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Abstract—In aquaculture farming, escaping fish can lead to
large economic losses and major local environmental impacts. As
such, the careful inspection of fishnets for breaks or holes presents
an important problem. In this paper, we extend upon our previous
work in the design of an omnidirectional surface vehicle (OSV)
for fishnet inspection by incorporating AI (artificial intelligence)
planning methods. For large aquaculture sites, closely inspecting
the surface of the net may lead to inefficient performance as holes
may occur infrequently. We leverage a hierarchical task network
planner to construct plans on when to evaluate a net closely and
when to evaluate a net at a distance in order to survey the net
with a wider range. Simulation results are provided.

Index Terms—Omnidirectional Surface Vehicle, Hierarchical
Task Network Planning

I. INTRODUCTION

Aquaculture provides for approximately half of all fish
consumption and is a fast-growing industry that relies on
raising fish inside of cage nets underwater [1], [2]. However,
these cages break over time and allow fish to escape, leading
to large economic losses and possibly negative impacts in
the local marine environment. According to a report from
Norweigian aquaculture, cage net failure is the dominant cause
of fish loss as approximately two-thirds of reported incidents
are a result of cage holes [3]. While manual inspection may
be used to identify holes, fish cages are generally deployed
far from shore where strong waves and currents may inhibit
manual inspection efforts as divers may be endangered [2],
[4].

As an alternative, underwater remotely operated vehicles
(ROVs) have been recently applied for cage inspection [5],
[6] and companies such as Teledyne and DeepTrekker offer
commercial ROV solutions [7], [8]. These remote operations,
while safe, are time-consuming and expensive as a human
operator must continuously control or guide the ROV in
potentially large aquaculture sites. Designing the path of the
ROV also depends on the operator’s experience and makes it
unlikely that full coverage of the fish cage is ensured [5], [9],
[10].
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The use of autonomous underwater vehicles (AUVs) is a
natural solution to the problems associated with ROVs as
AUVs may automatically survey fish cages without extensive
human intervention. The authors of [11] designed a small AUV
for fish cage net inspection and the authors of [9] provided
work on the modeling and control of an AUV for aquaculture
net examination. However, AUVs struggle with localization,
navigation, and communication as both GPS-based localiza-
tion and standard radio-based communication are significantly
impaired in aqueous environments. The authors of [2] utilize
a custom sensor suite and some prior knowledge of the AUV
and fishnet to perform localization while the authors of [10]
utilized ultra-short baseline (USBL) and Doppler velocity log
(DVL) systems to perform localization. However, as noted by
the authors, USBL and DVL acoustic systems are disrupted by
acoustic interactions with biomass in aquaculture sites, leading
to possibly inaccurate localization.

We therefore designed an omnidirectional surface vehicle
(OSV) in our previous work that allowed for aquaculture
inspection through the use of a retractable underwater camera
and deep-learning based vision algorithms [12]. As shown in
Fig. 1, the surface-mounted sensors can utilize accurate vehicle
pose measurements to perform localization and navigation
while doing underwater inspection. In addition, since the OSV
electronics are on the surface, standard WiFi connections can
be used to allow for easy wireless access. However, in our
previous work, we only investigated a small fish net in a
pool in order to detect holes. For larger aquaculture sites, it
may be useful to design various behaviors in order to more
efficiently survey the fish net. We therefore propose the use of
AI planning techniques to automatically select when to have
our OSV carefully evaluate potential holes up close, and when
to have our OSV survey the net quickly at a distance.

AI planning methods are well explored in the literature
and have been used to control various robotic platforms. In
[13], the authors provide a hierarchical task network (HTN)
planning based approach to have a team of robots play soccer,
while in [14], the authors provide a modified HTN planner that
allows for the inference of human goals in order to improve
human-robot collaboration. The authors of [15] propose an
extension to planning methods that incorporates decisions on
the belief space of an agent so as to ensure that agent actions
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Fig. 1. Photo of the OSV and the onboard camera with adjustable depth [12].

may yield high confidence results. For example, a humanoid
robot may be tasked with not only placing a block on a table,
but placing a block on a table with high confidence based on
sensor measurements.

In the aquatic environment, the authors of [16] design an in-
telligent fault-tolerant AUV using an HTN planner that is able
to continue performing some operations in the event of a non-
catastrophic failure, while in [17], the authors present an HTN
planning method for AUVs in order to handle the complexity
of planning over very large time horizons i.e. days or weeks.
We therefore leverage HTN planners to construct mission
plans that allow for the OSV to balance between searching for
holes and closely inspecting holes where planning actions are
directly associated with specific tracking waypoints. In future
efforts, the HTN planner can be easily extended to balance
other objectives as well, such as regularly recharging the OSV.

This paper is organized as follows. In section II, we re-
introduce the OSV platform, and describe its capabilities
including its neural-network based fish hole detection algo-
rithm. Then, in section III, we review AI planning problems
and the HTN planner and describe our integration of the
HTN planner with the OSV. In section IV, we provide a
simulation implementation of the AI planning approach and
discuss further extensions in section V.

II. OSV PLATFORM OVERVIEW

We develop an omnidirectional surface vehicle (OSV) with
the purpose of facilitating efficient aquaculture infrastructure
inspection without human intervention [12].

As demonstrated in Fig. 1, the OSV features a symmetric
multi-hull overactuated design for omnidirectional maneuver-
ability and damage redundancy in aquaculture sites. All the
thrusters of the OSV are protected inside the compartments,
which is safer to operate in fish farms. An elevated underwater
camera is installed at the center of the OSV to enable capturing
pictures of the fish cage at different depths. The convenient
features of the OSV significantly reduce the time for building,
operating and maintaining the vehicle. The OSV can be easily
operated by one person with laptops or smartphones. More-
over, the OSV has strong onboard processing power. A generic
x86 onboard computer provides outstanding compatibility for
various devices and software, while a discrete neural net-
work accelerator hardware significantly speeds up the image
processing for fish cage damage detection. Despite the OSV

is designed for aquaculture inspection, the vehicle is also
capable of supporting various tasks. Commercial applications
including environmental monitoring, submerged infrastructure
inspection, and diver’s companion are highly expected. The
OSV is also competent for supporting scientific research, such
as investigating underwater acoustic communications [18].

We incorporate neural network algorithms [19] to detect
holes with different sizes and shapes. Fig. 2 demonstrates
a hole on the fishcage can be effectively detected by the
neural network. With strong onboard processing power, we
allow each hole on the fish cage to be detected multiple times
to improve the robustness and accuracy of the inspection.
While the OSV is taking pictures of the fishcage and detecting
potential holes, a localization device tracks the position and
the heading of the OSV at centimeter-level accuracy. By
combining the pose of OSV in the fish farm, and the pixel
position of the holes on the image plane, the position of the
hole can be estimated in the fish farm. A demonstration video
on both OSV design and fishcage inspection methodology is
available at: https://youtu.be/5XcMtZ4k3rY.

Fig. 2. Demonstration of hole detection with neural network [12], [19].

III. PLANNING FOR LARGE AQUACULTURE SITES

In this section, we detail our efforts to incorporate an HTN
planner in order to automatically search for new fishnet holes
in a timely manner. We extend our previous effort in [12]
and consider larger net scenarios, where the OSV must decide
between surveying the net at a closer distance with higher
accuracy or at a farther distance with higher coverage.

A. AI Planning

A planning problem is described by a tuple [20] Σ =
(s0, g, S,A, γ) where s0 denotes an agent’s initial abstract
state which is described by a set of boolean-evaluated variables
known as predicates, g denotes an agent’s desired abstract state
or abstract action to take, S denotes the set of all possible
abstract states, A denotes a set of all possible abstract actions,
and γ : S × A → S is a transition function that maps the
agent between states according to a specified action. Notably,
γ defines preconditions and effects which specify when an
action is valid from a given state and what state the agent
will move to next when the action is taken. The solution to a
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planning problem is a plan π = a1, a2, . . . , an where ai ∈ A
such that the agent, obeying γ, reaches the desired goal state
or action g.

For a given problem Σ, various planning methods may be
used to search for appropriate plans π in order to achieve
the desired behavior. In this work, we use a Hierarchical
Task Network (HTN) planner [21] to search for appropriate
behaviors. HTN planners are search methods that can take
advantage of task hierarchies. Fig. 3 demonstrates a car driving
example of how an HTN planner can use various levels of
abstracted actions to compile a plan quickly and efficiently.

Fig. 3. Example decomposition of HTN for a car driving problem.

In the provided example, an HTN planner is tasked with
constructing a sequence of actions in order to get the
agent to some location called dest. Here, the user has not
only defined the planning problem Σ but has also pro-
vided defined collections of actions called methods that
represent specific sequences of actions. For example, the
method start car(car) requires two actions place(key, car)
and turn(key, car) which directly transition the state us-
ing γ from s = (in car, key in car,¬start car) to s =
(in car, key in car, start car). Methods may also be de-
composed into other methods as well and may use logical
operators (such as if-else conditions) to decompose in a variety
of ways, allowing for potentially many levels of hierarchical
depth. Methods also adopt the preconditions and effects of
their composite actions, dictating specific orderings to accom-
plish goals. With the preconditions and effects of methods
defined, the planner therefore plans at the state-hierarchical
level only using actions when necessary instead of the full
state-action level.

In some situations, the environment may pose some un-
certainty and the agent must also make decisions based on
confidence thresholds. We call such predicates in the state
fluents which only evaluate to True if the corresponding confi-
dence interval is achieved [15]. For example, one precondition
on applying the action place(key, car) could be that a fluent
describing high confidence on the location of the key in the
agent’s hand evaluates to True.

Given the description of an AI planning problem, our
objective can be described as constructing a plan that chooses
a sequence of reference signals to apply in order to ensure our
agent efficiently surveys a large aquaculture net for holes with
high accuracy. By balancing between a hole tracking signal
and a circle tracking signal, our AI planner can be used to
efficiently search for holes using the neural network algorithm

described previously. We now describe the states, actions, and
methods used.

B. Efficient Searching for Aquaculture Holes

For our given OSV, we describe the discrete-time dynamics
on the surface of the water as

xt+1 = xt + ∆tut (1)

where xt ∈ R2 is the 2D planar position of the OSV, ut ∈ R2

is the omnidirectional velocity input applied to the OSV, and
∆t is a discrete timestep. We assume that the net of interest
is described by a circle with a center at the origin and the
OSV has a heading tracking controller enabled continuously
that ensures the camera view is always pointed towards the
outward normal direction of the net from the perspective of
the OSV.

The OSV therefore only needs to decide what 2D linear
velocity to apply in order to ensure the on-board camera is best
able to survey the fish net. We choose a feedback controller
such that (1) becomes

xt+1 = xt + ∆t(k(zt − xt)) (2)

where k > 0 is a feedback gain and zt ∈ R2 is the desired
position set by the planner.

For our planning problem, we associate abstract actions with
two zt signals. The first signal, zt = yi (where yi denotes the
position of the detected hole with the lowest confidence) is
used for close investigation. The second is associated with the
signal

zt = rfar
φt
‖φt‖

, φt = xt + αR
xt
‖xt‖

(3)

where R is the 2D rotation matrix associated with the angle
π
2 , α is a distance constant that dictates how far ahead of the
OSV to generate the next waypoint, and rfar is the circle
radius to track which is much smaller than the radius of the
fish net. This desired position signal is computed by projecting
the OSV’s current position with a slight offset onto the circle
with radius rfar.

For the two reference signals described above, we associate
two actions move close and move far and two correspond-
ing predicates, at close and at far, to indicate whether
the OSV is close to the net or far away. In addition, upon
detection of a new hole hi at estimated position yi, we
generate three new fluents which each evaluate according to
a range on an uncertainty value si associated with hi. The
three fluents are defined as bLoc(hi, [0, 1]), bLoc(hi, (1, 3]),
bLoc(hi, (3,∞)) where si is a function of the distance be-
tween the OSV’s position and the estimated hole position:
si = min(si, 0.05(‖xt − yi‖ − 2)2). We define the tran-
sition function γ with the preconditions and effects shown
in Table I. Note that each action may only be active when
the fishnet sensing from the neural network either registers
a hole with low confidence or all holes in the camera view
have been appropriately inspected. Finally, we define a method
search(st) that decomposes according to the current state
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TABLE I
PRECONDITIONS AND EFFECTS OF TAKING PLANNING ACTIONS

Action Precondition Effect
move close at far and ∃i s.t. at close and

bLoc(hi, (1, 3]) or bLoc(hi, [0, 1]), ∀i
bLoc(hi, (3,∞))

move far at close and at far
bLoc(hi, [0, 1]), ∀i

s which is updated at each time-step according to the true
observations made in the environment. If st contains new hole
observations, then search(st) decomposes in order to evaluate
each observed hole before returning to the surveying distance.
At each iteration, our agent first observes the environment and
its own position, updating any necessary predicates or fluents
as needed. Then, searches for a plan that satisfies search(st)
and executes the first action of the plan. In future work,
we may also incorporate other planning operations that the
OSV must decide to switch between. For example, we can
design additional predicates and fluents if there are multiple
fishnets in an aquaculture site to inspect, or we can modify
preconditions on all actions in order to incorporate a need to
regularly recharge the OSV.

IV. SIMULATIONS

We demonstrate here a simulation of our OSV platform with
simulated viewing capabilities that vary over distance, i.e., our
OSV is able to identify the position of fish holes with greater
confidence as the OSV gets closer to the hole. We assume
that at a distance of 12m from the net (shown as the black
dotted circle), the OSV is able to still detect new holes but has
lower confidence on the location of the hole (where confidence
is shown by a circle that is red for low confidence, yellow
for medium confidence, and green for high confidence). In
order to improve the confidence on the location of a hole,
the OSV must move to a distance of 2m from the net, which
is chosen based on our previous experimental results as the
optimal distance from the net to detect fish holes. Using the
fluents, predicates, actions, and method designed previously,
Fig. 4 shows the progression of our simulated OSV as the
OSV searches for new fish holes in the circular net.

In the first snapshot, the simulated OSV discovers a new
hole at a 12m distance and the HTN planner generates the ac-
tion move close since the uncertainty on the newly discovered
hole is high. In the second snapshot, the OSV has successfully
improved the confidence of the location of the first hole and
has begun to closely survey a second discovered hole. Note
that while the OSV had begun to move back to surveying
distance after inspecting the first hole, the planner generated a
new plan when a new hole observation appeared, allowing the
OSV to immediately move towards inspecting the new hole.
In the third snapshot, the OSV does not discover any holes
and therefore chooses to survey the net at the 12m distance,
allowing for a faster survey of the net. In the final snapshot,
the OSV has discovered all holes and is in the process of
examining the final hole.

Fig. 4. Simulated OSV search for fish holes in a large aquaculture net. Order
of simulation is top-left, top-right, bottom-left, bottom-right. Red dots indicate
new holes that have not been discovered, circles around black holes indicate
the confidence associated with the location of a discovered hole, green dotted
lines indicate the viewing range while the green triangle indicates the position
and heading of the OSV.

From here, the OSV may continuously patrol the perimeter
of the fishnet in order to check for any new holes. We will
pursue in future work allowing the OSV to decide whether
to search other fishnet sites nearby or to return and recharge
between regular fishnet site inspections. In addition, given
fishnets may be repaired without informing the OSV, we may
include behavior to consider if an expected hole disappears
and allow the OSV to confirm the repair of a fishnet.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed an extension to our previous
paper on using neural network fish hole detection by using an
HTN planner to generate plans on when to closely inspect the
fish net and when to survey the fish net from a distance. The
proposed approach may also incorporate new behaviors easily
in the future and can be extended to scenarios where multiple
OSVs need to balance surveying multiple fishnets.

In future work, we plan to verify our proposed approach by
collecting experimental results and incorporating other behav-
iors that make the scenario more realistic, such as including a
necessary battery constraint or considering the environmental
uncertainty (i.e., condition of the weather or tidal flow). In
addition, we may consider the effects of repair divers that
have one-way communication with the OSV, i.e., they are able
to learn of the locations of holes from the OSVs but do not
inform the OSV that a repair has occurred. This might occur
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if the OSV feeds information back to a central server from
which a diver may use to specifically target hole repairs.
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