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Abstract—In this work, we study the problem of federated
learning (FL), where distributed users aim to jointly train a
machine learning model with the help of a parameter server (PS).
In each iteration of FL, users compute local gradients, followed
by transmission of the quantized gradients for subsequent aggre-
gation and model updates at PS. One of the challenges of FL is
that of communication overhead due to FL’s iterative nature and
large model sizes. One recent direction to alleviate communication
bottleneck in FL is to let users communicate simultaneously over
a multiple access channel (MAC), possibly making better use of
the communication resources.

In this paper, we consider the problem of FL learning over a
MAC. In particular, we focus on the design of digital gradient
transmission schemes over a MAC, where gradients at each
user are first quantized, and then transmitted over a MAC
to be decoded individually at the PS. When designing digital
FL schemes over MACs, there are new opportunities to assign
different amount of resources (such as rate or bandwidth) to
different users based on a) the informativeness of the gradients
at each user, and b) the underlying channel conditions. We
propose a stochastic gradient quantization scheme, where the
quantization parameters are optimized based on the capacity
region of the MAC. We show that such channel aware quantization
for FL outperforms uniform quantization, particularly when users
experience different channel conditions, and when have gradients
with varying levels of informativeness.

I. INTRODUCTION

Federated Learning (FL) refers to a distributed machine
learning (ML) framework that allows distributed machines, or
users, to collaboratively train an ML model with the help of
a parameter server (PS). Typically, users compute gradients
for a global model on their local data, and send gradients
to the PS for aggregation and model updates in an iterative
fashion. FL is appealing and has gained recent attention due
to the fact that it allows natural parallelization, and can be
more efficient than centralized approaches in terms of storage.
However, communication overhead caused by exchanging
gradients remains an issue that needs to be addressed.

Previous works alleviate the communication bottleneck by
compressing gradients before transmissions. Two commonly
used gradient compression approaches are a) quantization, and
b) sparsification. Gradient quantization follows the idea of lossy
compression by describing gradients using a small number of
bits and these low-precision gradients are transmitted back to
the PS. One extreme is to send just 1 bit of information per
value [1]. Similar idea was used in signSGD [2] and TernGrad
[3], which use 1 and 2 bits to describe each value, respectively.

In gradient sparsification, some coordinates of the gradient
vector are dropped based on certain criteria [4], [5], which for
instance, can depend on the variance and informativeness of the
gradients. Other quantization/sparsification techniques include
[6]–[10]. However, these stand alone compression techniques
are not tuned to the underlying communication channel over
which the exchange takes place between the users and the PS,
and may not utilize the channel resources to the fullest.

Another line of recent works study FL over wireless channels,
and more generally multiple access channels (MACs). The
superposition nature of wireless channels allows gradients
to be aggregated "over-the-air" and allows for much more
efficient training. Several recent works include [11]–[23]. The
approaches can be broadly categorized into digital or analog
schemes depending on how the gradients are transmitted over
the channel. In analog schemes, the local gradients are scaled
and directly transmitted over the wireless channel, allowing PS
to directly receive a noisy version of the aggregated gradient. In
digital schemes, gradients from users are decoded individually,
but transmission still occurs over a MAC. Although it has been
shown that in terms of bandwidth efficiency, analog schemes
can be superior than digital schemes [11], [13], we argue that
digital schemes have the following advantages: a) backward
compatibility - they can be easily implemented on the existing
digital systems, b) they are less prone to slow users, c) they
are more reliable due to the fact that various error control
codes can be used, and d) digital schemes do not require tight
synchronization as required by analog transmission.

Main Contributions: Motivated by the above discussion, we
consider FL learning over a MAC and focus on the design of
digital gradient transmission schemes, where gradients at each
user are first quantized, and then transmitted over a MAC to
be decoded individually at the PS. When designing digital FL
schemes over MACs, we show that there are new opportunities
to assign different amount of resources (such as rate or
bandwidth) to different users based on a) the informativeness
of the gradients at each user, and b) the underlying channel
conditions. We propose a stochastic gradient quantization
scheme, where the quantization parameters are optimized
based on the capacity region of the MAC. We show that
such channel aware quantization for FL outperforms channel
unaware quantization schemes (such as uniform allocation),
particularly when users experience different channel conditions,
and when have gradients with varying levels of informativeness.



II. SYSTEM MODEL

We consider a distributed machine learning system with a
parameter server (PS) and M users, where users are connected
to the PS through a Gaussian MAC as shown in Fig. 1. Users
want to collaboratively train a machine learning model w with
the help of PS by minimizing an empirical loss function,

L(w) =
1

M

M∑
m=1

1

nm

∑
d
(m)
n ∈D(m)

`(w,d(m)
n ), (1)

where D(m), |D(m)| = nm, m = 1, . . . ,M denotes the local
data set at user m and d

(m)
n is the n-th data point in D(m), and

`(·) is the loss function. The minimization is done by using
gradient descent (GD) algorithm. Each user computes the local
gradient g(m)(wt) ∈ Rd on the local data set D(m), where wt

is vector of model parameters at iteration t, and

g(m)(wt) =
1

nm

nm∑
n=1

O`(wt,d
(m)
n ), d(m)

n ∈ D(m), ∀m. (2)

At each iteration, each user m sends a function of its computed
gradient x

(m)
t = f

(m)
t (g(m)(wt)) back to the PS through s

channel uses of the MAC, where f (m)
t (·) is some pre-processing

function the PS assigned to user m at iteration t. We assume
that capacity-achieving error control codes are used by users.
We note that the capacity region of a Gaussian MAC can be
described as follows [24],∑

m∈M
rm ≤ CM, M⊂ [M ], |M| = 1, . . . ,M, (3)

where rm denotes the transmission rate of user m and CM
denotes the sum capacity of the users in subsetM. We assume
an average transmit power constraint Pm for user m, and in this
case, CM = 0.5 log(1 +

∑
m∈M Pm/σ

2), where σ2 denotes
variance of the channel noise.

At iteration t, the received signal at the PS yt is a function
of all x(m)

t . The goal of the PS is to recover the average of the
local gradients gavg(wt) = (1/M)

∑M
m=1 g

(m)(wt) from yt

using some post-processing function ht(·). However, due to the
pre- and post-processing, and the capacity region of the MAC,
the PS can only recover the noisy versions of the local gradients
ĝ(m)(wt), thus, the noisy version of the average gradient
ht(yt) = ĝavg(wt) = (1/M)

∑M
m=1 ĝ

(m)(wt). Therefore, the
transmission from the users must ensure that the gradients
received at the PS are unbiased estimators of g(m)(wt) and
have bounded variance, i.e.,

E
[
ĝ(m)(wt)

]
= g(m)(wt), Var(ĝ(m)(wt)) ≤ εm, (4)

where the variance bound εm should be as small as possible.
Problem Statement When jointly transmitting over a MAC,
it is critical to allocate resources efficiently to ensure that the
gradient aggregation can be done in a timely manner, and
the training error is low. Let {r1, . . . , rM} be the set of rates
allocated to users for gradient transmission over the MAC. In
this work, we want to understand how one should allocate
rates as a function of the capacity region of the MAC, and the
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Fig. 1: FL over a MAC. At each iteration, users send their local
gradients g(m)(wt) through a MAC. The PS aggregates the gradients,
updates the model and sends the updated model back to users for
subsequent iteration.

underlying informativeness of the gradients at different users.
Furthermore, we want to characterize the resulting trade-off
between the underlying channel conditions of the MAC and
the convergence rate of GD algorithms.

III. MAIN RESULTS

In this section, we present our proposed stochastic gradient
quantization scheme for GD, which is inspired by schemes
in [10], [25]. In this scheme, the PS asks users to quantize
their local gradients before sending them based on individual
quantization budgets. The quantization budgets are found by the
PS by solving an optimization problem that aims to minimize
the variance of the aggregated gradients, while satisfying
the transmission rate constraints imposed by the MAC. The
distinction between our scheme and the scheme in [10] is that
we allow each user to have its own quantization budget. We
first present the proposed scheme for any number of users
M , analyze the convergence rate of the scheme, and present a
general optimization problem for quantization budget allocation
based on the capacity of the MAC. We then show an example
with M = 2 users and solve for the optimal quantization budget
and communication rate for each user.

A. Stochastic Multi-level Gradient Quantization

At each iteration t, each user m computes the local gradient
vector g(m)(wt) using its local data set D(m)

t , m = 1, . . . ,M .
For simplicity of notation, we drop the iteration index t in
describing the quantization scheme. Each user computes the
dynamic range of its local gradient, i.e., ∆m = g

(m)
max − g(m)

min ,
where g(m)

max and g(m)
min are the maximum and minimum values

of the local gradient vector at user m. The user then quan-
tizes its local gradient vector using the stochastic multi-level
quantization scheme as we describe next. For every integer
r ∈ [0, km), we define

G(m)(r) , g
(m)
min +

r∆m

km − 1
, (5)

where km ≥ 2 is the quantization budget for user m.
For each element i in the local gradient vector, if g(m)

i ∈
[G(m)(r), G(m)(r + 1)), then g(m)

i is quantized as follows,

Q
(
g
(m)
i

)
=

{
G(m)(r + 1) w.p. g

(m)
i −G(m)(r)

G(m)(r+1)−G(m)(r)

G(m)(r) otherwise
. (6)
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Fig. 2: Stochastic multi-level gradient quantization where the dynamic
range of the gradient vector is split into km levels. Subsequently, each
element of the vector g(m)

i is quantized to G(m)(r) with probability
p as shown in (6), or to G(m)(r + 1) with probability 1 − p.

This operation is shown in Fig. 2. Once the entire gradient
vector is quantized, user m sends its quantized gradient
vector Q(g(m)) = [Q

(
g
(m)
1

)
, . . . , Q

(
g
(m)
d

)
] to the PS over

the Gaussian MAC. We assume that before each iteration, each
user describes the scalars g(m)

max and g(m)
min (which describe the

dynamic range ∆m = g
(m)
max − g(m)

min of the local gradient) at
full resolution to the PS. In addition, as each element in the
gradient vector is quantized to be one of the km levels, hence,
a total of d log2 km bits are required to describe the quantized
gradient vector. The PS recovers all the quantized gradient
vectors by performing optimal decoding over the MAC. Thus,
for reliable decoding, the transmission rates of the users, i.e.,
rm = d log2 km must be within the MAC capacity region.

The PS then aggregates the quantized gradients as

ĝt =
1

M

M∑
m=1

Q(g
(m)
t ), (7)

and updates the model using, wt+1 = wt − ηtĝt, where ηt is
the learning rate. The updated model is then transmitted back
to the users for subsequent iterations.

Suppose that in the tth iteration, the dynamic range of
the gradient vector of user m is ∆t,m, and the number of
quantization levels used is kt,m. Then, it can be readily
checked that Q(g

(m)
t,i ) is an unbiased estimator of g(m)

t,i , i.e.,

E
[
Q(g

(m)
t,i )

]
= g

(m)
t,i . The variance can be computed as,

Var(Q(g
(m)
t,i )) ≤ ∆2

t,m/4(kt,m − 1)2. Therefore, the variance
of the quantized gradient vector at user m in iteration t can be
bounded as

Var(Q(g
(m)
t )) =

d∑
i=1

Var(Q(g
(m)
t,i )) ≤ d∆2

t,m

4(kt,m − 1)2
. (8)

We next present our first result which shows how the conver-
gence of the above algorithm depends on the parameters of
multi-level stochastic quantization at the users.

Theorem 1. If the loss function L(·) is λ-strongly convex and
µ-smooth, with Lg-Lipschitz gradients, then by using a time
varying learning rate of ηt = 1/(λt), we have the following
convergence result:

E [L(wT )]− L(w∗)

≤ 2µ

λ2T 2

T∑
t=1

(
1

M2

M∑
m=1

d∆2
t,m

4(kt,m − 1)2
+ L2

g

)
(9)

The proof of this Theorem is presented in Appendix I.
From Theorem 1, we observe that the convergence rate

depends directly on the following factors: a) the dynamic range
of the gradients ({∆t,m}) computed by the users, and b) the
quantization levels assigned to the users in each iteration. The
traditional approach is to assign equal quantization levels to all
users, i.e., kt,m = k, for all m, t. However, the above expression
shows that in order to maximize the rate of convergence, users
whose gradients have a higher dynamic range must be assigned
a higher quantization budget. On the other hand, if the users
are communicating to the PS in a communication constrained
setting, such as a MAC, then the quantization budget kt,m,
which is directly related to the transmission rate cannot exceed
the constraints imposed by the capacity region of the MAC.

B. MAC Aware Gradient Quantization

Motivated by the above discussion, we propose MAC aware
gradient quantization which works as follows. In each iteration
t, a) users compute their local gradients g

(m)
t , and describe

g
(m)
t,min, g

(m)
t,max to the PS. b) using these scalars, PS computes the

dynamic range(s)
(
{∆t,m = g

(m)
t,max − g(m)

t,min}
)

of the gradients
for all the users and performs the optimization described in
Theorem 2. Subsequently, the PS assigns individual quantization
budgets (transmission rates) to each user; c) users subsequently
quantize their gradients and transmit over the MAC. In the
following Theorem, we present the optimization problem using
which we can determine the optimal k∗t,m’s that maximize the
convergence rate.

Theorem 2. At each iteration t, the optimal k∗t,m’s that give
the best convergence rate can be found by solving the following
optimization problem,

min
{kt,m}Mm=1

M∑
m=1

d∆2
t,m

4(kt,m − 1)2
(10)

s.t.
∑

m∈M
rt,m ≤ sCM, M⊂ [M ], |M| = 1, . . . ,M,

kt,m ∈ Z+, ∀m

where rt,m = d log2 kt,m denotes the transmission rate of user
m and CM denotes the sum capacity of the users in subset
M, i.e., CM = 0.5 log(1+

∑
m∈M Pm/σ

2), where σ2 denotes
variance of the channel noise.

The above optimization problem falls into the category of
constrained integer programming since kt,m’s take non-negative
integer values. In general, integer programming is considered
to be NP-hard problem [26]. However, one could obtain sub-
optimal solutions by relaxing the constraint on kt,m’s. For
instance, by allowing kt,m’s to be real numbers greater or
equal to 2 (so that each user gets at least 1 bit), it is easy to
verify that the above problem becomes a convex optimization
problem. One could then either use convex solvers or solve the
convex problem analytically by checking KKT conditions, and
round the results. We next show an example for M = 2 users,
and solve the convex relaxation analytically to gain insights
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TABLE I: Per-user quantization budget based on ratio of dynamic
range of the gradients, i.e., ∆1/∆2 and the capacity region of MAC.

on how the dynamic ranges of the gradients, and the capacity
region of MAC impact the resulting quantization budgets.

C. Solution for the Relaxed Optimization Problem with M = 2

For M = 2 users, the relaxed optimization problem (P) is
given as follows:

P : min
(k1,k2)

d∆2
1

4(k1 − 1)2
+

d∆2
2

4(k2 − 1)2
(11)

s.t. d log2 k1 ≤ sC1, d log2 k2 ≤ sC2

d(log2 k1 + log2 k2) ≤ sC1,2

The three constraints on rates can be rearranged as follows:

k1 ≤ 2C̃1 , k2 ≤ 2C̃2 , k1k2 ≤ 2C̃1,2 , (12)

where C̃m = sCm/d, m = 1, 2 and C̃1,2 = sC1,2/d. As
mentioned earlier, the objective function being minimized is
a convex function when k1 and k2 are both greater or equal
to 2. The M = 2-user case can be solved analytically by first
forming the following Lagrangian function,

J =
d∆2

1

4(k1 − 1)2
+

d∆2
2

4(k2 − 1)2
+ λ1(k1 − 2C̃1)

+ λ2(k2 − 2C̃2) + λ3(k1k2 − 2C̃1,2). (13)

We note that to fully utilize the channel, the sum-rate con-
straint in P should be satisfied with equality, i.e., d(log2 k1 +

log2 k2) = sC1,2 or equivalently, k1k2 = 2C̃1,2 . By taking the
partial derivatives of J with respect to k1 and k2 and checking
the KKT conditions, we obtain,

λ1 = λ2 = 0, λ3 =
d∆2

1

2k2(k1 − 1)3
=

d∆2
2

2k1(k2 − 1)3
. (14)

Using this condition and the sum-rate constraint, i.e., k1k2 =

2C̃1,2 , we can solve for the optimal quantization budgets.

Theorem 3. For a 2-user Gaussian MAC, the optimal quanti-
zation budgets k∗1 and k∗2 for P can be found by solving

∆1

∆2
=

(
2C̃1,2k∗1(k∗1 − 1)3

(2C̃1,2 − k∗1)3

)1/2

, (15)

and subsequently k∗2 = 2C̃1,2/k∗1 , where ∆1 and ∆2 are
dynamic ranges of gradients at users 1 and 2.

We solve k∗1 and k∗2 numerically with the following pa-
rameters: we let d = 7850, s = 2d, P1 = 80, P2 = 20,
so that the individual and sum capacities for this setting are
C1 = 3.1699, C2 = 2.1962 and C1,2 = 3.3291. These lead
to k1 ≤ 80.9, k2 ≤ 21 and k1k2 ≤ 100.9. We fix ∆2 = 50
and vary ∆1 from 1 to 3500 to understand the impact of the
ratio of dynamic range ∆1/∆2 on the quantization budgets.
It can be seen in Fig. 3 and Table I that by using proposed
MAC aware scheme, the PS allocates more rate towards the
user whose gradients are more informative (higher dynamic
range). For instance, when ∆1/∆2 = 1, gradients from both
users are equally informative, and both users are assigned equal
quantization budgets k1 = k2 = 10. On one extreme, when
∆1/∆2 ≤ 0.16, gradients from user 2 are considered more
useful than user 1, the optimal allocation is k1 = 4, k2 = 21.
On the other extreme, if ∆1/∆2 ≥ 69.28, gradients from user 1
are more informative, hence we see that k1 = 50, and k2 = 2.

IV. EXPERIMENTS

To show the performance of our proposed scheme, we
consider MNIST image classification task using single layer
neural networks trained on 60000 training and 10000 testing
samples with M = 2 users, and a cross-entropy loss function.
The dimensionality of the classifier model is d = 7850. We
assume that user 1’s data set D1 consists of images belonging
to digits ’0’ and ’1’, whereas the data set of user 2 consists of
all the 10 digits. The channel noise variance is set as σ2 = 1,
and the total transmit power per iteration is set as P̄ = 100.
We use the MAC for s = 2d channel uses for each iteration.

In Fig. 4, we let P1 = 0.95P̄ and P2 = 0.05P̄ , and compare
the proposed MAC aware gradient quantization scheme with the
following schemes: a) uniform rate allocation subject to MAC
capacity constraints, b) a recently proposed digital scheme in
[11], c) SignSGD, which uses 1 bit quantization per dimension
for each user [2], and d) TernGrad [3], which uses three levels
{−1, 0,+1} to quantize each dimension of the gradient. We
also plot the non-quantized full resolution scheme as a baseline.
In the digital scheme proposed in [11], all but the highest qt
and lowest qt gradient values are set to zero. The remaining
gradient values are then split into two groups depending on
their signs. The mean of elements in each group is computed,
denoted by α+

avg and α−avg. If α+
avg > |α−avg| (α+

avg < |α−avg|), all
remaining positive (negative) values will be set to α+

avg (α−avg).
Each user then transmits the location of qt non-zero values
and a scalar (using c bits) to describe the average value at
each iteration. Therefore, the communication cost is log2

(
d
qt

)
+

c. This scheme [11] is fundamentally different than the one
proposed in this paper, and, moreover, the quantization budget qt
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Fig. 4: Training accuracy comparison between MAC aware gradient
quantization, uniform rate allocation, digital scheme proposed in [11],
SignSGD [2], TernGrad [3], and full resolution when the total transmit
power per iteration is P̄ = 100 and s = 2d.

Uniform [11] SignSGD TernGrad Full ResolutionMAC Aware

79.8% 76.7% 57.9% 52.3% 64.5% 84%

TABLE II: Comparison of test accuracy after T = 1000 iterations.

is the same for all users. As shown in Fig. 4, the proposed MAC
aware multi-level scheme outperforms the uniform multilevel
scheme, the scheme in [11], SignSGD and TernGrad. This is
due to the fact that log

(
d
qt

)
grows exponentially as qt increases.

In addition, the rates are limited by the user with the worst
channel. Therefore, as it reaches the capacity of the user with
the worst channel, qt is still small compared to d. Other schemes
such as SignSGD and TernGrad suffer from underutilization of
channel resources, as they use a fixed quantization budget (1
bit, and 2 bits respectively per gradient dimension). We also
show the testing accuracy of each scheme at the end of 1000
iterations (see Table II). They are consistent with Fig. 4 where
our proposed scheme is the closest to full resolution.

For Fig. 5, we set s = 1.5d, P1 = 0.8P̄ and P2 = 0.2P̄ , and
vary P̄ to see the impact of increasing power, and thus, a larger
capacity region. It can be seen in Fig. 5 that the performance
improves monotonically with the increase in total power. The
testing accuracy at the end of T = 1000 iterations is shown in
Table III as a function of the total power.

V. CONCLUSIONS

In this paper, we considered the problem of MAC aware
gradient quantization for federated learning. We showed that
when designing digital FL schemes over MACs, there are
new opportunities to assign different amount of resources
(such as quantization rates) to different users based on a) the
informativeness of the gradients at each user, captured by their
dynamic range, and b) the underlying channel conditions. We
studied and analyzed a channel aware quantization scheme
and showed that it outperforms uniform quantization and other
existing digital schemes. An interesting future direction is to
explore if other quantization schemes (for instance, the scheme
in [11], or gradient sparsification schemes in [4], [5]) can be
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Fig. 5: Training accuracy comparison for MAC aware gradient
quantization with total power per iteration P̄ = 10, 50, 150, and
P1 = 0.8P̄ and P2 = 0.2P̄ .

Full ResolutionMAC Aware P̄ = 10 P̄ = 50 P̄ = 150

84%80.2%74.7%51%

TABLE III: Test accuracy for proposed scheme as a function of total
power.

optimized (with limited interaction with the PS) as a function
of the underlying communication channel such as MAC.

APPENDIX I: PROOF OF THEOREM 1

Standard convergence results in [27] have shown that for a
loss function L(·) that is λ-strongly convex and µ-smooth w.r.t.
w∗, using SGD with stochastic unbiased gradients, bounded
second order moments, i.e., E[‖ĝt‖22] ≤ G2, with a learning
rate of ηt = 1/λt can achieve a convergence result:

E [L(wT )]− L(w∗) ≤ 2µG2

λ2T
. (16)

There are two distinctions between our bound and (16). First,
the randomness in our scheme comes from quantizing the
gradients instead of randomly selecting data points. Second, as
users can have different quantization budgets per iteration, the
resulting variance is iteration dependent, i.e.„ E[‖ĝt‖22] ≤ G2

t .
By slightly modifying the proof in [27], it is possible to prove
the following convergence result (proof omitted due to space):

E [L(wT )]− L(w∗) ≤ 2µ

λ2T

(
T∑

t=1

G2
t/T

)
. (17)

Theorem 1 now follows directly by plugging in the values of
G2

t , which can be computed as:

E[‖ĝt‖22] = Var(ĝt) + ‖gt‖22

=
1

M2

M∑
m=1

Var(Q(g
(m)
t )) + ‖gt‖22

(a)

≤ 1

M2

M∑
m=1

d∆2
t,m

4(kt,m − 1)2
+ L2

g , G2
t , (18)

where (a) follows from (8) and Lipschitz assumption, i.e.,
‖gt‖22 ≤ L2

g .
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