
9

3∑
i=1

H(Wk|Z[1:3]\i)

)
+ o(L)

= L +
4
27

3∑
k=1

H(Wk) +
11
108

3∑
i=1

3∑
k=1

H(Wk|Zi)

+
17
54

3∑
i=1

3∑
k=1

H(Wk|Z[1:3]\i) + o(L). (34)

Next, we use the representation of the messages for uncoded
storage given in (12), where Wk can be partitioned into disjoint
parts, to write the lower bound in (34) in terms of the variable
x� defined in (15) as follows,

Dμ

(a)

≥ L + o(L) +
4
27

3∑
k=1

∑
S⊆[1:3]
|S|≥1

|Wk,S |L

+
11
108

3∑
i=1

3∑
k=1

∑
S⊆[1:3]\i
|S|≥1

|Wk,S |L +
17
54

3∑
i=1

3∑
k=1

|Wk,{i}|L

=L +
2
3

3∑
k=1

∑
S⊆[1:3]
|S|=1

|Wk,S |L +
1
4

3∑
k=1

∑
S⊆[1:3]
|S|=2

|Wk,S |L

+
4
27

3∑
k=1

∑
S⊆[1:3]
|S|=3

|Wk,S |L + o(L)

(b)
= L + 6x1L +

9
4
x2L +

4
9
x3L + o(L), (35)
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where (a) follows from (12); and (b) follows from the
definition of x� in (15).

Since the bound in (35) is valid for any achievable pair
(Dμ, L), it is also a valid bound on the optimal download
cost, D∗(μ), as defined in (7), where μ ∈ [13 , 1]. Therefore,
by dividing (35) and taking the limit L → ∞, we obtain the
following bound on D∗(μ):

D∗(μ) ≥ 1 + 6x1 +
9
4
x2 +

4
9
x3. (36)

Moreover, the message size, and the storage constraints for
uncoded storage placement for this example N = K = 3
follow from (14), and (16), respectively. Hence, we obtain the
following constraints:

3x1 + 3x2 + x3 = 1, (37)

3x1 + 6x2 + 3x3 ≤ 3μ. (38)

We solve the system of linear inequalities in (36), (37), and
(38) using Gaussian elimination to obtain the following two
lower bounds on D∗(μ) which completes the converse proof
for N = K = 3,

D∗(μ) ≥ 17 − 15μ

4
+

17
18

x3

(a)

≥ 17 − 15μ

4
, (39)

D∗(μ) ≥ 85 − 33μ

36
+

17
6

x1

(b)

≥ 85 − 33μ

36
, (40)

where steps (a) and (b) follow since x1, x3 ≥ 0 by definition.

C. Sketch Proof of Theorem 2 for N = K = 3 - Achievable
Scheme

The optimal trade-off is achieved by memory sharing
between different PIR schemes (see Claim 1), which are
designed for three values of storage μ ∈ {1/3, 2/3, 1}.
The storage placement of our SC-PIR scheme is inspired by
the storage placement strategy for caching systems in [32].
Without loss of generality, consider the case where the user
wants to retrieve message W1. Same scheme can be applied
for any other requested message due to the symmetry of the
setting.
• Case P1 (t = 1 or μ = 1/3):
Storage Placement: For storage placement, we split each
message into

(
3
1

)
= 3 sub-messages and label each by

a unique subset of [1 : 3] of size t = 1, i.e., Wk =
{Wk,{1}, Wk,{2}, Wk,{3}} for k ∈ [1 : 3], and each
sub-message is of size L/3 bits. Subsequently, DBn stores
those sub-messages (of each message) whose indexes contains
n. For instance, DB1 stores {W1,{1}, W2,{1}, W3,{1}}, which
satisfies the storage constraint of μKL = L bits.
PIR Scheme: The PIR scheme is trivial for this storage point,
where in order to maintain privacy all the messages should
be downloaded from the databases for any message request.
Hence, the download cost for this scheme is given as D(μ =
1
3 ) = 9 × 1

3 = 1/3, and point P1 is achieved.
• Case P2 (t = 2 or μ = 2/3):
Storage Placement: Here, we split each message into

(
3
2

)
= 3

sub-messages and label each by a unique subset of [1 : 3]
of size t = 2, i.e., Wk = {Wk,{1,2}, Wk,{1,3}, Wk,{2,3}}

for k ∈ [1 : 3]. Each sub-message is of size L/3 bits.
Subsequently, DBn stores those sub-messages (of each
message) whose index contains n. For instance, DB1 stores
{W1,{1,2}, W1,{1,3}, W2,{1,2}, W2,{1,3}, W3,{1,2}, W3,{1,3}},
which satisfies the storage constraint of μKL = 2L bits.
PIR Scheme: The storage constrained PIR scheme in this case
works in 3 blocks, where in every block, only 2 databases
are involved whose indexes are in the set S ⊂ [1 : 3]
where |S| = 2. In each block labeled with S, we apply
the original PIR scheme proposed in [7] with N � = t =
2 and K = 3 only involving the sub-messages Wk,S for
k ∈ [1 : 3]. This is enabled by our storage placement
scheme for storage constrained databases. Hence, the average
download cost equals to that of each block and is given by
D(μ = 2/3) = 1 + 1

2 + 1
22 = 7/4, and point P2 is achieved.

• Case P3 (t = 3 or μ = 1):
Storage Placement: The storage placement is trivial in this
case, where all the databases can store the 3 messages com-
pletely, i.e., μKL = 3L bits.
PIR Scheme: This storage point is the replicated databases
case considered in [7]. Applying the scheme in [7], we achieve
a download cost D(μ = 1) = (1+ 1

3 + 1
32 ) = 13/9, and point

P3 is achieved.
Finally, the intermediate values of μ, between the points P1,

P2, and P3, can be achieved by memory-sharing (see Claim 1),
showing that the lower convex hull given in Figure 4 is
achievable. Therefore, the scheme is information-theoretically
optimal for N = 3, and K = 3.

IV. PROOF OF THEOREM 1: GENERAL

LOWER BOUND ON D∗(μ)
We start by proving the following Lemma, which provides

an information theoretic bound useful in many steps of the
general converse proof.

Lemma 1: For any N ⊆ [1 : N ], K ⊆ [1 : K], i ∈ [1 : N ],
and j ∈ [1 : K] we can write the following lower bound:

I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,Q[j]

N ,A[j]
N )

≥ I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,ZN ). (41)

The proof of Lemma 1 can be found in Appendix B.
Remark 5: Lemma 1 lower bounds the mutual informa-

tion I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,Q[j]

N ,A[j]
N ) by replacing the

queries and answers Q[j]
N ,A[j]

N in the conditioning, with the
storage contents of the corresponding subset of databases ZN .
This Lemma is repeatedly used in our converse proof for the
download cost.

The following Lemma gives a lower bound on the
number of downloaded bits Dμ in terms of a sum-
mation of mutual information functions in the form
I(W[1:K]\K; Q[j]

i , A
[j]
i |WK,ZN ). Notice that this mutual

information form appears in right side of the bound in
Lemma 1. The proof of Lemma 2 can be found in Appendix C.

Lemma 2: The average number of downloaded bits Dμ of
the storage-constrained PIR is lower bounded as follows:

Dμ ≥ L +
N−1∑
n=0

T (n, 1) + o(L), (42)
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where T (n, k) for n ∈ [0 : N ] and k ∈ [0 : K] is defined as
follows:

T (n, k) Δ=
1

NK
(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

×
∑

i∈[1:N ]\N
I(W[1:K]\K; Q[j]

i , A
[j]
i |WK,ZN ).

(43)

We notice that when n = N or k = K , then we get all the
messages in the conditioning of the mutual information term
above, and therefore we get the following boundary conditions
on T (n, k):

T (n = N, k) = 0, ∀k ∈ [0 : K],
T (n, k = K) = 0, ∀n ∈ [0 : N ]. (44)

In order to utilize the bound developed in Lemma 2,
we further lower bound the function T (n, k) in the following
Lemma. This lower bound on T (n, k) has an interesting
recursive structure, which in turns allows us to leverage the
boundary conditions (44) of the function T (n, k) and thus
obtain a closed-form lower bound on the download cost.

Lemma 3: The function T (n, k) is lower bounded as
follows:

T (n, k) ≥ 1
N − n

[
N−1∑
n�=n

T (n�, k + 1) + λ(n,k)L

]
+ o(L),

(45)

where λ(n,k) as defined in (19),

λ(n,k)
Δ=

1
KL

(
K−1

k

)(
N
n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

H(Wj |ZN ,WK),

(46)

for n ∈ [0 : N ] and k ∈ [0 : K].
The proof of Lemma 3 is in Appendix D. Now, we use

the recursive lower bound on T (n, k) given in Lemma 3 to
further lower bound the average number of downloaded bits
Dμ obtained in Lemma 2 as follows:

Dμ ≥ L + o(L) +
N−1∑
n1=0

T (n1, 1) + o(L)

≥ L +
N−1∑
n1=0

1
N − n1

(
λ(n1,1)L +

N−1∑
n2=n1

T (n2, 2)

)

≥ L + o(L)
N−1∑
n1=0

λ(n1,1)L

N − n1

+
N−1∑
n1=0

N−1∑
n2=n1

(
λ(n2,2)L + o(L)

∑N−1
n3=n2

T (n3, 3)
)

(N − n1)(N − n2)

...

≥L+o(L)+
N−1∑
n1=0

λ(n1,1)L

N − n1
+

N−1∑
n1=0

N−1∑
n2=n1

λ(n2,2)L

(N − n1)(N − n2)

+
N−1∑
n1=0

N−1∑
n2=n1

N−1∑
n3=n2

λ(n3,3)L

(N − n1)(N − n2)(N − n3)
+ · · ·+

+
N−1∑
n1=0

. . .

N−1∑
nK−1=nK−2

λ(nK−1,K−1)L +
∑N−1

nK=nK−1
T (nK , K)

(N − n1) × · · · × (N − nK−1)

(a)
= L+o(L)+

N−1∑
n1=0

λ(n1,1)L

N − n1
+

N−1∑
n1=0

N−1∑
n2=n1

λ(n2,2)L

(N − n1)(N − n2)

+
N−1∑
n1=0

N−1∑
n2=n1

N−1∑
n3=n2

λ(n3,3)L

(N − n1)(N − n2)(N − n3)
+ · · ·

+
N−1∑
n1=0

. . .

N−1∑
nK−1=nK−2

λ(nK−1,K−1)L

(N − n1) × · · · × (N − nK−1)

(b)
= L + o(L) +

N∑
n1=1

λ(N−n1,1)L

n1
+

N∑
n1=1

n1∑
n2=1

λ(N−n2,2)L

n1n2

+ · · · +
N∑

n1=1

. . .

nK−2∑
nK−1=1

λ(N−nK−1,K−1)L

n1 × · · · × nK−1

(c)
= L + o(L) +

N∑
n1=1

λ(N−n1,1)L

n1
+

N∑
n1=1

N∑
n2=n1

λ(N−n1,2)L

n1n2

+ · · · +
N∑

n1=1

. . .

N∑
nK−1=nK−2

λ(N−n1,K−1)L

n1 × · · · × nK−1
, (47)

where (a) follows by applying the boundary condition on
T (n, k) as given in (44), where T (n, k = K) = 0 for
n ∈ [0 : N−1]; and (b), (c) follow by changing the summation
indexes. Taking the limit L → ∞, we obtain the bound on Dμ

L ,
which is also a valid bound on the optimal download cost,
D∗(μ), as defined in (7) for μ ∈ [ 1

N , 1], since the bound
in (54) is valid for any achievable pair (Dμ, L). Therefore,
we obtain the following bound on D∗(μ),

D∗(μ) ≥ 1 +
N∑

n1=1

λ(N−n1,1)

n1
+

N∑
n1=1

N∑
n2=n1

λ(N−n1,2)

n1n2

+ · · · +
N∑

n1=1

. . .

N∑
nK−1=nK−2

λ(N−n1,K−1)

n1 × · · · × nK−1
, (48)

which completes the proof of Theorem 1.

V. PROOF OF THEOREM 2: LOWER BOUNDS FOR

UNCODED STORAGE CONSTRAINED DATABASES

AND GENERAL (N, K, μ)

We now specialize the lower bound in (47) for the case of
uncoded storage placement as defined in Section II-A. Using
Remark 1, the term λ(n,k) as defined in (19) can be expressed
as,

λ(n,k)=
1

KL
(
K−1

k

)(
N
n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

H(Wj |ZN ,WK)

=
1

K
(
K−1

k

)(
N
n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N |=n

∑
j∈[1:K]\K

H(Wj |ZN )

Authorized licensed use limited to: The University of Arizona. Downloaded on January 30,2021 at 20:39:51 UTC from IEEE Xplore.  Restrictions apply. 



ATTIA et al.: CAPACITY OF PIR FROM UNCODED STORAGE CONSTRAINED DATABASES 6627

=
1

K
(
K−1

k

)(
N
n

) ∑
N⊆[1:N ]
|N |=n

K∑
j=1

∑
K⊆[1:K]\{j}

|K|=k

H(Wj |ZN )

=
1

K
(
N
n

) ∑
N⊆[1:N ]
|N |=n

K∑
j=1

H(Wj |ZN ). (49)

We notice that λ(n,k) is independent of k, and hence we can

define λn
Δ= λ(n,k), for all k ∈ [1 : K]. Therefore, we can

write the bound in (47) as follows,

Dμ ≥ L + o(L) +
N∑

n1=1

(
1
n1

+
N∑

n2=n1

1
n1n2

+ · · ·

+
N∑

n2=n1

. . .
N∑

nK−1=nK−2

1
n1 × · · · × nK−1

⎞
⎠λN−n1

= L +
N∑

n1=1

S(n1, K) λN−n1 + o(L), (50)

where S(n, k), for n ∈ [1 : N ] and k ∈ [1 : K], is defined as
follows,

S(n, k) Δ=
1
n

+
N∑

n2=n

1
nn2

+ · · ·

+
N∑

n2=n

. . .

N∑
nk−1=nk−2

1
nn2 × · · · × nk−1

. (51)

It is important to notice the following boundary conditions and
properties of S(n, k):

Property 1: S(n, k = 1) = 0,

Property 2: S(n, k = 2) =
1
n

,

Property 3: NS(n = N, k) = S(n = N, k − 1) + 1,

Property 4: nS(n, k) − (n + 1)S(n + 1, k) = S(n, k − 1).
(52)

The first 3 properties are straight forward to prove from the
definition of S(n, k) in (51). The fourth property of S(n, k)
provides a useful recursive relation and can be proven as
follows:

nS(n, k) − (n + 1)S(n + 1, k)

(a)
=

(
1 +

N∑
n2=n

1
n2

+
N∑

n2=n

N∑
n3=n2

1
n2n3

+ · · ·

+
N∑

n2=n

· · ·
∑

nk−1=nk−2

1
n2 × · · · × nk−1

)

−
(

1 +
N∑

n2=n+1

1
n2

+
N∑

n2=n+1

N∑
n3=n2

1
n2n3

+ · · ·

+
N∑

n2=n+1

· · ·
∑

nk−1=nk−2

1
n2 × · · · × nk−1

)

=
1
n

+
N∑

n3=n

1
nn3

+
N∑

n3=n

N∑
n4=n3

1
nn3n4

+ · · ·

+
N∑

n3=n

· · ·
N∑

nk−1=nk−2

1
nn3 × · · · × nk−1

(b)
=

1
n

+
N∑

n2=n

1
nn2

+
N∑

n2=n

N∑
n3=n2

1
nn2n3

+ · · ·

+
N∑

n2=n

· · ·
N∑

nk−2=nk−3

1
nn2 × · · · × nk−2

(c)
= S(n, k − 1), (53)

where (a) and (c) follow from the definition of S(n, k) in (51);
and (b) follows by relabeling the summation indexes.

Next, we express the λn term that appears in (50) in terms
of x� as defined in (15) as follows,

λn =
1

K
(
N
n

) ∑
N⊆[1:N ]
|N |=n

K∑
k=1

H(Wk/ZN )

=
1

K
(
N
n

) ∑
N⊆[1:N ]
|N |=n

K∑
k=1

∑
S⊆[1:N ]\N

|S|≥1

|Wk,S |L

=
1

K
(
N
n

) N−n∑
�=1

K∑
k=1

∑
N⊆[1:N ]
|N |=n

∑
S⊆[1:N ]\N

|S|=�

|Wk,S |L

=
1

K
(
N
n

) N−n∑
�=1

K∑
k=1

∑
S⊆[1:N ]
|S|=�

∑
N⊆[1:N ]\S

|N|=n

|Wk,S |L

=
1

K
(
N
n

) N−n∑
�=1

K∑
k=1

∑
S⊆[1:N ]
|S|=�

(
N − �

n

)
|Wk,S |L

=
N−n∑
�=1

(
N − n

�

)
1

K
(
N
�

) K∑
k=1

∑
S⊆[1:N ]
|S|=�

|Wk,S |L

=
N−n∑
�=1

(
N − n

�

)
x�L. (54)

Substituting (54) in (50) and taking the limit L → ∞,
we obtain the bound on Dμ

L in terms of x� as follows,

Dμ

L
≥ 1 +

N∑
n1=1

n1∑
�=1

(
n1

�

)
S(n1, K) x�

= 1 +
N∑

�=1

N∑
n1=�

(
n1

�

)
S(n1, K) x� = 1 +

N∑
�=1

α(�, K) x�,

(55)

where α(�, k) for � ∈ [1 : N ] and k ∈ [1 : K] is defined as
follows,

α(�, k) Δ=
N∑

n=�

(
n

�

)
S(n, k). (56)

Since the bound in (55) is valid for any achievable pair
(Dμ, L), it is also a valid bound on the optimal download cost,
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D∗(μ), as defined in (7), where μ ∈ [ 1
N , 1]. Therefore,

we obtain the following bound on D∗(μ),

D∗(μ) ≥ 1 +
N∑

�=1

α(�, K) x�. (57)

Next, we use the properties of S(n, k) in (52) to obtain a
recursion relation for α(�, k) as introduced in the following
Lemma:

Lemma 4: The function α(�, k) satisfies the following
recursion relation:

α(�, k) =
1
�

[
α(�, k − 1) +

(
N

�

)]
. (58)

Proof:

α(�, k)
(a)
=

N∑
n=�

(
n

�

)
S(n, k) =

1
�

N∑
n=�

(
n − 1
� − 1

)
nS(n, k)

=
1
�

[
N∑

n=�

(
n − 1
� − 1

)
nS(n, k) +

N∑
n=�+1

(
n − 1

�

)
nS(n, k)

−
N∑

n=�+1

(
n − 1

�

)
nS(n, k)

]

=
1
�

[
N∑

n=�

(
n

�

)
nS(n, k) −

N−1∑
n=�

(
n

�

)
(n + 1)S(n + 1, k)

]

=
1
�

[
N−1∑
n=�

(
n

�

)
[nS(n, k) − (n + 1)S(n, k)]

+
(

N

�

)
NS(N, k)

]
(b)
=

1
�

[
N−1∑
n=�

(
n

�

)
S(n, k − 1) +

(
N

�

)
S(N, k − 1) +

(
N

�

)]

=
1
�

[
N∑

n=�

(
n

�

)
S(n, k − 1) +

(
N

�

)]
(c)
=

1
�

[
α(�, k − 1) +

(
N

�

)]
, (59)

where (a) and (c) follow from the definition of α(�, k) in (56);
and (b) follows from properties 3 and 4 in (52).

Next, we use the recursion relation for α(�, k) given in
Lemma 4 to obtain a closed form expression of the coefficients
α(�, K), for � ∈ [1 : N ], in terms of the system parameters as
follows:

α(�, K) =
1
�

(
α(�, K − 1) +

(
N

�

))
=

1
�

(
N

�

)
+

1
�2

(
α(�, K − 2) +

(
N

�

))
...

=
(

N

�

)(
1
�

+
1
�2

+ · · · + 1
�K−1

)
=
(

N

�

)(
D̃(�) − 1

)
, (60)

which follows by applying the boundary condition on α(�, k)
where α(�, k = 1) = 0, and D̃(�) =

∑K−1
k=0

1
�k as defined

in (25). Therefore, the bound in (57) can be written as

D∗(μ) ≥ 1 +
N∑

�=1

(
N

�

)(
D̃(�) − 1

)
x�. (61)

Next, we obtain N − 1 different lower bounds on D∗(μ),
by eliminating the pairs (xj , xj+1), for each j ∈ [1 : N − 1],
in the equation (61) using the message size, and the storage
constraints for uncoded storage placement given in (14),
and (16), respectively. We use (14) to write xj as follows:

xj =
1(
N
j

)
⎛
⎝1 −

∑
�∈[1:N ]\j

(
N

�

)
x�

⎞
⎠ . (62)

We first apply (62) in (61) to obtain

D∗(μ) ≥ 1 +
∑

�∈[1:N ]\j

(
N

�

)(
D̃(�) − 1

)
x�

+

⎛
⎝1 −

∑
�∈[1:N ]\j

(
N

�

)
x�

⎞
⎠(D̃(j) − 1

)

= D̃(j) +
∑

�∈[1:N ]\j

(
N

�

)(
D̃(�) − D̃(j)

)
x�. (63)

We next apply (62) in the storage constraint (16) to obtain

μN ≥
∑

�∈[1:N ]\j

�

(
N

�

)
x� + j

⎛
⎝1 −

∑
�∈[1:N ]\j

(
N

�

)
x�

⎞
⎠

= j +
∑

�∈[1:N ]\j

(
N

�

)
(� − j)x�. (64)

In order to eliminate xj+1 from (63), we first use (64) to
bound xj+1 as

xj+1 ≤ 1(
N

j+1

)
⎛
⎝μN − j −

∑
�∈[1:N ]\{j,j+1}

(
N

�

)
(� − j)x�

⎞
⎠ ,

(65)

which can be applied in (63) to obtain the following bound
on D∗(μ),

D∗(μ) ≥ D̃(j) +
∑

�∈[1:N ]\j

(
N

�

)(
D̃(�) − D̃(j)

)
x�

(a)

≥ D̃(j) +
∑

�∈[1:N ]\{j,j+1}

(
N

�

)(
D̃(�) − D̃(j)

)
x�

+
(
D̃(j + 1) − D̃(j)

)(
μN − j

−
∑

�∈[1:N ]\{j,j+1}

(
N

�

)
(� − j)x�

)
(b)
= (μN − j)D̃(j + 1) − (μN − j − 1)D̃(j)

+
∑

�∈[1:N ]\{j,j+1}

(
N

�

)
Γ(j)

� x�

(c)

≥ (μN − j)D̃(j + 1) − (μN − j − 1)D̃(j), (66)
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where (a) follows from (65) where the coefficient D̃(j +1)−
D̃(j) is negative for all j ∈ [1 : N − 1]; Γ(j)

� for � ∈ [1 :
N ] \ {j, j + 1} in (b) is defined as

Γ(j)
�

Δ= D̃(�) + (� − j − 1)D̃(j) − (� − j)D̃(j + 1); (67)

and (c) follows since x� ≥ 0 and from the following Lemma.
Lemma 5: Γ(j)

� is non-negative for � ∈ [1 : N ] \ {j, j + 1}.
The proof of Lemma 5 is in Appendix E. From (66) we

arrive at the following lower bound on D∗(μ):

D∗(μ) ≥ (μN − j)D̃(j + 1) − (μN − j − 1)D̃(j), (68)

which is a linear function of μ for a fixed value of j ∈ [1 :
N − 1] passing through the two points: (μ1 = j

N , D
L = D̃(j))

and (μ2 = j+1
N , D

L = D̃(j + 1)). We obtain N − 1 such lower
bounds for every j ∈ [1 : N − 1], which eventually yield the
lower bound on the optimal download cost D∗(μ) as the lower
convex envelope of the following N points for t ∈ [1 : N ]:(

μ =
t

N
, D(μ) = D̃(t) = 1 +

1
t

+
1
t2

+ · · · + 1
tK−1

)
,

(69)

which completes the converse proof of Theorem 2.

VI. PROOF OF THEOREM 2: ACHIEVABILITY FOR

GENERAL (N, K, μ)
The achievability proof of the optimal download cost given

in Theorem 2 has two main parts: a) the storage design
(i.e., what to store across N databases) subject to the storage
constraint; and b) the design of the PIR scheme from storage
constrained databases. We next describe our placement scheme
while satisfying the storage constraint at each database. In par-
ticular, we focus on the storage points μKL for μ = t/N
and t ∈ [1 : N ]. Once we achieve a scheme for these
storage points, the lower convex envelope is also achieved
using memory sharing as discussed in Claim 1.

A. Storage Placement Scheme for μ = t/N and t ∈ [1 : N ]
The storage placement scheme is inspired by the placement

strategy proposed in the work on coded caching [32]. For a
fixed parameter t ∈ [1 : N ], we take each message Wk and
sub-divide it into

(
N
t

)
equal sized sub-messages of size L/

(
N
t

)
bits each. We then label each sub-message with a unique subset
S ⊆ [1 : N ] of size t. Therefore, the message Wk can be
expressed as:

Wk = ∪
S⊆[1:N ]
|S|=t

Wk,S . (70)

Using this message splitting scheme, we propose the databases
storage placement scheme as follows: a sub-message Wk,S is
stored in exactly t databases whose labels are in the set S.
In other words, for every message, each database stores all the
sub-messages which contain its index. Therefore, the storage
at DBn is given as

Zn = ∪
k∈[1:K]

∪
S⊆[1:N ]

|S|=t, n∈S
Wk,S . (71)

Assume that each sub-message is of size tK bits. Hence the
total size of each message L is given as L =

(
N
t

)
tK . We next

verify that the above scheme satisfies the storage constraint.
To this end, we note that for every message, each database
stores

(
N−1
t−1

)
sub-messages (this corresponds to the number

of sub-sets of databases of size t in which the the index of
the database is present). Hence, the total storage necessary for
any database is given as:

K︸︷︷︸
Total number
of messages

×
(

N − 1
t − 1

)
︸ ︷︷ ︸

Number of submessages
per message per database

× tK︸︷︷︸
Size of each
submessage

=
t

N
× K ×

(
N

t

)
tK︸ ︷︷ ︸

Size of a message

=
t

N
× K × L = μKL.

This shows that the proposed scheme satisfies the storage
constraints for every database.

B. Storage Constrained PIR Scheme for μ = t/N and
t ∈ [1 : N ]

We now present the storage constrained PIR scheme for
any (N, K) originally introduced in our previous work [31].
We focus on the storage parameter μ = t/N for any t ∈
[1 : N ]. We assume a fixed query structure at each database
independent of the desired message Wk, where the query
set Q

[k]
n to each DBn is structured as follows: The query

Q
[k]
n is composed of

(
N−1
t−1

)
blocks, where every block is

labeled by a set S ∈ [1 : N ] of size t, where n ∈ S. The
query block labeled with S only involves the sub-messages
stored at the databases DBn where n ∈ S, i.e., Wi,S for
i ∈ [1 : K]. Furthermore, these sub-messages are stored in
|S| = t databases labeled with indexes in the set S.

For a query block S and a desired message Wk, we apply
the original PIR scheme proposed in [7] with N � = t
databases with labels in the set S, and K sub-messages
W1,S , . . . , WK,S of size tK bits each to privately retrieve
the desired sub-message Wk,S . The download cost to retrieve
Wi,S is given as DS(μ) = 1+ 1

N � +. . .+ 1
N �K−1 = 1+ 1

t +. . .+
1

tK−1 . By repeating this procedure for all possible
(

N
t

)
query

blocks the user can privately retrieve all the sub-messages of
Wk as defined in (70). Therefore, the download cost D(μ) of
the proposed storage constrained PIR scheme when μ = t/N
for t ∈ [1 : N ] is given as

D(μ) =

(
N
t

)× Total Downloaded bits (per block S)(
N
t

)× Desired bits (per block S)

= DS(μ) = 1 +
1
t

+
1
t2

+ · · · + 1
tK−1

= D̃(t). (72)

Using the memory sharing concept in Claim 1, we can
achieve the lower convex envelope of the following N achiev-
able points for t ∈ [1 : N ]:(

μ =
t

N
, D(μ) = D̃(t) = 1 +

1
t

+
1
t2

+ · · · + 1
tK−1

)
,

(73)

which matches the trade-off given in Theorem 2.
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VII. CONCLUSION

In this article, we characterize the optimal download cost of
PIR for uncoded storage constrained databases. In particular,
for any (N, K), we show that the optimal trade-off between
the storage parameter, μ ∈ [1/N, 1], and the download
cost, D(μ), is given by the lower convex hull of the pairs
( t

N ,
(
1 + 1

t + 1
t2 + · · · + 1

tK−1

)
) for t ∈ [1 : N ]. The main

technical contribution of this article is obtaining lower bounds
on the download cost for PIR as a function of storage, which
match the achievable scheme in [31], and hence characterize
the optimal trade-off. We first arrived to a lower bound on the
download cost, which is valid for any arbitrary storage at the
databases. We then specialized the obtained bound for uncoded
placement strategies, which helps in obtaining a linear program
subject to message size and storage constraints. Solving this
linear program, we arrive at a set of N−1 lower bounds, where
each bound is tight in a certain range of storage. There are
several interesting future directions on this important variation
of storage-constrained PIR such as a) settling the tradeoff with
coded storage allowed at databases, b) colluding databases and
c) introducing additional reliability constraints on storage, such
that data must be recoverable from any N out of M databases.

APPENDIX A
PROOF OF CLAIM 1

Claim 1 follows from a simple memory sharing argument.
Consider any two storage parameters μ1, and μ2, with optimal
download costs D∗(μ1), and D∗(μ2), respectively, then for
any storage parameter μ̄ = αμ1 + (1 − α)μ2, α ∈ [0, 1],
there exists a PIR scheme which achieves a download cost of
D̄(μ̄) = αD∗(μ1) + (1− α)D∗(μ2). This is done as follows:
first, we divide each message Wk into two partitions Wk ={
W

(1)
k , W

(2)
k

}
, where W

(1)
k and W

(2)
k are of size αL and (1−

α)L, respectively. Likewise, the storage of each database Zn

is divided into two partitions Zn =
{
Z

(1)
n , Z

(2)
n

}
, where Z

(1)
n

and Z
(2)
n are of size αμ1KL and (1−α)μ2KL, respectively.

Now, for messages partitions denoted by W
(1)
k for k ∈ [1 : K]

and databases partitions denoted by Z
(1)
n for n ∈ [1 : N ],

we can apply the PIR scheme which achieves a download
cost of αD∗(μ1), while for messages partitions denoted by
W

(2)
k for k ∈ [1 : K] and databases partitions denoted by

Z
(2)
n for n ∈ [1 : N ], we can achieve a download cost of

(1−α)D∗(μ2), which gives a total download cost of D̄(μ̄) =
αD∗(μ1) + (1 − α)D∗(μ2). Since D∗(αμ1 + (1 − α)μ2) by
definition is optimal download cost for the storage parameter
μ̄, it cannot be larger than the download cost of the memory
sharing scheme, i.e.,

D∗(αμ1 + (1 − α)μ2)≤D̄(μ̄)=αD∗(μ1) + (1 − α)D∗(μ2),
(74)

which completes the proof of Claim 1.

APPENDIX B
PROOF OF LEMMA 1

For any N ⊆ [1 : N ], K ⊆ [1 : K], i ∈ [1 : N ],
and j ∈ [1 : K], we can bound the mutual information term

I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,Q[j]

N ,A[j]
N ) as follows:

I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,Q[j]

N ,A[j]
N )

= H(Q[j]
i , A

[j]
i |WK,Q[j]

N ,A[j]
N )

− H(Q[j]
i , A

[j]
i |W[1:K],Q

[j]
N ,A[j]

N )
(a)
= H(Q[j]

i , A
[j]
i |WK,Q[j]

N ,A[j]
N )

− H(Q[j]
i , A

[j]
i |W[1:K],Q

[j]
N ,A[j]

N ,ZN )
(b)

≥ H(Q[j]
i , A

[j]
i |WK,Q[j]

N ,A[j]
N ,ZN )

− H(Q[j]
i , A

[j]
i |W[1:K],Q

[j]
N ,A[j]

N ,ZN )
(c)
= H(Q[j]

i , A
[j]
i |WK,Q[j]

N ,ZN )

− H(Q[j]
i , A

[j]
i |W[1:K],Q

[j]
N ,ZN )

= I(Q[j]
i , A

[j]
i ;W[1:K]\K|WK,Q[j]

N ,ZN )
(d)
= I(Q[j]

N , Q
[j]
i , A

[j]
i ;W[1:K]\K|WK,ZN )

≥ I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,ZN ), (75)

where (a) follows from the fact that the random variables
ZN are functions of all the messages W[1:K]; (b) follows
since conditioning reduces entropy; (c) follows since the
answers A[j]

N are functions of the storage random variables
ZN and the queries Q[j]

N ; and (d) follows from fact that
queries Q[j]

N are independent from the messages stored at the
databases.

APPENDIX C
PROOF OF LEMMA 2

We start by obtaining the following bound for all
k ∈ [1 : K]:

I(W[1:K]\k;Q[k]
[1:N ],A

[k]
[1:N ]|Wk)

= I(W[1:K]\k;Q[k]
[1:N ],A

[k]
[1:N ], Wk) − I(W[1:K]\k; Wk)

(a)
= I(W[1:K]\k;Q[k]

[1:N ]) + I(W[1:K]\k;A[k]
[1:N ]|Q[k]

[1:N ])

+ I(W[1:K]\k; Wk|Q[k]
[1:N ],A

[k]
[1:N ])

(b)
= H(A[k]

[1:N ]|Q[k]
[1:N ]) − H(A[k]

[1:N ]|W[1:K]\k,Q[k]
[1:N ])

+ I(W[1:K]\k; Wk|Q[k]
[1:N ],A

[k]
[1:N ])

= H(A[k]
[1:N ]|Q[k]

[1:N ]) − H(A[k]
[1:N ], Wk|W[1:K]\k,Q[k]

[1:N ])

+ H(Wk|W[1:K]\k,Q[k]
[1:N ],A

[k]
[1:N ])

+ I(W[1:K]\k; Wk|Q[k]
[1:N ],A

[k]
[1:N ])

≤ D[k]
μ − H(Wk|W[1:K]\k,Q[k]

[1:N ])

− H(A[k]
[1:N ]|W[1:K],Q

[k]
[1:N ]) + H(Wk|Q[k]

[1:N ],A
[k]
[1:N ])

(c)
= D[k]

μ − L + o(L), (76)

where (a) follows from the chain rule of mutual information
and from the fact that the messages are i.i.d., (b) follows
from (3) where queries are not functions of the messages;
(c) follows from (4) where answers are functions of the
messages and the corresponding queries and also from the
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decodability constraint in (5), where Wk is decodable from
Q[k]

[1:N ] and A[k]
[1:N ]. Summing up the obtained bound in (76)

over k ∈ [1 : K], we get the following bound over the average
number of download bits Dμ:

Dμ − L + o(L)

≥ 1
K

K∑
k=1

I(W[1:K]\k;Q[k]
[1:N ],A

[k]
[1:N ]|Wk)

=
1
K

1
N !

K∑
k=1

∑
σ∈[N !]

I(W[1:K]\k;Q[k]
σ[1:N ]

,A[k]
σ[1:N ]

|Wk)

(a)
=

N∑
n=1

K∑
k=1

∑
σ∈[N !]

I(W[1:K]\k;Q[k]
σn ,A

[k]
σn |Wk,Q[k]

σ[1:n−1] ,A
[k]
σ[1:n−1])

K × N !

(b)

≥
N∑

n=1

K∑
k=1

∑
σ∈[N !]

I(W[1:K]\k; Q[k]
σn , A

[k]
σn |Wk,Zσ[1:n−1])

K × N !

(c)
=

1
K(K − 1)

1
N !

N∑
n=1

K∑
k=1

∑
j∈[1:K]\k

×
∑

σ∈[N !]

I(W[1:K]\k; Q[j]
σn

, A[j]
σn
|Wk,Zσ[1:n−1])

=
1

K
(
K−1

1

) 1
N !

N∑
n=1

∑
K⊆[1:K]
|K|=1

∑
j∈[1:K]\K

×
∑

σ∈[N !]

I(W[1:K]\K; Q[j]
σn

, A[j]
σn
|WK,Zσ[1:n−1])

(d)
=

N∑
n=1

∑
K⊆[1:K]
|K|=1

∑
j∈[1:K]\K

(N − n)!(n − 1)!
K
(
K−1

1

)
N !

×
∑

N⊆[1:N ]
|N|=n−1

∑
i∈[1:N ]\N

I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,ZN )

=
N−1∑
n=0

1
KN

(
N−1

n

)(
K−1

1

) ∑
K⊆[1:K]
|K|=1

∑
j∈[1:K]\K

∑
N⊆[1:N ]
|N|=n

×
∑

i∈[1:N ]\N
I(W[1:K]\K; Q[j]

i , A
[j]
i |WK,ZN )+o(L)

(e)
=

N−1∑
n=0

T (n, 1), (77)

where (a) follows from chain rule of mutual information;
(b) follows from Lemma 1; (c) follows from the privacy
constraint in (6) where the individual queries and answers are
invariant with respect to the requested message index; (d)
follows from the symmetry with respect to the summation
indexes, where for every set N ⊆ [1 : N ] of size (n− 1) and
every i ∈ [1 : N ]\N , the number of permutations σ that lead
to the mutual information I(W[1:K]\K; Q[j]

i , A
[j]
i |WK,ZN ) is

(N−n)!(n−1)!; and (e) follows from the definition of T (n, k)
in (43).

APPENDIX D
PROOF OF LEMMA 3

We start by bounding T (n, k) defined in (43) as follows,

T (n, k) =
1

NK
(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

×
∑

i∈[1:N ]\N
I(W[1:K]\K; Q[j]

i , A
[j]
i |WK,ZN )

(a)
=

1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

×
∑

i∈[1:N ]\N
I(W[1:K]\K; A[j]

i |WK,ZN , Q
[j]
i )

(b)
=

1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

×
∑

i∈[1:N ]\N
H(A[j]

i |WK,ZN , Q
[j]
i )

(c)

≥ 1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

∑
j∈[1:K]\K

×
∑

i∈[1:N ]\N
H(A[j]

i |WK,ZN ,Q[j]
[1:N ])

≥ 1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

×
∑

j∈[1:K]\K
H(A[j]

[1:N ]\N |WK,ZN ,Q[j]
[1:N ])

(d)
=

1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

×
∑

j∈[1:K]\K
I(W[1:K]\K;A[j]

[1:N ]\N |WK,ZN ,Q[j]
[1:N ])

(e)
=

1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

×
∑

j∈[1:K]\K
I(W[1:K]\K;Q[j]

[1:N ],A
[j]
[1:N ]\N |WK,ZN )

(f)

≥ o(L) +
1

NK
(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

×
∑

j∈[1:K]\K
I(W[1:K]\K; Wj ,Q

[j]
[1:N ],A

[j]
[1:N ]\N |WK,ZN )

=
1

NK
(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

×
∑

j∈[1:K]\K
I(W[1:K]\K;Q[j]

[1:N ],A
[j]
[1:N ]\N |WK,ZN , Wj)

+
1

NK
(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

×
∑

j∈[1:K]\K
H(Wj |WK,ZN ) + o(L)
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(g)
=

1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k

∑
N⊆[1:N ]
|N|=n

×
∑

j∈[1:K]\K
I(W[1:K]\(K∪j);Q

[j]
[1:N ]\N ,A[j]

[1:N ]\N |W(K∪j),ZN )

+
1

N − n
λ(n,k)L + o(L)

=
1

NK
(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k+1

∑
N⊆[1:N ]
|N|=n

×
∑
j∈K

I(W[1:K]\K;Q[j]
[1:N ]\N ,A[j]

[1:N ]\N |WK,ZN )

+
1

N − n
λ(n,k)L + o(L)

= T̃ (n, k) +
1

N − n
λ(n,k)L + o(L), (78)

where (a) and (e) follow from the fact that queries are
independent from the messages; (b) and (d) follow from the
fact that answers are functions of all the messages; (c) is
because conditioning reduces entropy; (f) follows from the
decoding constraint in (5) where Wj is decodable from Q[j]

[1:N ],

A[j]
[1:N ]\N and ZN ; and (g) follows from the definition of

λ(n,k) in (19) and since the queries Q[j]
N are independent from

the messages. We further lower bound T (n, k) by bounding
the term T̃ (n, k) in (78) as follows,

T̃ (n, k)

=
1

NK
(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k+1

∑
N⊆[1:N ]
|N|=n

×
∑
j∈K

I(W[1:K]\K;Q[j]
[1:N ]\N ,A[j]

[1:N ]\N |WK,ZN )

(a)
=

1
NK

(
K−1

k

)(
N−1

n

) ∑
K⊆[1:K]
|K|=k+1

∑
j∈K

1
n!(N − n)!

×
∑

σ∈[N !]

I(W[1:K]\K;Q[j]
σ[n+1:N ]

,A[j]
σ[n+1:N ]

|WK,Zσ[1:n])

(b)
=

1
N !K

(
K−1

k

)
(N − n)

∑
K⊆[1:K]
|K|=k+1

∑
j∈K

∑
σ∈[N !]

×
N−1∑
n�=n

I(W[1:K]\K; Q[j]
σn�+1

, A[j]
σn�+1

|WK,Zσ[1:n] ,

Q[j]
σ[n+1:n�] ,A

[j]
σ[n+1:n�])

(c)

≥ 1
N !K

(
K−1

k

)
(N − n)

∑
K⊆[1:K]
|K|=k+1

∑
j∈K

∑
σ∈[N !]

×
N−1∑
n�=n

I(W[1:K]\K; Q[j]
σn�+1

, A[j]
σn�+1

|WK,Zσ[1:n�])

(d)
=

N−1∑
n�=n

1
N !K

(
K−1

k

)
(N − n)

∑
K⊆[1:K]
|K|=k+1

∑
j∈K

n�!(N − n� − 1)!

×
∑

N⊆[1:N ]
|N|=n�

∑
i∈[1:N ]\N

I(W[1:K]\K; Q[j]
i , A

[j]
i |WK,ZN )

(e)
=

1
N − n

N−1∑
n�=n

1
NK

(
K−1

k

)(
N−1

n�
) ∑

N⊆[1:N ]
|N|=n�

∑
i∈[1:N ]\N

∑
K⊆[1:K]
|K|=k+1

×
∑
j∈K

∑
j�∈[1:K]\K

I(W[1:K]\K; Q[j�]
i , A

[j�]
i |WK,ZN )

K − k − 1

=
1

N − n

N−1∑
n�=n

1
NK

(
K−1
k+1

)(
N−1

n�
) ∑

N⊆[1:N ]
|N|=n�

∑
i∈[1:N ]\N

∑
K⊆[1:K]
|K|=k+1

×
∑

j�∈[1:K]\K
I(W[1:K]\K; Q[j�]

i , A
[j�]
i |WK,ZN )

(f)
=

1
N − n

N−1∑
n�=n

T (n�, k + 1), (79)

where (a) and (d) follow from a similar argument to step
(d) in (77); (b) follows by applying the chain rule of entropy;
(c) follows by applying Lemma 1; (e) follows from the privacy
constraint in (6) where the individual queries and answers
are invariant with respect to the requested message index;
and (f) follows from the definition of T (n, k) in (43). By
applying the lower bound on the term T̃ (n, k) in (79) to the
lower bound on T (n, k) in (78) we conclude the proof of
Lemma 3.

APPENDIX E
PROOF OF LEMMA 5

In order to prove that Γ(j)
� is non-negative for

� ∈ [1 : N ] \ {j, j + 1}, we first need to prove an important
property for D̃(�) in the following Lemma:

Lemma 6: D̃(�) − D̃(� + 1) is non increasing with respect
to �, i.e., D̃(��) − D̃(�� + 1) ≥ D̃(�) − D̃(� + 1), for
any �� ≤ �.

Proof: In order to prove Lemma 6, it is sufficient to prove
that D̃(��) − D̃(�� + 1) ≥ D̃(�) − D̃(� + 1) for �� = � − 1,
or D̃(�−1)−2D̃(�)+ D̃(�+1) ≥ 0. The proof for any �� ≤ �
follows by induction.

D̃(� − 1)−2D̃(�) + D̃(� + 1)

=
K−1∑
j=0

1
(� − 1)j

+
1

(� + 1)j
− 2

(�)j

(a)

≥ 2
K−1∑
j=0

1
(�2 − 1)j/2

− 1
(�)j

= 2
K−1∑
j=0

(�2)j/2 − (�2 − 1)j/2

(�)j(�2 − 1)j/2
≥ 0, (80)

where, (a) follows from the AM-GM inequality, i.e., arith-
metic mean is larger than geometric mean, that is x1+x2

2 ≥
(x1x2)1/2, ∀x1, x2 ≥ 0. Therefore, we obtain D̃(� − 1) −
D̃(�) ≥ D̃(�) − D̃(� + 1), which completes the proof of the
Lemma.

Authorized licensed use limited to: The University of Arizona. Downloaded on January 30,2021 at 20:39:51 UTC from IEEE Xplore.  Restrictions apply. 



ATTIA et al.: CAPACITY OF PIR FROM UNCODED STORAGE CONSTRAINED DATABASES 6633

• Case � < j: We prove that Γ(j)
� ≥ 0 for � < j as follows,

Γ(j)
� = D̃(�) + (� − j − 1)D̃(j) − (� − j)D̃(j + 1)

=
[
D̃(�) − D̃(j)

]
− (j − �)

[
D̃(j) − D̃(j + 1)

]
=

j−1∑
i=�

[
D̃(i) − D̃(i + 1)

]
− (j − �)

[
D̃(j) − D̃(j + 1)

]

=
j−1∑
i=�

([
D̃(i) − D̃(i + 1)

]
−
[
D̃(j) − D̃(j + 1)

])
(a)

≥
j−1∑
i=�

([
D̃(j) − D̃(j + 1)

]
−
[
D̃(j) − D̃(j + 1)

])
= 0,

(81)

where (a) follows from Lemma 6.
• Case � > j+1: Similar to the case � < j, we prove Γ(j)

� ≥ 0
for � > j + 1 as follows,

Γ(j)
� = D̃(�) + (� − j − 1)D̃(j) − (� − j)D̃(j + 1)

= (� − j − 1)
[
D̃(j) − D̃(j + 1)

]
−
[
D̃(j + 1) − D̃(�)

]
=

�∑
i=j+2

([
D̃(j) − D̃(j + 1)

]
−
[
D̃(i − 1) − D̃(i)

])
(a)

≥
�∑

i=j+2

([
D̃(j) − D̃(j + 1)

]
−
[
D̃(j) − D̃(j + 1)

])
= 0,

(82)

where (a) follows from Lemma 6.
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