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We explore the problem of quantifying and protecting aggregation-based location privacy and study the 

privacy-utility tradeoff, which are essential to protect user’s location privacy when releasing aggregate 

statistics. Existing works on Aggregation-based Location Privacy Protection Mechanisms (ALPPMs) are 

mainly based on differential privacy, and metrics for evaluating information leakage introduced by re- 

leasing aggregates are normally built on adversary’s estimation error. However, there lacks privacy met- 

rics for measuring the fundamental leakage on individual user’s data that is independent of specific data 

instances or attack algorithms. In this paper, we aim to solve this problem using an information-theoretic 

approach. We first propose a privacy metric based on the mutual information between the individual 

user’s location profile and the released location aggregates, and formulate the optimal location aggregate 

release problem that minimizes the mutual information given a utility constraint for each user. Since 

solving this optimization problem causes exponential complexity, we turn to prove and evaluate an up- 

per bound, i.e., the mutual information between the original and the perturbed location aggregates, and 

propose a Blahut-Arimoto based algorithm to solve the optimization problem minimizing the mutual 

information to derive an ALPPM. We validate the actual leakage of our ALPPM and compare it to a dif- 

ferentially private mechanism through experiments over both synthetic and real-world location datasets. 

Results show the advantage of the proposed ALPPM in terms of privacy-utility tradeoff, which is enhanced 

when users’ location prior distributions are more skewed. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past few years, location information has enabled

assive personalized services and intelligent applications, which

akes our daily lives much more convenient than before. This mo-

ivates legal organizations and companies to collect more and more

ocation data from many different sources to support location in-

elligence technologies. In many cases, they may only need to pe-

iodically compute and release the aggregate statistics calculated

ased on a large number of users’ location profiles to identify cer-

ain phenomena or track important patterns. Examples of aggre-

ate statistics could be summation, mean, standard deviation, den-

ity, and so on, depending on different purposes of services. For

nstance, the XData project publishes a cellular dataset which only

eports the population density of each region, i.e., the number of

sers covered by a cellular tower at a certain timestamp, which
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s useful in identifying areas where to develop new businesses or

uild new infrastructures ( Acs and Castelluccia, 2014 ). Other ap-

lications based on location aggregates include obtaining the av-

rage speed of road traffic during rush hours ( Barth, 2009 ), calcu-

ating average delay on a road segment to avoid traffic congestion

 Popa et al., 2011 ), and counting the number of users infected by

 new flu at a certain location to monitor its propagation ( Li et al.,

014 ). Undoubtedly, it’s essential to use aggregate location statis-

ics to improve people’s lives. 

Even though publishing location aggregates rather than users’

riginal location data can protect their location privacy, previous

orks ( Pyrgelis et al., 2017a; 2017b; Xu et al., 2017 ) have shown

hat aggregates still leak information about individuals’ locations.

pecifically, an adversary is capable of inferring the presence of

 target user’s location within a dataset ( Pyrgelis et al., 2017a ).

oreover, Pyrgelis et al. demonstrated that an adversary can accu-

ately deduce a significant fraction of users’ locations and mobility

rofiles from raw aggregates ( Pyrgelis et al., 2017b ). In addition,

any users choose not to install applications which may log loca-

ion aggregates from their mobile devices due to privacy concerns

 Reid, 2011; Riley, 2008 ). Obviously, privacy concern has posed a

ajor obstacle to releasing raw aggregates to the public as well as
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Fig. 1. Inferring A m from A . 
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sharing them with third parties, meaning that they need to be per-

turbed before release to protect users’ location privacy. 

A motivating example is presented in Fig. 1 . We consider a sim-

ple case where there are only two users participating in an aggre-

gation process and a trusted aggregator is responsible for counting

how many users visiting each location. When the trusted aggre-

gator directly releases the original aggregate location matrix A to

the public, a malicious adversary could infer a target user’s loca-

tion profile A m 

from A , which are illustrated in Fig. 1 a and b. Here

row l represents different locations and column t represents differ-

ent timestamps, and each element is the count of occurrences of

each location. A malicious adversary with the background knowl-

edge that a target user m has participated in this location aggrega-

tion, could infer user m ’s location profile A m 

accurately, since both

users visited the same location at all timestamps. This is obviously

a privacy violation to user m . As a result, in order to motivate more

users to participate in location aggregation, the trusted aggregator

should protect users’ location profiles by releasing the aggregate

location A in a privacy-preserving way. 

1.1. Related work 

1.1.1. Aggregation-based privacy protection 

Most existing works on privacy-preserving aggregate statis-

tics release are based on Differential Privacy (DP), which is an

indistinguishability-based notion aiming to protect individual’s

data while releasing aggregate information about a database ( Acs

and Castelluccia, 2014; Chan et al., 2011; Dwork, 2008; Dwork

et al., 2010; Ho and Ruan, 2011 ). For instance, Fan et al. proposed

an adaptive scheme to release real-time location statistics under

DP which provides improved utility ( Fan and Xiong, 2012 ). Other

privacy-preserving aggregate release mechanisms based on DP are

proposed in Rastogi and Nath (2010) and Erlingsson et al. (2014) ,

where the applications were to distributed time-series data and

crowdsourcing statistics from end-user client software respectively.

However, DP is context-free metric which considers the worst

case adversary (who may possess arbitrary background knowl-

edge and know every other users’ data except the interested user’s

data), thus lead to worse utility-privacy tradeoff than context-

aware notions, as shown by the work in Jiang et al. (2018) and

Huang et al. (2017) . In addition to DP, Li et al. leveraged additive

homomorphic encryption and a novel key management technique

to perform aggregation with high efficiency ( Li et al., 2014 ), but

this method can not be used to quantify information leakage. 

1.1.2. Privacy metrics 

Privacy metrics for quantifying individual location privacy ( Oya

et al., 2017; Shokri et al., 2011 ) or trace privacy ( Zhang et al., 2019 )

were proposed in the literature, but they are not directly applica-

ble to evaluate location aggregates. In addition, Pyrgelis et al. stud-

ied the feasibility of membership inference attacks in the context

of aggregate location data ( Pyrgelis et al., 2017a ), and proposed

to measure users’ privacy loss from aggregate location time-series

and evaluated the privacy protection levels offered by existing de-

fense mechanisms based on DP ( Pyrgelis et al., 2017b ). However,
o privacy protection mechanism has been proposed for location

ggregates in these works. Even though Pyrgelis et al. evaluated

he information leakage of individuals’ punctual locations and mo-

ility profiles introduced by the released aggregates ( Pyrgelis et al.,

017b ), their metrics in quantifying privacy via concrete inference

lgorithms or attacks have a limitation that the results may vary

epending on different datasets or adversary’s background infor-

ation. However, we quantify and bound the amount of informa-

ion about individuals’ locations revealed from location aggregates

ndependent of any dataset and background information. 

There are also other set of privacy metrics reviewed

n Wagner and Eckhoff (2018) and Primault et al. (2018) ,

ost of which are built on entropy, mutual information, k -

nonymity ( Sweeney, 2002 ), DP, and adversary’s attack correctness

 Shokri et al., 2011 ). Entropy isn’t a proper metric for our problem

etting since it doesn’t capture the additional leakage introduced

y the released data. K -anonymity and DP are originally pro-

osed to protect the existence of a single record in a database,

ut k -anonymity was shown to suffer from various attacks with

ackground information, and has been disregarded after the

ppearance of DP ( Shokri et al., 2010 ). Shokri et al. proposed

rivacy metrics that quantify attacker’s location estimation er-

or under specific types of inference attacks, which inherently

akes location correlations into account ( Shokri et al., 2011 ).

owever, this metric assumes specific type of inference attacks,

hile information-theoretic metric is agnostic to specific attack

lgorithms. 

.1.3. Information theoretic privacy 

Authors in a few works ( Ma and Yau, 2015; Oya et al., 2017;

u Pin Calmon and Fawaz, 2012; Sankar et al., 2013; Zhang et al.,

019 ) utilized information theoretic approaches, such as mutual

nformation and conditional mutual information, to measure pri-

acy leakage and designed privacy protection methods. The main

dvantage of such metrics is that they are context-aware, mean-

ng that they consider the prior knowledge of data in the pri-

acy definition and exploit it in mechanism design by adding noise

electively based on the data priors, so as to achieve a higher

tility-privacy tradeoff. Specifically, the privacy metrics proposed

n Ma and Yau (2015) and Oya et al. (2017) are only applica-

le to single location scenario. The privacy metrics proposed in

ankar et al. (2013) and du Pin Calmon and Fawaz (2012) have

calability issues if they are used on a large domain size, and are

hus not practical to be applied to aggregation-based location pri-

acy. In addition, Zhang et al. studied the problem of an individ-

al user’s location trace privacy while assuming the server is un-

rusted ( Zhang et al., 2019 ). We want to highlight that our work

n this paper is the first one to use context-aware metric to quan-

ify and protect aggregation-based location privacy with a trusted

ggregator who adds noise during data release to the public, mak-

ng our problem setting become entirely different from the one in

hang et al. (2019) . Moreover, the problem formulation and so-

ution approaches in this paper are more challenging, since the

eakage involves multiple users instead of single user. Even though

e all proposed algorithms by modifying the Blahut-Arimoto al-

orithm, the inputs and outputs of these two algorithms are com-

letely different. Lastly, our works also have substantial differences

n simulation setup and experimental results, each of which pro-

ides valuable insights in its own problem setting and has no re-

emblance to one another. 

To sum up, the problems of quantifying privacy using

nformation-theoretic measures and designing context-aware pri-

acy mechanisms for aggregate location release in the centralized

etting have not been well studied and we aim to solve these prob-

ems in this paper. 
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Table 1 

Notations. 

Symbol Description 

t, T Timestamp (integer), time period of aggregation 

l, L Location ID (integer), total number of locations 

m, M User ID (integer), total number of users participati- 

ng in the aggregation process 

A , A Random matrice representing the original and relea- 

sed location aggregates 

A ( t ) Random vector representing the location aggregates 

at timestamp t 

A m Random matrix representing user m ’s location profile 

A (t) 
m Random vector representing user m ’s location profile 

at timestamp t 

q (.|.), p (., .) Conditional, joint probability distributions 

Fig. 2. Problem setting: privacy-preserving location aggregates release. 
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.2. Contributions 

The major contributions of this paper are summarized as fol-

ows: 

• This is the first work to use context-aware metric to measure

aggregation-based location privacy. Specifically, we propose a

privacy metric based on mutual information to measure indi-

vidual user’s information leakage caused by releasing perturbed

location aggregates to the public. In particular, we consider a

special form of aggregate statistics, i.e., summation, which is

commonly used in real-world scenarios. Then we formulate the

optimal ALPPM as a minimization problem over the leakage

given a utility constraint. The proposed metric is generic and

independent of any specific inference attack, meaning that it

can provide us a formal method of measuring and comparing

the strength of privacy guarantees offered by different ALPPMs.

• We evaluate the information leakage on the original location

aggregates introduced by the perturbed location aggregates,

and formulate an optimization problem to derive an ALPPM.

Due to the issue of exponential complexity, we prove an up-

per bound on the privacy-utility tradeoff for location aggregates

and obtain the optimal ALPPM according this upper bound. In-

terestingly, the maximal individual user’s leakage under this

optimal ALPPM is proved to be a tighter upper bound on in-

dividual user’s leakage. 

• We compare the proposed ALPPM with a differentially private

mechanism presented in Chan et al. (2011) based on the pro-

posed privacy metric over both synthetic and real-world loca-

tion datasets. Results show that our proposed ALPPM reveals

less information under the same utility constraint and its ad-

vantage in the privacy-utility tradeoff becomes more conspicu-

ous when users’ location prior distributions are more skewed

and there are more users with skewed priors. In addition, re-

sults also indicate that unpopular locations are better protected

than popular locations under the proposed ALPPM. 

Clearly, our work contribute to motivating people to take part

n location aggregation, which is essential for generating valuable

ggregate location datasets for statistical analysis while protecting

ser’s location privacy. 

We organize the rest of our paper as follows. The problem

tatement and preliminaries are presented in Section 2 and 3 re-

pectively. Section 4 shows the main results of the privacy-utility

radeoff for location aggregates and also the algorithm for deriving

he optimal ALPPM based on the proposed upper bound. Experi-

ental results are presented in Section 5 , followed by conclusion

nd future work in the next Section. Lastly, the proofs for theoret-

cal results are given in Appendix. 

. Problem statement 

In this section, we describe the system and threat model, de-

ne the privacy and utility metrics for aggregate location data, and

hen present the problem formulation. Table 1 gives the notations

sed throughout the paper. 

.1. System model 

The problem we considered is illustrated by Fig. 2 . In our

ystem model, there are M users uploading their locations to a

erver (i.e., aggregator) who is trusted to perform aggregation. The

erver releases location aggregates to third-party data analysts in

 privacy-preserving manner. To simplify our model, we consider

sers having independent location prior distributions and assume

hat there is no user-user or temporal correlations. If we want to
lind individual locations from an untrusted server, we can aggre-

ate the locations using cryptographic protocols ( Kopp et al., 2012;

opa et al., 2011; Pyrgelis et al., 2016 ). 

.1.1. User’s location profile 

Each user’s location profile is represented by a matrix A m 

of

ize L × T , where m represents user’s ID, L is the total number

f locations we considered (e.g., ROIs), and T is the time period

hat the aggregation is performed. Each column corresponding to

 certain timestamp t in A m 

has one element as 1 and others as 0,

here 1 represents that user m visited an ROI at timestamp t and

 denotes that she didn’t. 

.1.2. User’s location prior 

The location prior of user m corresponding to her location pro-

le is denoted by a matrix P m 

of size L × T . Each element in this

atrix represents the probability of user m visiting location l at

imestamp t and we have 
∑ L 

l=1 P m 

(l, t) = 1 . It’s easy to see that

ser’s location prior at a certain timestamp is a vector. For in-

tance, when L = 3 , if we assign P m 

( l , 2) as [0 . 1 , 0 . 6 , 0 . 3] T , it tells

s that at timestamp 2, the probabilities that user m visiting loca-

ion 1, 2, 3 are 0.1, 0.6, 0.3 respectively. 

.1.3. Location aggregates 

The location aggregates are represented by a matrix A of size

 × T . Each item A ( l, t ) in matrix A represents the total number

f users visiting location l at timestamp t , and is calculated as

 (l, t) = 

∑ M 

m =1 A m 

(l, t) . A ( l, t ) is an integer value between 0 and

 and we have 
∑ L 

l=1 A (l, t) = M, i.e., the sum of a column equals

o the total number of users who participated in the aggregation

rocess. The matrix A can be denoted as 

 = 

M ∑ 

m =1 

A m 

= [ A (1) , ..., A (t) , ..., A (T ) ] , (1) 

here A ( t ) denotes the t -th column vector in matrix A . 

.1.4. Privacy-preserving location aggregates release 

In order to protect users’ aggregation-based location privacy, we

an perturb the aggregate location matrix while still providing cer-

ain utility before releasing it to the public. Specifically, in such a
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Fig. 3. Threat model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

D  

o  

A  

D  

p  

i  

w  

T  

t  

i∑

2

 

v  

a

D  

a  

p  

t

a  

p  

o

A  

w  

t  

i

A

 

o  

I  

t  

q  

t  

t

 

t  

t

D  

A  

c  

c  

i  

c  

p

L  

w

 

t  

S

3

 

D  

f  
privacy-preserving mechanism, the original aggregate location ma-

trix A will be perturbed into its noisy version A . Methods adopted

to perturb aggregates include randomized response ( Du and Zhan,

2003; Warner, 1965 ), noise addition ( Dwork, 2008; Dwork et al.,

2006 ), etc. To provide high data utility, the noisy aggregates should

have the same properties as the original. For instance, elements

in A should also be integers between 0 and M and the sum of

each column should equal to M . A limitation of using noise ad-

dition is that the perturbed aggregates are not necessarily integers

and could be decimals or negative or larger than M , possibly mak-

ing them to be meaningless to data analysts ( Wang et al., 2010 ).

Therefore, we choose randomized response type of mechanisms to

perturb the original location aggregates A since it can map each

column of A into a vector with certain probability, where the vec-

tor satisfies that all the elements are integers between 0 and M

and their summation equals to M , i.e., the properties of A are pre-

served in A . 

2.2. Threat model 

To better understand the following definition of the privacy

metric for location aggregates, we first model the adversary against

whom the protection is provided. The figure depicting the threat

model is presented in Fig. 3 . 

Specifically, the adversary is assumed to have full statistical

knowledge of users’ location priors (i.e., P m 

) and the location ag-

gregates (i.e., p ( A )). Its goal is to make inferences about a target

user’s location profile A m 

and also the original location aggregates

A after observing the perturbed location aggregates A . Since we

make no restriction on its computational capability, the adversary

is theoretically capable of leveraging its own knowledge and the

perturbed location aggregates A to perform any type of inference

attack. In terms of this type of threat model, we aim to understand

the fundamental information leakage (i.e., privacy leakage) on an

individual user’s location profile A m 

as well as the original aggre-

gates A introduced by releasing A from an information theoretic

point of view. 

2.3. Privacy and utility metrics for location aggregates 

We know the leakage caused by releasing location aggregates

is closely related to users’ location priors and temporal correlation

among locations, so they should be considered in the metrics nat-

urally. Thus, mutual information is chosen as the privacy metric

since it can capture users’ location priors and the temporal corre-

lation in a principle manner. Considering that an adversary’s in-

ference target could be an individual user’s location profile A m 

or

the original location aggregates A , we define two privacy metrics

accordingly. 

Definition 1Privacy Metrics for Location Aggregates.. Given the

original location aggregates A , individual user’s location profile A m 

,

and the released location aggregates A , the information leakage on an

individual user’s location and the original location aggregates intro-

duced by releasing the perturbed location aggregates are defined as

I ( A m 

; A ) and I ( A ; A ) respectively, i.e., we use mutual information as

the metric to measure privacy leakage. 
In addition, we also define a utility metric to measure the util-

ty offered by the perturbed location aggregates. 

efinition 2. Utility Metric for Location Aggregates. Given the

riginal location aggregates A and released location aggregates

 , the utility metric for location aggregates is defined as D =
 ( A ; A ) = 

∑ T 
t=1 D ( A (t) , A (t)) , where D ( A ( t ), A ( t )) denotes the ex-

ected distortion for the location aggregates at timestamp t , and

s defined as D ( A (t) , A (t)) = 

∑ 

A (t) , A (t) p( A (t ) , A (t )) d( A (t ) , A (t )) ,

here d ( A ( t ), A ( t )) is the Euclidean norm of vector A (t) − A (t) .

he utility (distortion) constraint for the location aggregates at

imestamp t is defined as D ( A (t ) , A (t )) ≤ D t , t = 1 , 2 , ..., T , which

mplies that the total distortion for the location aggregates D ≤
 T 
t=1 D t . 

.4. Problem formulation 

We first study the problem of an individual user’s location pri-

acy leakage when an adversary observes the perturbed location

ggregates. 

efinition 3. Individual Privacy – Aggregate Utility tradeoff of

n ALPPM: Given an individual user’s location profile A m 

, the

erturbed location aggregates A generated by a trusted aggrega-

or, and a utility constraint D ≤ ∑ T 
t=1 D t , the optimal ALPPM 

∗
user 

chieves the minimum information leakage on a user’s location

rofile subject to the utility constraint D when it is the solution

f the following optimization problem: 

LPPM 

∗
user = arg min 

q ( A | A ): 

{ D ( A (t) , A (t)) ≤D t } T t=1 

max 
1 ≤m ≤M 

I( A m 

; A ) , (2)

here I ( A m 

; A ) is the mutual information between A m 

and A , and

he maximization is over all users. We denote all the minimum

ndividual leakage and distortion pairs as the Individual Privacy –

ggregate Utility tradeoff L 

∗
user (D ) . 

The intuition of Definition 3 is straightforward: we enumerate

n all possible q ( A | A ), and for each q ( A | A ), we can get the maximal

 ( A m 

; A ) among all users subject to a utility constraint D ; for all

he maximal I ( A m 

; A ) corresponding to all q ( A | A ), we choose the

 ( A | A ) that minimizes the maximum individual leakage as the op-

imal ALPPM (i.e., ALPPM 

∗
user ), and consider this minimum value as

he individual privacy leakage. 

In addition, it’s also interesting to study the privacy-utility

radeoff under the privacy metric defined as the mutual informa-

ion between the original and perturbed location aggregates. 

efinition 4. Aggregate Privacy – Aggregate Utility tradeoff of an

LPPM: Given the original location aggregates A , the perturbed lo-

ation aggregates A generated by a trusted aggregator, and a utility

onstraint D ≤ ∑ T 
t=1 D t , an ALPPM q ( A | A ) achieves the minimum

nformation leakage on the original aggregates subject to the utility

onstraint D when it is the solution of the following optimization

roblem: 

 

∗
agg (D ) = min 

q ( A | A ): { D ( A (t) , A (t)) ≤D t } T t=1 

I( A ; A ) , (3)

here I ( A ; A ) is the mutual information between A and A . 

Interestingly, there is an close connection between the op-

imization problems in Definition 3 and 4 , which is proved in

ection 4 . 

. Preliminaries 

It’s easy to see that the privacy-utility tradeoffs in

efinitions 3 and 4 have a close connection to the rate-distortion

unction in information theory. Actually, this connection has been
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iscussed in Zhang et al. (2019) , so we will omit its analysis and

nly present the definition of rate-distortion function and the

lgorithm used for its computation, both of which are also given

n Zhang et al. (2019) . 

efinition 5. Rate Distortion Function ( Cover and Thomas, 2012 ). If

he input of an encoder is X and the output of the corresponding

ecoder is ˆ X , the rate distortion function R ( D ) for a source X ~ p ( x )

ith distortion measure d(x, ̂  x ) is defined as 

 (D ) = min 

p( ̂ x | x ): ∑ 

x, ̂ x 

p(x ) p( ̂ x | x ) d(x, ̂ x ) ≤D 

I(X ; ˆ X ) 

= min 

p( ̂ x | x ): ∑ 

x, ̂ x 

p(x ) p( ̂ x | x ) d(x, ̂ x ) ≤D 

∑ 

x, ̂ x 

p(x ) p( ̂  x | x ) log 
p( ̂  x | x ) 
p( ̂  x ) 

, (4) 

here the minimization is over all the conditional distributions

 ( ̂  x | x ) for which the joint distribution p(x, ̂  x ) = p(x ) p( ̂  x | x ) satisfies

he expected distortion constraint. 

.1. Blahut-Arimoto algorithm for calculating the rate distortion 

unction 

Blahut-Arimoto algorithm ( Blahut, 1972; Cover and Thomas,

012 ) is an iterative algorithm which eventually converges to the

ptimal solution of the convex optimization problem in the rate

istortion function. In detail, this algorithm works in the following

rocedure: it first chooses an initial probability distribution for r( ̂  x )

e.g., a uniform distribution), then calculate q ( ̂  x | x ) = 

r( ̂ x ) e −λd(x, ̂ x ) 
∑ 

ˆ x r( ̂ x ) e −λd(x, ̂ x ) 

sing r( ̂  x ) . After obtaining q ( ̂  x | x ) , it updates r( ̂  x ) by setting

( ̂  x ) = 

∑ 

x p(x ) q ( ̂  x | x ) . Then it uses r( ̂  x ) to update q ( ̂  x | x ) by setting

 ( ̂  x | x ) = 

r( ̂ x ) e −λd(x, ̂ x ) 
∑ 

ˆ x r( ̂ x ) e −λd(x, ̂ x ) 
. The optimal solution q ( ̂  x | x ) minimizing the

ate distortion function is achieved by repeating the above iteration

etween r( ̂  x ) and q ( ̂  x | x ) until the algorithm achieves convergence. 

Since Blahut-Arimoto algorithm is an efficient algorithm com-

only used in information theory field to solve optimization prob-

ems that can be formulated as a rate-distortion problem, we mod-

fy it to suit our problem in this paper. 

In this work, we also study the privacy-utility tradeoff in the

ase where all users’ location priors are the same. For example,

hen only a global prior is known for all the users instead of indi-

idual users’ priors, which could be obtained from historically col-

ected data such as population census or surveys, the probability

istribution of each column in A is actually a multinomial distri-

ution. Therefore, we briefly describe its definition below. 

efinition 6. Multinomial Distribution ( Jaynes, 2003 ). The random

ector RV 

�
 X = (X 1 , ..., X m 

) has a multinomial distribution with pa-

ameters N ∈ {1, 2, ...} and θ ∈ R 

n for all i and 

∑ m 

i =1 θi = 1 if 

p �
 X (x 1 , ..., x m 

) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
N 

x 1 ,...,x m 

)
θ x 1 

1 
· · · θ x m 

m 

, if x 1 , ..., m 

are non-negative 
integers that sum to N 

0 , text otherwise 

here 
(

N 
x 1 ,...,x m 

)
= 

N! 
x 1 ! ···x m ! is the multinomial coefficient. 

. Main results and algorithm 

.1. Practical challenge 

We notice that there is a challenge in finding the optimal

rivacy-utility tradeoff for location aggregates, i.e., the exponential

omplexity caused by directly using Blahut-Arimoto algorithm on

he optimization problem in Definition 4 . This is because we have
o characterize q ( A | A ) for all ( A , A ) ∈ A × A , meaning that the op-

imization problem has to be solved over | A || A | variables to find

he optimal solution q ( A | A ). For instance, if we assume that there

re N realizations of each column, the total number of variables in

he optimization problem will be N 

2 T . Either the increase of N or T

ill make the number of variables increase exponentially. 

To avoid the complexity caused by T , we make an assump-

ion that no temporal correlations exist among all the timestamps

n the aggregation process. This scenario is reasonable when the

ollected location traces are sporadic ( Andrés et al., 2013; Oya

t al., 2017; Shokri et al., 2012 ). Next, we will show how to derive

n upper bound on L 

∗
agg (D ) based on this assumption and then

resent an algorithm to solve the optimization problem in the up-

er bound. 

.2. Main results 

The following theorem shows the upper and lower bounds on

he Aggregate Privacy – Aggregate Utility tradeoff. 

heorem 1. When there is no temporal correlation in the location ag-

regates, the main results for individual and aggregate privacy-utility

radeoff are: 

 

∗
user (D ) ≤ L user (D, ALPPM 

∗
agg ) ≤ L 

∗
agg (D ) ≤ L 

upper 
agg (D ) , (5) 

where 

 user (D, ALPPM 

∗
agg ) = max 

1 ≤m ≤M 

I( A m 

; A ) | q ( A | A )= ALPPM 

∗
agg 

(6) 

nd 

 

upper 
agg (D ) = 

T ∑ 

i =1 

min 

q ( A (t) | A (t) ): 
D ( A (t) , A (t) ) ≤D t 

I( A (t) ; A (t) ) . (7) 

The proof of Theorem 1 is given in Appendix. 

Since generating ALPPMs according to L 

∗
user (D ) and L 

∗
agg (D ) in-

urs exponential complexity, we will leverage L 

upper 
agg (D ) to gen-

rate the optimal aggregation-based location privacy preserving

echanism ALPPM 

∗
agg , which can provide the privacy guarantee

hat the actual leakage for location aggregates is upper bounded by

 

upper 
agg (D ) . Moreover, Theorem 1 also shows L 

∗
user (D ) ≤ L 

∗
agg (D ) , i.e.,

he leakage on an individual user’s location is upper bounded by

he leakage on the original aggregates introduced by the perturbed

ggregates. More importantly, we have proved an tighter upper

ound on L 

∗
user (D ) , which is L user (D, ALPPM 

∗
agg ) , i.e., the maximal

ndividual user’s leakage under ALPPM 

∗
agg . 

However, it’s not clear how much actual leakage occurs on the

riginal location aggregates when releasing the perturbed aggre-

ates according to ALPPM 

∗
agg . Accordingly, we present the following

efinition to calculate the amount of actual leakage. 

efinition 7. Actual Privacy Leakage of Location Aggregates With-

ut Temporal Correlation. When there is no temporal correlation

mong location aggregates, for a certain time period 1, 2, ..., T , the

ctual privacy leakage of an ALPPM is defined as 

 actual ( ALPPM ) = 

T ∑ 

i =1 

I( A (t) ; A (t) ) , (8) 

here the ALPPM can be generated based on any type of ap-

roaches. 

Interestingly, the following corollary proves that the actual

eakage of ALPPM 

∗
agg generated according to L 

upper 
agg (D ) equals to

 

upper 
agg (D ) . 

orollary 1. The actual privacy leakage of ALPPM 

∗
agg evaluated by

 actual ( ALPPM ) equals to L 

upper 
agg (D ) , i.e., 

 actual ( ALPPM 

∗
agg ) = L 

upper 
agg (D ) . (9) 
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Table 2 

M and its Corresponding Maximum L. 

M, L max M, L max M, L max M, L max M, L max 

1,53 8,17 15,14 22,12 29,11 

2,33 9,16 16,13 23,12 30,11 

3,27 10,16 17,13 24,12 31,11 

4,23 11,15 18,13 25,12 32,11 

5,21 12,15 19,13 26,11 33,11 

6,19 13,14 20,12 27,11 34,11 

7,18 14,14 21,12 28,11 35,11 
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The proof of Corollary 1 is trivial. It’s readily seen that
T ∑ 

i =1 

I( A (t) ; A (t) ) equals to the summation of the objective func-

tions in L 

upper 
agg (D ) . We know ALPPM 

∗
agg is generated according to

L 

upper 
agg (D ) , thus we have L actual ( ALPPM 

∗
agg ) = L 

upper 
agg (D ) . 

4.3. Algorithm 

In this part, we propose an algorithm based on Blahut-Arimoto

algorithm ( Blahut, 1972; Cover and Thomas, 2012 ) to obtain the

optimal aggregation-based location privacy-preserving mechanism

ALPPM 

∗
agg according to the upper bound L 

upper 
agg (D ) , which is pre-

sented in Algorithm 1 . Essentially, we leverage its basic idea to im-

Algorithm 1: Generating ALPPM t at timestamp t 

Input: p( a (t) ) : probability distribution of a (t) , λ: Lagrange 

multiplier, D ( a (t) , a (t) ) : distortion matrix, δ: threshold for 

convergence 

Output: q ( a (t) | a (t) ) : ALPPM at timestamp t , I ∗t : minimum 

leakage at timestamp t , D t : distortion corresponding to I ∗t 
1: Initialize r 0 ( a (t) ) as a uniform distribution 

2: Calculate q 0 ( a (t) | a (t) ) using r 0 ( a (t) ) by 

q ( a (t) | a (t) ) = 

r 0 ( a (t) ) e −λd( a (t) , a (t) ) 
∑ 

a (t) r 0 ( a (t) ) e −λd( a (t) , a (t) ) 

3: Calculate I 0 t using r 0 ( a (t) ) , q ( a (t) | a (t) ) , and p( a (t) ) by 

I 0 t = 

∑ 

a (t) , a (t) p( a (t) ) q ( a (t) | a (t) ) log q ( a (t) | a (t) ) 
r 0 ( a (t) ) 

4: Calculate r( a (t) ) using q 0 ( a (t) | a (t) ) by 

r( a (t) ) = 

∑ 

a (t) p( a (t) ) q 0 ( a (t) | a (t) ) 
5: while true do 

6: Calculate q ( a (t) | a (t) ) using r( a (t) ) by 

q ( a (t) | a (t) ) = 

r( a (t) ) e −λd( a (t) , a (t) ) 
∑ 

a (t) r( a (t) ) e −λd( a (t) , a (t) ) 

7: Calculate I t using r( a (t) ) , q ( a (t) | a (t) ) , and p( a (t) ) by 

I t = 

∑ 

a (t) , a (t) p( a (t) ) q ( a (t) | a (t) ) log q ( a (t) | a (t) ) 
r( a (t) ) 

8: if ( I 0 t − I t � δ) then 

9: I ∗t ← I t 
10: Calculate D t = 

∑ 

a (t) , a (t) p( a (t) ) q ( a (t) | a (t) ) d( a (t) , a (t)

11: return q ( a (t) | a (t) ) , I ∗t , D t , 

12: else 

13: I 0 t ← I t 
14: Calculate r( a (t) ) using q ( a (t) | a (t) ) by 

r( a (t) ) = 

∑ 

a (t) p( a (t) ) q ( a (t) | a (t) ) 
15: end if 

16: end while 

plement an iterative algorithm which eventually converges to the

optimal solution of minimizing the mutual information between

two vectors. Specifically, in Algorithm 1 , λ is the Lagrange multi-

plier used in solving the optimization problem and represents how

much we favor information leakage versus distortion (smaller λ
means more distortion), and δ is the threshold for the proposed

algorithm to achieve convergence. Next, we describe how to obtain

the other two inputs a ( t ) and p ( a ( t )). 

If we assume the number of users is M and the number

of locations is L, p ( a ( t )) is calculated by function EC ( M, L ) and

CPoC ( V ) 1 , where a ( t ) is a random vector representing all users’

visits in L locations at timestamp t, and p ( a ( t )) is its probabil-

ity distribution. In detail, function EC ( M, L ) is designed to char-

acterize a ( t ) by enumerating all the cases of distributing M users

into L locations, and function CPoC ( V ) is used to calculate p ( a ( t ))
1 EC and CPoC are short for EnumerateCombinations and CalcualteProbabilityOf- 

Combinations respectively. 

m  

a  

n  

i  
y computing the probability of each case. For example, when

 = 4 , L = 2 , we have all possible outputs of EC ( M, L ) as C =
((0 , 4) , (1 , 3) , (2 , 2) , (3 , 1) , (4 , 0)) . When all users’ location priors

re the same, a ( t ) is actually a multinomial random vector. In this

ase, function CPoC ( V ) is defined according to the definition of

ultinomial distribution presented in Section 3 , so the output of

PoC ( V ) is p( V ) = 

M! 
v 1 ! ···v L ! θ

v 1 
1 

· · · θ v L 
L 

, where θ l is the probability of

 user visiting location l and 

∑ L 
l=1 θl = 1 . When users’ location pri-

rs are different, p ( a ( t )) can be calculated according to the law of

otal probability. Clearly, the release of the aggregate location ma-

rix A is achieved by releasing A ( t ) at each timestamp t according

o ALPPM t generated from Algorithm 1 at all timestampss. 

To show the complexity of Algorithm 1 , we present an expres-

ion for the computation complexity of one iteration in this algo-

ithm, which is similar to the analysis in Zhang et al. (2019) . In

ach iteration, the computation complexity is dominated by the

alculation of q ( a ( t )| a ( t )) and r ( a ( t )). (1): According to the equa-

ion given in step 2 in Algorithm 1 , it’s easy to see that for each

 ( t ), we need to do | A (t) | multiplications for a specific a ( t ) in the

enominator, and then use this denominator for every other a ( t ),

o the computation needs O (| A (t) | ) operations. Considering of all

 ( t ), the complexity of calculating q ( a ( t )| a ( t )) is O (| A (t) || A (t) | ) .
2) : According to the equation given in step 4, we need to do

 A (t) | multiplications for a specific a ( t ). Considering of the cal-

ulation for all a ( t ), the complexity of computing r ( a ( t )) is also

 (| A (t) || A (t) | ) . As a result, each iteration in Algorithm 1 requires

bout O (| A (t) || A (t) | ) computations. If we assume there are N

ealizations of each column, | A (t) || A (t) | equals to N 

2 , which is

uch less than the computational complexity in the optimization

roblem in Definition 4 (i.e., N 

2 T ). The issue that | A (t) | and | A (t) |
ncrease exponentially with the increase of the number of locations

r users will be addressed in future work. 

. Experimental evaluation 

In this section, we evaluate the actual privacy leakage of our

roposed ALPPM and compare it with a differentially private

echanism over both synthetic and real-world datasets. The com-

ared one is an output perturbation mechanism called Simple

ounting Mechanism (SCM), where a trust sever adds noise to

he aggregate before releasing it to the public ( Chan et al., 2011 ).

pecifically, SCM samples random values from a Laplace distribu-

ion LAP(1/ ε) since the sensitivity of counting queries is 1. All

valuation were conducted on a desktop with 2.40 GHz Intel i5

PU and 8GB memory. 

.1. Simulation setup 

Considering the limitation of a computer’s memory, there exits

 maximal number of operations that a computer can hold in its

emory and perform calculations with. In the following, we make

 list of the number of users ( M ) and the corresponding maximal

umber of locations ( L max ), which are possible values of the inputs

n Algorithm 1 . As shown in Table 2 , the maximal value of M that
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lgorithm 1 can process is 35. Designing algorithms which support

arger inputs M and L is considered as future work. 

In this simulation, we generate 4 synthetic datasets correspond-

ng to the cases when there are 5, 10, 15 and 20 users partic-

pating in aggregation on 3 different locations, so as to explore

he impact of the number of users on the privacy-utility tradeoff.

lso, in order to see how users’ location priors affect the privacy-

tility tradeoff, we conduct the evaluation of L actual ( ALPPM 

∗
agg ) and

 actual ( SCM ) under both homogeneous and different user priors on

he synthetic datasets. To present the figures for experimental re-

ults in a clear way, we use the letters ALPPM as an abbreviation

or L actual ( ALPPM 

∗
agg ) and SCM as an abbreviation for L actual ( SCM )

n all the following figures. 

.2. Evaluation on synthetic datasets 

As dominant parameters used to generate aggregate location

ataset, the impacts of the number of users M and users’ lo-

ation priors need to be carefully analyzed. More importantly,

t’s also interesting to study how the skewness of users’ lo-

ation priors affects the privacy-utility tradeoff. Knowing from

orollary 1 that the actual leakage of the ALPPM generated ac-

ording to L 

upper 
agg (D ) equals to L 

upper 
agg (D ) , i.e., L actual ( ALPPM 

∗
agg ) =

 

upper 
agg (D ) , we only present the results of L actual ( ALPPM 

∗
agg ) and

ompare it to L actual ( SCM ) under the same distortion. Specifically,

e analyze the privacy-utility tradeoffs when users’ priors are the

ame and different separately. 

.2.1. Evaluation of L actual ( ALPPM 

∗
agg ) and L actual ( SCM ) under 

omogeneous user priors 

In this part, we present the simulation results of

 actual ( ALPPM 

∗
agg ) and L actual ( SCM ) when users have the same

ocation priors. The evaluation was done on four different types

f priors at a single timestamp t , which are p 1 = [1 / 3 , 1 / 3 , 1 / 3] T ,

p 2 = [0 . 25 , 0 . 5 , 0 . 25] T , p 3 = [0 . 1 , 0 . 1 , 0 . 8] T and p 4 = [0 . 8 , 0 . 1 , 0 . 1] T

espectively, to see the impact of skewness of location prior

istributions. Specifically, p 1 represents the case where users visit

ach location equally likely, p 3 and p 4 are designed in a way

hat users have much higher chances visiting certain locations

han others, while p 2 shows users have slightly higher probability

isiting certain locations than other locations. It’s easy to see that

 3 and p 4 have the largest skewness while p 1 has the least. The

ase where location priors have large skewness actually has lots

f applications, since it can represent tourist attractions, sport

tadiums, shopping malls, or schools. The skewness of location

rior is worth of analyzing, because a skewed prior means there

re popular locations and the analysis on popular locations helps

o provide insight for choosing optimal geographic placement for

etail stores or advertisements. 

Firstly, the probability distributions of aggregate location data

re presented in Fig. 4 to show how they are influenced by the

kewness of location priors. To ease presentation, we only show

he probability distributions when L = 3 , M = 5 and users’ priors

re p 1 , p 2 , p 3 and p 4 . It’s easy to see that probability distribution

f different categories (i.e., possible combinations of 5 users locat-

ng at 3 locations at timestamp t) have different levels of skew-

ess. Specifically, Fig. 4 a shows categories [1 2 2], [2 1 2], and [2 2 1]

ave the highest probability, while [0 0 5], [0 5 0], and [5 0 0] have

he lowest probability. This is because users’ priors are uniformly

istributed, meaning that they visit each location equally likely. In

ig. 4 b, [1 3 1] has the highest probability in all categories since

he second location is more popular than the other two in p 2 . Ob-

iously, the probability distribution in Fig. 4 b is more skewed than

he one in Fig. 4 a. The distributions in Fig. 4 c and 4 d have the

ame degree of skewness as the location popularity in p 3 and p 4 
re the same, and they are more skewed than the one in Fig. 4 b.
or example, the highest probabilities in Fig. 4 c and 4 d happen

n category [0 0 5] and [5 0 0] respectively, because the third loca-

ion in p 3 and the first location in p 4 are the most popular ones.

herefore, we can conclude that the level of skewness is related to

he popularities of certain locations in users’ priors. In other words,

hen certain locations in users’ priors have much higher probabil-

ties than the others, the probability distribution of aggregate loca-

ion will have larger skewness. 

Next, we show the evaluation of L actual ( ALPPM 

∗
agg ) and

 actual ( SCM ) on p 1 , p 2 , p 3 and p 4 when the total number of users

hanges in Fig. 5 . We start with describing the details about how

o derive the curves shown in the figures below. Each point on the

urve is corresponding to a fixed λ, i.e., the Lagrange multiplier,

hich is one of the inputs in Algorithm 1 . For a fixed λ, given

sers’ priors, we can obtain an information leakage-distortion pair

y Algorithm 1 and save the output distortion D . When changing

o different λs, we can smoothly draw the information leakage-

istortion curve of L actual ( ALPPM 

∗
agg ) . Now we explain how to de-

ive the SCM under the distortion saved earlier. For every λ, we

ncrease ε (i.e., the privacy parameter in differential privacy) from

.001 to 100 and use the same users’ priors to derive the SCM un-

er the same distortion as D . According to the conditional proba-

ility distribution obtained from SCM, we can easily calculate its

ctual aggregate leakage by Definition 7 . By enumerating all the

s, we draw the curves of L actual ( SCM ) . In addtion, the threshold

or convergence in Algorithm 1 is set as 0.001 and its reason will

e explained in Section 5.3 . 

Overall, L actual ( ALPPM 

∗
agg ) is always lower than L actual ( SCM ) in

ll cases, which means the actual information leakage of the pro-

osed ALPPM is less than the actual leakage of SCM under the

ame distortion. Regarding the privacy-utility tradeoff curves of

 actual ( ALPPM 

∗
agg ) , it’s easy to see that the curves corresponding

o p 3 and p 4 coincide, since p 3 and p 4 have the same degree of

kewness, meaning that the probabilities used to calculate the ac-

ual information leakage are the same. Another important insight

s that given the same distortion, the least leakage occurs on p 3 
nd p 4 , while the most leakage happens on p 1 . This is because a

kewed prior itself has already revealed much information, while

ur mechanism minimizes the additional leakage after releasing

he perturbed aggregates. As a result, the privacy-utility tradeoff

urves corresponding to the priors as p 3 and p 4 are the lowest

ompared to the cases when priors are p 1 and p 2 . The results pro-

ide us a takeaway that the proposed mechanism can guarantee

hat the more skewed users’ priors are, the less leakage will oc-

ur after releasing perturbed location aggregates. In other words,

ocation aggregates are better protected in the case of skewed pri-

rs than uniform priors. Actually, users tend to have skewed priors

ince real-world location distributions are heterogeneous. 

Interestingly, L actual ( SCM ) shows the similar patterns as

 actual ( ALPPM 

∗
agg ) , but we will omit its analysis due to space con-

ideration. We want to highlight that even though directly comput-

ng L 

∗
user (D ) is challenging due to exponential complexity, releas-

ng location aggregates according to ALPPM 

∗
agg can still provide the

rivacy guarantee that the maximum leakage of individual users

s upper bounded by L actual ( ALPPM 

∗
agg ) . Lastly, we also check the

onditional probabilities of outputting popular and unpopular lo-

ations given by q ( A ( t )| A ( t )), and they have shown that popular

ocations are less perturbed while unpopular ones are perturbed

ore, which means unpopular locations are better protected than

opular locations. 

.2.2. Evaluation of L actual ( ALPPM 

∗
agg ) and L actual ( SCM ) when users’ 

riors are different 

In real-world scenarios, users’ priors tend to be different, so we

lso evaluate L actual ( ALPPM 

∗
agg ) and L actual ( SCM ) in this case. We

et L = 3 , M = 5 to ease presentation. To explore how the skewness
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Fig. 4. PDF of aggregated location data on 4 different users’ priors: p 1 = [1 / 3 , 1 / 3 , 1 / 3] T , p 2 = [0 . 25 , 0 . 5 , 0 . 25] T , p 3 = [0 . 1 , 0 . 1 , 0 . 8] T and p 4 = [0 . 8 , 0 . 1 , 0 . 1] T when L = 3 , M = 

5 . 

Fig. 5. Evaluation of L actual ( ALPPM 

∗
agg ) and L actual ( SCM ) on 4 types of user priors: p 1 = [1 / 3 , 1 / 3 , 1 / 3] T , p 2 = [0 . 25 , 0 . 5 , 0 . 25] T , p 3 = [0 . 1 , 0 . 1 , 0 . 8] T and p 4 = [0 . 8 , 0 . 1 , 0 . 1] T . 
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Fig. 6. Evaluation of L actual ( ALPPM 

∗
agg ) and L actual ( SCM ) when users’ priors are different and L = 3 , M = 5 . 

Fig. 7. Comparison between L user (D, ALPPM 

∗
agg ) (denoted by Individual) and L actual ( ALPPM 

∗
agg ) (denoted by ALPPM) when L = 3 , M = 5 . 
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Fig. 8. Evaluation of L actual ( ALPPM 

∗
agg ) and L actual ( SCM ) on a real-world dataset. 
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p  
f users’ location priors affects the privacy leakage, we consider six

ases, each of which represents one possible group of users partic-

pating in an aggregation process. Each case is denoted as a ma-

rix named C i with size 5 × 3, where every row corresponds to

n individual user’s location prior, and the six matrices are shown

elow. C 1 represents an extreme case that all users visit each loca-

ion equally likely, i.e., their location priors have the lowest skew-

ess. C 2 represents a scenario where every user’s prior is randomly

enerated. C 3 is another case where each user has certain location

ith higher popularity than the others. The level of skewness of C 2 
s between C 1 and C 3 . We compare the results of C 1 , C 2 and C 3 in

ig. 6 a. In addition, the evaluations on C 4 , C 5 and C 6 are designed

o help us to better understand how the number of users who have

igher chances to visit certain locations affect the privacy leakage,

nd the results are presented in Fig. 6 b. 

 1 = 

⎡ 

⎢ ⎢ ⎣ 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

⎤ 

⎥ ⎥ ⎦ 

C 2 = 

⎡ 

⎢ ⎢ ⎣ 

0 . 421 0 . 129 0 . 450 

0 . 415 0 . 219 0 . 366 

0 . 188 0 . 777 0 . 035 

0 . 659 0 . 110 0 . 231 

0 . 449 0 . 379 0 . 172 

⎤ 

⎥ ⎥ ⎦ 

 3 = 

⎡ 

⎢ ⎢ ⎣ 

0 . 06 0 . 9 0 . 04 

0 . 8 0 . 1 0 . 1 

0 . 2 0 . 7 0 . 1 

0 . 1 0 . 05 0 . 85 

0 . 75 0 . 15 0 . 1 

⎤ 

⎥ ⎥ ⎦ 

C 4 = 

⎡ 

⎢ ⎢ ⎣ 

0 . 8 0 . 1 0 . 1 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

⎤ 

⎥ ⎥ ⎦ 

 5 = 

⎡ 

⎢ ⎢ ⎣ 

0 . 1 0 . 8 0 . 1 

0 . 1 0 . 1 0 . 8 

0 . 8 0 . 1 0 . 1 

1 / 3 1 / 3 1 / 3 

1 / 3 1 / 3 1 / 3 

⎤ 

⎥ ⎥ ⎦ 

C 6 = 

⎡ 

⎢ ⎢ ⎣ 

0 . 1 0 . 8 0 . 1 

0 . 1 0 . 1 0 . 8 

0 . 1 0 . 8 0 . 1 

0 . 1 0 . 1 0 . 8 

0 . 8 0 . 1 0 . 1 

⎤ 

⎥ ⎥ ⎦ 
It’s clear from Fig. 6 that L actual ( ALPPM 

∗
agg ) is always lower than

 actual ( SCM ) when users’ location priors are different. Specifically,

n the case of users visiting each location equally likely, the privacy

eakage is the largest. It also shows that the more users who have

igher probabilities visiting certain locations instead of visiting

ach location equally likely, the less privacy leakage will occur af-

er releasing perturbed location aggregates according to ALPPM 

∗
agg .

his is because when a location prior is highly skewed, the prior

tself has already revealed quite much information. For instance,

ompared with C 3 , an adversary can infer less information about

ser’s locations by only knowing the priors in C 1 and C 2 . In other

ords, when a user’s location prior is a uniform distribution, it’s

lmost impossible for an adversary to guess which ROI she visited

y making an inference only based on her prior (i.e., without the

erturbed aggregates). Once the adversary observes the perturbed
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Fig. 9. Impact of threshold. 
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aggregates, he will be able to learn more information than the case

when users’ priors are more skewed. Therefore, when publishing

aggregate location matrix, the proposed mechanism ensures that

the more skewed users’ priors are, the better protection it can pro-

vide to the original location aggregates. Moreover, its advantage

over SCM in terms of privacy-utility tradeoff becomes even greater

when there are more users with highly skewed priors. 

In addition, we also calculate the maximal individual leak-

age under ALPPM 

∗
agg , i.e., L user (D, ALPPM 

∗
agg ) , and compare it

with L actual ( ALPPM 

∗
agg ) . Specifically, if we denote the optimal

mechanism ALPPM 

∗
agg at timestamp t as q ( a ( t )| a ( t )), we can

calculate q ( a ( t )| a m 

( t )) according to the law of total probabil-

ity q ( a (t) | a m 

(t)) = 

∑ 

a (t) q ( a (t) | a (t )) q ( a (t ) | a m 

(t )) . Then we can

compute each user’s information leakage as I ( A m 

( t ); A ( t )) and

take the maximum as the individual leakage. By calculating the

maximal individual user’s leakage for each λ, we can draw the

information leakage and distortion curves for L user (D, ALPPM 

∗
agg )

and compare them with L actual ( ALPPM 

∗
agg ) in Fig. 7 . Results show

that L user (D, ALPPM 

∗
agg ) is always less than L actual ( ALPPM 

∗
agg ) in all

cases, which is also proved to be true in Theorem 1 . Even though

we don’t know the exact privacy-utility tradeoff for L 

∗
user (D ) , re-

leasing perturbed location aggregates according to ALPPM 

∗
agg can

still ensure that L 

∗
user (D ) is no larger than L user (D, ALPPM 

∗
agg ) , i.e.,

the privacy leakage of each user participating in the aggregation is

always less than L user (D, ALPPM 

∗
agg ) . 

5.3. Evaluation on real-world dataset 

In this part, we evaluate L actual ( ALPPM 

∗
agg ) and L actual ( SCM )

on a real-world dataset Gowalla ( Cho et al., 2011 ), which is a

location-based social networking website where users share their

locations by checking-in. Since computing L actual ( ALPPM 

∗
agg ) and

L actual ( SCM ) on the entire dataset is impracticable due to the

limitation of a computer’s memory, we randomly select 5 users

out of the entire dataset to train their personal location proba-

bility distributions (i.e., priors) on 3 locations, and then calculate

L actual ( ALPPM 

∗
agg ) and L actual ( SCM ) on the preprocessed dataset

generated by those 5 users. In particular, we first round these

users’ location IDs to 2 significant digits (counted from the left-

most digit), then we count their occurrences on each location, and

finally we choose the top 3 most frequent location IDs to obtain

the preprocessed dataset. We set λ as the same range as in the

synthetic dataset and set the threshold as 0.001. 

Results presented in Fig. 8 show that L actual ( ALPPM 

∗
agg ) is al-

ways less than L actual ( SCM ) in the real-world dataset, similar to

the results on synthetic datasets. These results support the idea

that individual users who participate in an aggregation process

can be guaranteed that their privacy leakage will be no larger

than L actual ( ALPPM 

∗
agg ) by releasing location aggregates according

to L 

upper 
agg (D ) . Therefore, they will be willing to contribute to loca-

tion aggregation without privacy concerns, which is important for

generating valuable aggregate location datasets for statistical anal-

ysis while still protecting users’ location privacy. 
As we can see in this section, assigning a value to the thresh-

ld is an essential step. In order to clearly explain how to choose

 proper value for the threshold and its physical significance, we

resent the following results in Fig. 9 , which show how differ-

nt thresholds affect the time required for Algorithm 1 to achieve

onvergence, the information leakage and the distortion. It’s easy

o see from Fig. 9 that the time needed for convergence for

lgorithm 1 decreases noticeably with the increase of threshold,

hile the information leakage and distortion only change slightly.

hese results provide guidance on how to assign proper values

o the threshold. Now it’s easy to understand the reason for the

hreshold to be set as 0.001 in all simulations is that we can guar-

ntee the runtime is shorter compared with a smaller threshold

hile the corresponding information leakage only has a slight in-

rease. 

. Conclusion and future work 

We have proposed privacy metrics to measure aggregation-

ased location privacy independent of any specific attack based

n an information-theoretic approach, and formulated the prob-

em to obtain the optimal ALPPM used to release location aggre-

ates while achieving the minimum information leakage given a

tility constraint. To address the computation challenge occurred

hen computing the optimal ALPPM, we obtain an upper bound

n the privacy-utility tradeoff when there is no temporal correla-

ion in the aggregation process. Experiments have shown the ac-

ual leakage of the proposed ALLPM is less than the leakage of

 differentially private mechanism under the same distortion and

his advantage is greater when users visit certain locations with

igher probabilities. In addition, the proposed privacy metrics can

lso be used as standard measures to evaluate and compare other

rivacy-preserving mechanisms for aggregate statistics, which is

seful in many real-world applications. Our future work includes

aking temporal and user correlations into account and improving

lgorithms for calculations on larger M and L . 
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ppendix A 

1. Proof of Theorem 1 

1.1. L 

∗
agg (D ) ≤ L 

upper 
agg (D ) 

We start with proving the connection between the objective

unction in L 

∗
agg (D ) and the one in L 

upper 
agg (D ) , 

( A ; A ) 

= I( A (1) , ..., A (T ) ; A (1) , ..., A (T ) ) 

(a ) = 

T ∑ 

i =1 

I( A (i ) ; A (1) , ..., A (T ) | A (1) , ..., A (i − 1) ) (11) 

(b) = 

T ∑ 

i =1 

T ∑ 

j=1 

I( A (i ) ; A ( j) | A (1) , ..., A (i − 1) , (12)

 (1) , ..., A ( j − 1) ) (13) 

 

T ∑ 

i = j=1 

I( A (i ) ; A ( j) | A (1) , ..., A (i − 1) , 

A (1) , ..., A ( j − 1) ) 

+ 

T ∑ 

i =1 

T ∑ 

j =1 , j � = i 
I( A (i ) ; A ( j) | A (1) , ..., A (i − 1) 

A (1) , ..., A ( j − 1) ) (14) 

(c) = 

T ∑ 

i =1 

I( A (i ) ; A (i ) ) , (15) 

here (a) and (b) follows from the chain rule of mutual informa-

ion, (c) follows from the fact that A ( i ) is independent of A ( i ) when

 � = j , since we have the assumption that there is no temporal cor-

elation among all the timestamps in the aggregation process. 

The above proof shows the objective function in L 

∗
agg (D ) equals

o the summation of the objective functions in L 

upper 
agg (D ) . Since the

ariables where the optimization takes place are different for each

erm of the summation, we can conclude that minimizing the sum-

ation is less than or equal to the summation of each individual

inimization, thus we have L 

∗
agg (D ) ≤ L 

upper 
agg (D ) . 

1.2. L user (D, ALPPM 

∗
agg ) ≤ L 

∗
agg (D ) 

According to the property of data aggregation process, for an

rbitrary but fixed q ( A | A ), we know that given A , A is indepen-

ent of A m 

, i.e., A is conditionally independent of A m 

, meaning that

 m 

, A , A form a Markov chain. Therefore, we have I ( A m 

; A ) ≤ I ( A ;

 ) for any user under the same mechanism q ( A | A ), which means

 user (D, ALPPM 

∗
agg ) ≤ L 

∗
agg (D ) . 

1.3. L 

∗
user (D ) ≤ L user (D, ALPPM 

∗
agg ) 

Since the solution to the minimization problem in L 

∗
user (D ) con-

iders all possible mechanisms, which include ALPPM 

∗
agg , it must

ncur L 

∗
user (D ) no larger than L user (D, ALPPM 

∗
agg ) . 

The proof of Theorem 1 is completed. 
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