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Abstract—Recursive neural networks can be trained to serve
as a memory for robots to perform intelligent behaviors when
localization is not available. This paper develops an approach
to convert a spatial map, represented as a scalar field, into a
trained memory represented by the long short-term memory
(LSTM) neural network. The trained memory can be retrieved
through sensor measurements collected by robots to achieve
intelligent behaviors, such as tracking level curves in the map.
Memory retrieval does not require robot locations. The retrieved
information is combined with sensor measurements through a
Kalman filter enabled by the LSTM (LSTM-KF). Furthermore,
a level curve tracking control law is designed. Simulation results
show that the LSTM-KF and the control law are effective to
generate level curve tracking behaviors for single-robot and
multi-robot teams.

Index Terms—level curve tracking, long short-term memory,
Kalman filtering

I. INTRODUCTION

Robots can collect information about their environments
through on-board sensors, and then leverage this information
through a feedback control law. A map can be viewed as
an idealized representation of the environment that provides
guidance for such intelligent behaviors. In addition to their
sensor measurements, robots can retrieve additional informa-
tion from the map to achieve more sophisticated behaviors than
just using local measurements. By intentionally manipulating
the map and allowing the robot to react to such changes, we
may be able to produce a variety of robot behaviors without
changing the control law. This approach is especially attractive
to controlling a large swarm of robots because the map can
be shared by the swarm, hence avoiding the interactions with
each individual robot.
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and NOAA grant NA16NOS0120028.

We have investigated one situation where the map is spec-
ified as a scalar field distributed over the 2D plane. A robot
can measure this scalar field through a noisy sensor. A swarm
of such robots can share their local measurements to achieve
at least several intelligent behaviors. Our previous works [1]–
[6] have developed control laws and filtering algorithms that
generate source seeking or level curve tracking behaviors. We
have also shown that even when the map (scalar field) is
unknown to the robots, these behaviors can be successfully
enabled. Yet most of the existing results in the literature [7]–
[14], including our previous works, rely on the assumption
that the robots are supported by localization services. This
assumption is needed because the map is given as a spatially
distributed scalar field. To retrieve information from the map,
robots need to provide their locations.

In this paper, we consider the situation where no localization
service is available to the robots. The denial of localization
makes it difficult for a robot to use the scalar map. But
this case is practically useful because an increasing number
of service robots are being deployed in environments where
localization is difficult, such as underwater, underground, or
polar areas. Our problem may be viewed as a simplified
problem that connects to more practical applications.

We propose a level curve tracking strategy for robots
without localization service. Our strategy is enabled by recent
advancements in deep recurrent neural networks (RNN) [15].
In particular, we leverage the long short-term memory (LSTM)
networks [16] to process training data collected from a given
map or from an emulated environment when localization is
available. As a deep neural network, the LSTM is able to
memorize long term dependencies in sequential data. This
memory can be trained to produce the correct sequence of data
that can be retrieved by a robot without location information.

The key component of our proposed strategy is the con-
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version from a scalar field map to trained memory. For each
given map, two LSTM networks are trained, one for learning
the information dynamics along level curves of the scalar field,
and the other for learning the uncertainty in the information
states. The information states consist of the field value and
gradient along level curve. This information is required by the
level curve tracking control law for a robot to follow a level
curve. The uncertainty is represented by the covariance matrix
for the information states.

The trained memory will then be used to retrieve the
information states when the robot is moving through the scalar
field. While a robot is moving, its sensor generates a sequence
of scalar field measurements, which can be provided to the
trained memory in real-time to retrieve information about the
field value and gradient. The key point here is that the robot
does NOT provide its location to retrieve this information.

We have formulated the information retrieving process as
an online filtering problem. The trained memory, such as an
RNN, is used for the predictions of further information state
sequence. Then a Kalman-like filter is designed to fuse the
measurements from the robots with this prediction. This leads
to an LSTM enabled Kalman filter (LSTM-KF) that is able to
capture long term dependence in the data sequence. Previous
works have leveraged LSTM-KF for modeling human motion
data [17] as well as spatial-temporal data [18].

There is an increasing number of papers related to control
systems where LSTM or other types of RNNs are leveraged.
One typical reason to use RNNs is to model system dynam-
ics that are too complex or completely unknown [19]–[23].
Another important idea is to use RNNs to generalize a pre-
designed controller to increase robustness against data that are
not included in the training process [24]–[27]. The LSTM-KF
[17], [18] is closely related to these approaches. This paper
provides a new perspective on the application of LSTM to
robot motion control without localization.

The problem for level curve tracking without localization
service is formulated in Section II. Section III introduces level
curve tracking control laws for a single robot and a multi-robot
group. Section IV discusses the learning of information dy-
namics using LSTM. The LSTM-KF is introduced in Section
V. Simulation results are illustrated in Section VI. Conclusions
and future work follow in Section VII.

II. PROBLEM FORMULATION

In this section, we formulate the problem of level curve
tracking in scalar fields using one or multiple mobile robots
without localization.

Consider a 2D scalar field described by a function z(r) :
R2 7→ R where r ∈ R2 denotes the position. The field function
z is assumed to be smooth, time-invariant, and bounded
function, i.e., 0 ≤ zmin ≤ z(r) ≤ zmax <∞.

Suppose we have mobile robots and each is located at ri,k
where i = 1, · · · , N is the index of the robot and k is the index
of time step tk. The robots are equipped with environmental
sensors and are deployed into the field to track the level curve
{r|z(r) = zd} where zd is a desired level curve value.

Assume that each robot takes a discrete measurement of the
field at each time step tk at its current position ri,k, then the
measurement is written as

pi,k = z(ri,k) + ni,k, (1)
where ri,k is the position of i-th robot at time tk and ni,k ∈ R
is an independently and identically distributed Gaussian noise.
Assumption II.1 Each robot does not know its current loca-
tion ri,k.
The velocity of each robot is described by

ṙi = u(z(ri),∇z(ri)), (2)
where u is a control law that relies on the measurement z(ri)
and gradient ∇z(ri) of the field function.

The objectives of this paper are summarized as (1) Train
two LSTM networks that can collectively provide estimates of
field values and gradients of known scalar fields. (2) Design
an LSTM-KF that fuses the real-time measurements with
the estimates from the two LSTM networks and update the
estimates. (3) Develop a level curve tracking controller to
control robot(s) to detect and track a level curve in a 2D space
based on the estimates from the LSTM-KF.
Remark II.2 Known or estimated field information is often
represented in terms of the spatial locations. Our problem
is challenging as each robot lacks a localization capability
as restricted by Assumption II.1. This problem is practically
useful especially in harsh environments where localization is
difficult, such as underwater, underground, or polar areas.

III. LEVEL CURVE TRACKING

In this section, we introduce the level curve tracking control
design for a single robot and multiple robots. The control law
will produce robot trajectories that follow a desired level curve.
Along the robot trajectories, the field value and gradient of
the field will evolve over time, which can be modeled by the
information dynamics.
A. Single Robot Level Curve Tracking

Define a level curve {r|z(r) = zd} where zd ∈ R is a
desired field value. Define

g =
∇z + e

‖∇z + e‖
(3)

to be a unit length direction vector along the gradient direction
∇z perturbed by some error estimation e. Let the velocity of
the robot be described by

ṙ = −a(p− zd)g + bg⊥, (4)

where p is the noisy field measurement given by (1). The
constants a, b are tuning parameters. Intuitively, the first term
in (4) acts to stabilize the agent on desired level curve while
the second term acts to drive the agent along that level curve.
B. Multi-Robot Level Curve Tracking

Compared with single robot level curve tracking control (4),
a formation term is added to the velocity control design

ṙi = −a(pi − zd)gc + bg⊥c + cfi, i = 1, · · · , N, (5)

where c is a tuning parameter. The formation term fi is defined
as
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fi =
∑
j 6=i

‖rj − ri‖ − dij
‖rj − ri‖

(rj − ri), i = 1, · · · , N, (6)

where dij is a desired separation distance between agents i
and j.

Using the control law (5) and the fact that 1
N

∑N
i=1 fi = 0

for an undirected connectivity graph, then the dynamics of the
center of the formation, rc = 1

N

∑N
i=1 ri, is given by

ṙc = −a(pa − zd)gc + bg⊥c , (7)

where pa = 1
N

∑N
i=1 p(ri) is the average noisy measurement.

This implies that the trajectory of the center of formation is
tracking the level curve {rc|pa = zd}.
Remark III.1 The formation (6) requires the knowledge of lo-
cal displacements (rj−ri) but does not require the knowledge
of absolute positions. We choose this formation controller to
simplify the analysis. In the future we may use other controllers
that may depends only on distances or bearing angles [28].

IV. LEARNING THE INFORMATION DYNAMICS

When robots move along a level curve, the data collected
by the robots satisfy the information dynamics. These data are
used as training data for the LSTM. Due to the capability to
capture long term trends in data, the trained LSTM is able
to memorize the sequence of the information states along the
level curves. Since no localization information is used during
the training process, the trained memory can be retrieved by a
sequence of robot measurements without location information.
A. Review of LSTM

The long short-term memory (LSTM) is often used to
model long term dependencies in sequential data, which suits
environmental monitoring applications.

The equations for a general LSTM block are as follows,
fk = σ(Wxfxk +Whfhk−1 + bf )

ik = σ(Wxixk +Whihk−1 + bi)

ok = σ(Wxoxk +Whohk−1 + bo)

C̃k = tanh(WxC̃xk +WhC̃hk−1 + bC̃)

Ck = fk ◦ Ck−1 + ik ◦ C̃k−1

hk = ok ◦ tanh(Ck)

, (8)

where σ(·) denotes sigmoid function and ◦ denotes element-
wise multiplication. xk is the input, hk is the hidden state, Ck

is the cell state. fk, ik and ok are outputs of forget gate layer,
input gate layer, and output gate layer respectively.

The weight matrices in (8) can be learned through a
supervised training process that reduces mismatch between
predicted output and true output. After the network has been
trained, it is capable of modeling the dynamics between the
input and the output. In particular, the LSTM is able to relate
the prediction to a long history in the data sequence, which is
difficult for state-space models.
B. Data-Driven Information Dynamics

Without using robot locations, we assume that the infor-
mation dynamics of state sk = [zk,∇zk]ᵀ can be written as,

sk = fs(sk−1, · · · , sk−l, k), (9)

where fs(·) is an unknown time-varying function and l is the
length of time window that describes time dependency.

LSTM networks are employed to learn the state dynamics
fs(·) through sequential data s1, · · · , sK , in order to build an
input-output map between previous l̂ states sk−1, · · · , sk−l̂
and current state sk using LSTMs as follows,

sk = fLSTMs
(sk−1, · · · , sk−l̂). (10)

wherel̂ is the estimated length of time window.
The uncertainty in the information states is captured by the

covariance matrix Pk. We employ another network LSTMP

to learn the sequence of covariance matrices as follows,
Pk = fLSTMP

(Pk−1, · · · , Pk−l̂). (11)

C. Training Data Collection

If a simulation program is available for the scalar field, the
training data can be obtained through the simulation.

In the case when no such simulation is available, the training
data can be collected using a group of robots that can be
deployed to explore a portion of the unknown scalar field. Our
previous work [29] has developed a cooperative Kalman filter
to provide the estimates of the information states. Collection
of training data might require localization, but we often do
not need to collect training data everywhere in the workspace,
hence the requirement on localization can be mild.

V. LSTM ENABLED KALMAN FILTER

With the trained LSTM networks, mobile robots are able
to retrieve the predicted field values and gradients from the
LSTM models at their current locations without explicitly
knowing their locations. The pre-trained LSTM networks
produce fixed outputs corresponding to given inputs without
considering the real-time measurements from robots. On the
contrary, Kalman filter and its variants are capable of esti-
mating system state iteratively every time a new measurement
becomes available. However, the system dynamics is required
to run a Kalman filter. To obtain more accurate state predic-
tions by fusing the real-time measurements without knowing
the system dynamics, in this section, we design an LSTM-
KF to update the state predictions from the trained LSTM
networks. We introduce the LSTM-KF filter design for both
single-robot and multi-robot level curve tracking.

The measurement pk taken by a mobile robot at position rk
at time tk can be modeled as

pk = zk + nk = Cs
ksk + nk, (12)

where zk is the field value at rk, nk ∼ N (0, Rs
k) and Cs

k =
[1 0 0]. Note that the robot has no location information, rk.

In the case of using multiple robots with relative position
information, the LSTM-KF is applied to estimate the field
value and gradient at formation center. The state is defined
as sk = [zc,k,∇zc,k]ᵀ, where zc,k is the field value and ∇zc,k
is the gradient at formation center rc,k = 1

N

∑
i ri,k at tk.

Let pk = [p1,k, · · · , pN,k]
ᵀ be the measurement vector com-

bining measurements of N robots at position r1,k, · · · , rN,k

at tk. The individual measurement pi,k can be modeled as
pi,k = zc,k +∇zc,k(ri,k − rc,k) + ni,k (13)
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Then the measurement equation can be written as

pk = [p1,k, · · · , pN,k]
ᵀ = Cm

k sk + nk, (14)

where Cm
k =


1

∑N
j=1(r1,k − rj,k)/N

...
...

1
∑N

j=1(rN,k − rj,k)/N

 and

nk =
[
n1,k · · · nN,k

]ᵀ ∼ N (0, Rm
k ).

Combining the LSTM predictions with the general structure
of Kalman filter, the LSTM-KF can be written as

sk(−) = gLSTMs
(sk−1(+), · · · , sk−l̂(+)),

Pk(−) = gLSTMP
(Pk−1(+), · · · , Pk−l̂(+)),

Kk = Pk(−)C
ᵀ
k [CkPk(−)C

ᵀ
k +Rk]

−1,

sk(+) = sk(−) +Kk(pk − Cksk(−)),

P−1k(+) = P−1k(−) + Cᵀ
kR
−1
k Ck,

(15)

where sk(−) is the state prediction, Pk(−) is the covariance
matrix prediction, Kk is the Kalman gain, sk(+) is the updated
state estimation, and Pk(+) is the updated covariance matrix
estimation. Ck = Cs

k, Rk = Rs
k and Ck = Cm

k , Rk = Rm
k for

single robot and multi-robot level curve tracking, respectively.
After the two LSTM networks are trained, a mobile robot

or a group of mobile robots without localization are employed
to perform level tracking based on the estimated information
from the LSTM-KF, using the control law (4) or (7).
Remark V.1 The trained LSTM networks serve as “memory”
for the robots, allowing robots to obtain gradient information
without knowing their location. This is an important capability
that is useful when localization service is denied in practice.
Remark V.2 In the case of multi-robot level curve tracking,
only relative positions among the robots are needed when im-
plementing the LSTM-KF. Neither the location of the formation
center or the absolute locations of each robot are needed to
obtain the gradient information.

VI. SIMULATION RESULTS

In this section, we present the simulation results that demon-
strate level curve tracking behaviors for both a single robot and
a multi-robot team enabled by the LSTM-KF and the feedback
control law using MATLAB.

The training data is collected by simulating four mobile
robots (considered as points) deployed in a simulated field
to perform cooperative exploration along a desired level curve√
x2k + y2k = 6 at tk. Two single-hidden-layer LSTM networks

each with 100 hidden units are used for state and covariance
prediction, respectively. The estimated time window length l̂
is 4 time steps. The two LSTM networks are trained using
9996 historical data points collected by the robots.

A. Level Curve Tracking Using Single Robot

After the two LSTMs have been trained, a single robot
without localization is employed to track desired level curve
using the LSTM-KF and gradient-based control law. At each
time step, the robot takes a new measurement, which is used
by the LSTM-KF to predict the field gradient needed in (4).

We now demonstrate that the single robot can track time-
varying level curves. Note that data for time-varying level
curves is not contained in the training process. In this case,
the desired level curve is

√
x2k + y2k − sin(k/500) = 6 at

tk. The trajectory of the robot in 2D plane is shown in Fig.
1, where black curve represents robot trajectory and red dots
represent robot positions. As shown in Fig. 2, the level curve
value z along trajectory is very close to the desired value zd
with mean squared error 0.0012, which demonstrates that the
robot is capable of tracking the time-varying level curve.

Fig. 1. A single robot tracking time-varying desired level curve. The black
curve is the robot trajectory and the red dots represent the robot positions.

Fig. 2. The level curve value along trajectory of single robot.

B. Level Curve Tracking Using Multiple Robots

In the simulation for multi-robot level curve tracking, we
want to track a time-invariant level curve,

√
x2k + y2k = 6 at

time tk using three robots only with relative position infor-
mation among robots. At each time step, new measurements
will be taken by the three robots and are used to retrieve
the gradient information at the formation center. The velocity
control for each robot will be updated according to (5) using
the predicted gradient and relative positions.

Fig. 3. Three robots tracking a time-invariant desired level curve. The solid
line is the trajectory of the formation center.
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Fig. 4. The normalized x-component (left) and y-component (right) of the
gradient along the trajectory of three robots.

As shown in Fig. 3, the black curve is the trajectory of the
formation center and the colored dots represent the positions of
the three robots. The formation center is capable of tracking
the desired level curve with mean squared error of 0.0272.
The normalized x-component and y-component of gradient
predicted by LSTM-KF of the three robots at the formation
center are shown in Fig. 4. They are almost identical to that
of the true gradient. This means that the LSTM-KF is capable
to make accurate gradient prediction based on previous state
information and measurement information.

VII. CONCLUSIONS AND FUTURE WORK

LSTM can be leveraged to memorize a long training se-
quence. This property can be exploited to model the infor-
mation states along robot trajectories. The memory can be
retrieved through the sensor measurements collected by the
robots. We discover that the trained memory can be leveraged
by feedback control laws to achieve the level curve tracking
behavior when no localization is available to the robot. In addi-
tion, the LSTM can be combined with the Kalman filter. Future
work includes the exploration of other types of behaviors such
as source seeking and feature tracking without localization, as
well as generalization of the LSTM-KF to other situations.
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