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Abstract— The Georgia Tech Miniature Autonomous Blimp
(GT-MAB) needs localization algorithms to navigate to way-
points in an indoor environment without leveraging an external
motion capture system. Indoor aerial robots often require a
motion capture system for localization or employ simultaneous
localization and mapping (SLAM) algorithms for navigation.
The proposed strategy for GT-MAB localization can be ac-
complished using lightweight sensors on a weight-constrained
platform like the GT-MAB. We train an end-to-end convo-
lutional neural network (CNN) that predicts the horizontal
position and heading of the GT-MAB using video collected by
an onboard monocular RGB camera. On the other hand, the
height of the GT-MAB is estimated from measurements through
a time-of-flight (ToF) single-beam laser sensor. The monocular
camera and the single-beam laser sensor are sufficient for the
localization algorithm to localize the GT-MAB in real time,
achieving the averaged 3D positioning errors to be less than 20
cm, and the averaged heading errors to be less than 3 degrees.
With the accuracy of our proposed localization method, we are
able to use simple proportional-integral-derivative controllers
to control the GT-MAB for waypoint navigation. Experimental
results on the waypoint following are provided, which demon-
strates the use of a CNN as the primary localization method for
estimating the pose of an indoor robot that successfully enables
navigation to specified waypoints.

I. INTRODUCTION

GPS sensors cannot accurately locate flying robots op-
erating in indoor environments, so external motion capture
systems are frequently used for indoor navigation instead
[1][2][3][4]. Motion capture systems provide fast and ac-
curate pose estimation, but they require a direct line of
sight to the robot. Another solution to indoor localization of
aerial robots involves simultaneous localization and mapping
(SLAM) [5][6][7][8][9]. As discussed in [10], SLAM suffers
from the need to robustly track features, which can be
especially difficult in dynamic environments or environments
with scarce features. SLAM pipelines also often require the
fusion of multiple sensors in order to produce a good pose
estimate, which adds to the complexity of the implementa-
tion.

With recent advances in convolutional neural networks
(CNNs) for camera pose estimation, we can exploit the
learned feature extractors of CNNs in order to localize
a robot within indoor environments without the need for
motion capture systems or complex filtering algorithms. A
CNN can learn to produce a pose estimate both indoors and
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outdoors, within environments as small as a few meters to en-
vironments as large as several thousand meters [11], whereas
motion capture systems are typically used for localization in
a constrained indoor environment. CNN-based localization
methods can be efficient, while requiring fewer sensors.

Fig. 1: The Georgia Tech Miniature Autonomous Blimp (GT-MAB).
The GT-MAB consists of two major components, the envelope and
the gondola. The envelope is the upper balloon-like portion that is
filled with helium so that the platform can fly for long durations.
The gondola houses the sensors, motors, microcontroller, camera
and communication modules.

In this paper, we develop CNN-based localization for the
Georgia Tech Miniature Autonomous Blimp (GT-MAB) [12]
(Fig. 1). The GT-MAB consists of an envelope and a gondola
that hosts a microcontroller, four motors, two single-beam
lasers, a wireless monocular camera, and potentially other
devices. Previous experiments with the GT-MAB relied on
a motion capture system in order to navigate to waypoints
[12]. By using a CNN and laser sensor for localization, we
show that such an aerial robot can navigate autonomously
indoors without the use of a motion capture system or SLAM
algorithms.

Our contribution is as follows. First, we add a time-of-
flight (ToF) single-beam laser sensor to the underside of
the GT-MAB, which allows the GT-MAB to estimate its
height. Second, we utilize a CNN based on VGG-16 [13]
to regress the GT-MAB’s horizontal position and heading
in an indoor environment. Finally, we provide experimental
results, showing that an indoor aerial robot can navigate
autonomously to waypoints using a CNN as the primary
localization method, without the use of external localization
systems or complex mapping and filtering algorithms. To the
best of our knowledge, this work is the first use of a CNN
as a primary localization method for an autonomous indoor
aerial robot.

The remainder of this paper is organized as follows.
Section II reviews relevant work including state of the art
methods for CNN-based localization and visual odometry,
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together with research previously conducted on the GT-
MAB. Section III describes the related hardware of the GT-
MAB which facilitates control, perception, and communica-
tion on the GT-MAB. Section IV describes the CNN used for
localizing the GT-MAB in an indoor environment, along with
the training and evaluation procedure. Section V presents the
proportional-integral-derivative (PID) controllers designed
for the GT-MAB so that it is able to navigate to waypoints. In
Section VI, we provide experimental results of the GT-MAB
navigating autonomously to complete a waypoint mission
in an indoor room without external localization methods.
Finally, we conclude our work in Section VII and discuss
future research paths and applications.

II. RELATED WORK

Over the last several years, CNNs have shown a remark-
able ability to accomplish tasks related to scene understand-
ing and navigation. CNNs have previously been used for the
task of place recognition [14][15]. Given a camera image,
these CNNs predict a high-level location of the camera pose,
which could be used as an input to a separate algorithm
that produces a more refined pose estimate. CNNs have
also recently been used to tackle the visual odometry (VO)
problem. In [16], a recurrent convolutional neural network
(RCNN) is used to learn monocular VO. The works [17][18]
use CNNs to estimate depth maps and also tackle monocular
VO in an unsupervised manner. While these works compare
well against traditional geometric approaches to VO, the
output pose drifts over time when loop closure techniques
are not applied. In our application, we aim to directly predict
an absolute pose using a CNN that does not drift over time,
without aid from any external localization sources.

In [11][19][20], a CNN is used to directly output a 6
degree of freedom (6DoF) camera pose given a monocular
RGB camera image. These works show that CNN-based
localization can be fast (200 Hz) and produce accurate
poses for both small indoor environments and large outdoor
environments. Reference [11] also showed that a CNN
takes advantage of large, textureless regions of an image
to assist with pose estimation, whereas traditional methods
like SLAM often require the detection and tracking of rich
features. Visual structure from motion (VSFM) [21] is used
to automate the data labeling process, showing that data can
be easily collected and automatically labeled for an arbitrary
environment. In the work [22], the authors use an RCNN to
directly predict the position of a robot, although this is done
in a simulation environment.

In all of the previously described works, the poses are
not used to control or navigate a physical platform. In this
paper, we use a localization method most similar to [11] to
estimate the pose of the GT-MAB, which allows us to control
the GT-MAB to a designated location indoors.

The GT-MAB has previously been used as a research
platform for controls and Human-Robot Interaction (HRI)
experiments. Our previous work [12] introduces the GT-
MAB platform and discusses its dynamics and compares the
platform to other indoor aerial robots. A main advantage of
the GT-MAB and similar blimps [23][24][25][26][27] is that

compared to other aerial vehicles, they are safer to humans
and fly longer durations. In [28] and [29], the authors add
a lightweight wireless monocular camera to the GT-MAB
so that it is able to follow humans and recognize gestures,
without the use of an external localization system. However,
the localization in these works is done with respect to a
designated human, and not based on pose estimation. We use
the GT-MAB as the platform for our experiments because we
are interested in exploring the feasibility and performance of
using a CNN as the primary localization method for an aerial
robot, which can potentially enable platforms like the GT-
MAB to navigate in more indoor environments without the
need for external localization methods or SLAM algorithms.

III. HARDWARE

Fig. 2: GT-MAB gondola that houses motors, sensors, a microcon-
troller unit (MCU) to interface with the motors and sensors, and
a wireless module used to send sensor data to the offboard base
station desktop and also receive motor commands.

Designed as in [12][28][29], the GT-MAB has two major
sections, the envelope and the gondola. The envelope has a
saucer-like shape and is inflated with helium. This envelope
is naturally cushioned, which makes this platform safe for
human-robot interaction (HRI) applications. The gondola is
shown in Figure 2. The housing carries the microcontroller,
power supply, sensors, and motors. The gondola has two ver-
tical motors for controlling height, and two forward-facing
motors for rotation or forward-backward motion. The GT-
MAB is supported by a Linux base station desktop through
wireless communication, which has a graphics processing
unit (GPU) for fast deep learning inference.

Like [28] and [29], we mount a wireless RGB camera on
the front of the gondola to allow the GT-MAB to visually
perceive the environment. The camera wirelessly transmits
camera images captured on the GT-MAB to a receiver that
is connected to the base station computer at a frame rate of
30 Hz. These camera images serve as inputs to our CNN for
localization.

We add a single-beam laser to the underside of the gon-
dola. For our experiments described later in this paper, the
downward-facing laser is used to estimate the height of the
GT-MAB, assuming there are no objects on the ground. This
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laser can provide range measurements with errors averaging
less than 1 cm. The power consumption, size, weight, and
ease of use of the laser sensor make it very suitable for
platforms like the GT-MAB.

IV. CONVOLUTIONAL NEURAL NETWORK FOR
LOCALIZATION

Fig. 3: CNN based on VGG-16 used to regress the position and
heading of the GT-MAB in an indoor environment. The input to
the CNN is a single 224x224 monocular RGB camera image, and
the output is a 4-dimensional vector, consisting of x and y position,
along with a unit vector to represent heading.

A. Architecture
In this paper, we design and train a CNN that takes a single

RGB image as input and outputs a pose. We use VGG-16 as
the backbone architecture for our localization CNN because
VGG-16 has shown to capture spatial context very well. We
remove the classification head of VGG-16 and replace it with
a 4-element fully connected layer (Figure 3). The input to
the network is a 224 x 224 RGB camera image, and the
output is a vector v, which consists of the 2D horizontal
position vector q and a heading θ which is represented as a
unit vector.

v = [q, θ] (1)

Predicting a single heading value can cause difficulties
during training. For example, if the network predicts a single
heading value of 359◦ for a ground truth heading of 0◦, an
L1 loss would be large even though the error is actually
quite small. As discussed in [20], a non-injective orientation
representation can be challenging to learn, which is why the
authors chose to use a quaternion to represent orientation. We
do not predict roll and pitch because the GT-MAB typically
does not operate outside of a narrow band of roll and pitch
values due to its self-stabilizing design as described in [12].
Because we are only interested in predicting heading, we use
the CNN to predict a unit vector, where the two components
are continuous between [−1, 1], and an L1 loss can be easily
applied. The predicted vector can be normalized such that it
produces a valid unit vector.

B. Data Collection
The environment in which we are experimenting with the

GT-MAB is an indoor box-shaped room. This room has an
Optitrack motion capture system [30], which locates unique
markers that are placed on top of the GT-MAB in order to
get a very accurate pose estimate of the GT-MAB. While
methods like VSFM can be used as in [11] to collect ground
truth poses, we can instead use the Optitrack system to

provide ground truth poses without the required optimization
and computation time of VSFM. VSFM could be used to
automatically label data for future experiments outside of
our laboratory environment.

Our data collection process requires minimal human effort.
We manually move the blimp around the lab space while
simultaneously capturing camera images and recording Op-
titrack ground truth poses. This means that our data is auto-
matically labeled, where each camera image is paired with a
corresponding ground truth pose. During data collection, we
vary the GT-MAB’s position and rotation angles so that we
capture the expected operating space within the room. The
Optitrack system is able to provide ground truth poses in an
area that is a 3m x 3m square. Our data is collected over
several periods that total to approximately 3 hours, where
150000 images are used for training and 14000 are used for
testing. During the collection of this dataset, some objects in
the room vary such as the absence or presence of equipment
and people around the room. The GT-MAB operates in the
center area of the room that is within the field of view of
the Optitrack system, which is generally clear of any objects.
One issue we face is that the onboard camera can sometimes
produce glitchy images due to its wireless range, shown in
Figure 4. However, we find that the network is generally
robust to these glitches since many examples are present in
the training data.

Fig. 4: Glitchy image captured by the monocular wireless RGB cam-
era and received by the base station desktop. These glitches occur
occasionally when there is poor communication signal between the
camera and the receiver connected to the base station desktop.

C. Training

The network used in this paper is implemented in Pytorch
[31]. We train the network for 25 epochs, with a batch size of
16. During training, we use the following L1 loss function,

Loss =
n∑
i

(||v̂ − v||1) (2)

L1 loss is used instead of L2 loss, allowing the network to
converge faster. This is because our CNN’s prediction errors
quickly become less than 1, and an L2 loss would square
these errors to produce diminishing loss values, whereas L1
loss would provide larger weight updates. The stochastic gra-
dient descent (SGD) optimizer [32] is used during training,
with a momentum of 0.9 and step interval of 1 epoch.
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D. Network Performance

The network is able to run at 30 Hz, which is the
max frame rate of the GT-MAB’s camera. We evaluate our
network on a test dataset consisting of 14000 images that
were collected in separate trials from the training dataset.
The results are shown in Table I.

TABLE I: Error in position and heading between the CNN predic-
tions and the ground truth provided by Optitrack on the test dataset.

Error Values Mean Std. Dev
X position (m) 0.0447 0.0500
Y position (m) 0.0456 0.0522

2D position (m) 0.0732 0.0649
Heading (deg) 1.5298 3.7242

We are able to achieve centimeter-level position estimation
error, and heading estimation error on the order of just a
couple degrees. This error is significantly lower than the
indoor performance results of [11] and [20], although this
is likely because our testing environment is rather simple
and less varying. Additionally, we are able to label our data
using a precise motion capture system.

(a) (b)
Fig. 5: Input images to the CNN overlayed with a heatmap indicating
regions that most influence the CNN prediction. (a) shows the
heatmap for position error, and (b) shows the heatmap for heading
error. ”Hotter” regions indicate parts of the image that most affect
the prediction error of the CNN.

E. Ablation Study

While we cannot fully understand the learned features of
a CNN, we can perform an ablation study to gain some
intuition. For this experiment, we slide a 10 pixel x 10 pixel
black patch across test images and evaluate the change in
error to the predicted position and heading that is caused by
the patch. Using a heatmap, we can create a visualization of

the pixels that result in the largest errors when zeroed out,
shown in Figure 5.

We observe that some features of the room that are
important to the CNN’s prediction include smooth areas on
the door, floor, and walls. This observation is consistent
with the results of [11], which showed that large textureless
regions of the scene can help improve localization estimates,
whereas traditional geometric localization methods often fail
to extract features in these regions. It is also important to note
that objects that may have moved throughout data collection,
such as the chairs or small objects on the floor, do not
contribute significantly to the network’s pose estimate as
shown by the minor changes in prediction error when ablated.

We can see that ablated features affect position error and
heading error differently, although there is some overlap in
features.

V. CONTROLLERS

Our goal is to control the GT-MAB to a target waypoint
in an indoor room. In order to accomplish this, we must
consider the GT-MAB’s dynamics. The GT-MAB’s dynamics
are described in detail in [12]. To control the GT-MAB
to a waypoint, the following measurements and dynamics
equations are required.
1. Distance:

d̂ =
√

(x̂cnn − xwp)2 + (ŷcnn − ywp)2 (3)

where d̂ is the estimated distance between the GT-MAB and
the target waypoint, [x̂cnn, ŷcnn] are the predicted horizontal
coordinates of the GT-MAB using the localization CNN,
and [xwp, ywp] are the horizontal coordinates of the target
waypoint.

Assuming the GT-MAB is heading toward the waypoint,
it can change its distance to the waypoint using its forward-
facing motors as represented by the following model

md̈ = Fx + fx (4)

where d is the distance between the GT-MAB and the
waypoint, Fx is the external force in the direction of the
GT-MAB’s forward-facing motors, and fx is the force
generated by the forward-facing motors.

2. Height:
ĥ = ẑlaser − z0 (5)

where ĥ is the estimated error between ẑlaser, the predicted
height of the GT-MAB from the laser sensor, and the target
height z0.

The GT-MAB can control its height using its vertical
motors as represented by the following model

mz̈ = Fz + fz (6)

where z is the height of the GT-MAB, Fz is the external
force in the direction of the GT-MAB’s vertical motors, and
fz is the force generated by the vertical motors.
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3. Heading:

θwp = arctan(
ywp − ŷcnn
xwp − x̂cnn

) (7a)

ψ̂ = θ̂cnn − θwp (7b)

where θwp is the target heading angle for the GT-MAB, and
ψ̂ is the estimated error between the predicted heading angle
from the localization CNN, θ̂cnn, and the target heading
angle θwp.

The GT-MAB is able to control its heading angle using
its forward-facing motors for rotation as represented by the
following model

Iθ̈ =M + τ (8)

where θ is the GT-MAB’s heading angle, M is the external
moments exerted on the GT-MAB, and τ is the torque
generated by the forward-facing motors.

We design 3 PID controllers similarly as [28] to control
the GT-MAB. The distance controller uses d̂ as feedback in
order to produce the control signal fx. The height controller
uses ĥ as feedback in order to produce the control signal
fz . The heading controller uses ψ̂ as feedback in order to
produce the control signal τ . For navigation to a waypoint,
the goal for the controllers is to have d̂ = 0, ĥ = 0, and
ψ̂ = 0.

We tune the PID parameters in MATLAB based on the
system identification of the GT-MAB conducted in [12].

VI. WAYPOINT FOLLOWING

To present the capabilities of controlling the GT-MAB
using a CNN and single-beam laser sensor for localization,
we establish a waypoint following task. For this task, we set
four waypoints in the same room where data was collected.
The waypoints form a 2m x 2m square. The GT-MAB is
controlled using the PID controllers described in Section
V. The GT-MAB navigates to each of the four waypoints
sequentially in the counter-clockwise direction. Once the GT-
MAB is within 0.25m of the target waypoint, the GT-MAB
will continue on to the next waypoint. We set the target
height z0 to 1.8 m.

The CNN described in this paper is used to output the
horizontal position and heading of the GT-MAB, while the
downward-facing laser sensor is used to obtain the height.
We use the Robot Operating System (ROS) [33] in a Linux
environment on the base station desktop to run core software.
A microcontroller is used onboard the GT-MAB to read
data from the laser sensor and control the motors, while a
wireless module communicates information between the GT-
MAB and base station desktop. Ground truth measurements
are obtained through the vrpn client ros package [34] which
reads position and heading estimates from the Optitrack
motion capture system.

The predicted pose estimates of the GT-MAB during the
waypoint following task are shown in Figures 6 and 7. The
predicted heading is shown in Figure 8. Ground truth values
are also provided.

Fig. 6: Predicted and ground truth 3D position of the GT-MAB
during the waypoint following task. The green spheres indicate each
waypoint that the GT-MAB must navigate to before moving onto
the next waypoint.

Fig. 7: Top-down view (2D) of predicted and ground truth position
of GT-MAB during waypoint following task.

The GT-MAB takes 55 seconds to complete a single lap
around the 4 waypoints. During the waypoint following task,
our localization method is able to provide pose estimates
of the GT-MAB at 30 Hz, which is the max camera frame
rate. The pose estimation error values are shown in Table
II. We are able to achieve average horizontal position errors
of less than 18 cm using a single onboard camera sensor,
whereas many SLAM algorithms require the fusion of mul-
tiple sensors like IMU, camera images, and laser sensors.
Our localization method does not drift over time, and does
not require a map. As shown in Section IV-E, the localization
CNN is able to make use of textureless regions of the
room, such as the floor and walls, along with more distinct
features like ceiling lights and doors in order to produce an
accurate horizontal position estimate. The downward-facing
laser sensor is able to estimate the GT-MAB’s height with
average errors of less than 4 cm.

The localization error during the waypoint following mis-
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Fig. 8: Predicted and ground truth heading of GT-MAB during
waypoint following mission. The CNN is able to correctly handle
the angle wrap-around that occurs around t = 23 seconds.

TABLE II: Error mean and standard deviation of predicted position
and heading of the GT-MAB during the waypoint following task.

Errors µ σ
X position (m) 0.0670 0.0615
Y position (m) 0.1499 0.1072
2D position (m) 0.1776 0.1035

Height (m) 0.0378 0.0249
3D position (m) 0.1976 0.1045
Heading (deg) 2.5471 2.9233

sion is higher than the test set error from Section IV.
This is likely due to several reasons. First, the waypoint
mission was completed several weeks after the training data
was collected, so different aspects of the room may have
changed. Additionally, the motion of the GT-MAB during
the waypoint mission may have resulted in camera images
outside the distribution of data collected for training. The
error in predicted height from the laser sensor is higher than
its specifications because of slight rolling and pitching during
the GT-MABs flight, which changes the measured distance
to the ground. While there is a performance difference in
localization, we find that the errors are small enough such
that the GT-MAB is still able to navigate to each of the
waypoints.

In this experiment, we show that the GT-MAB is able to
successfully navigate around an indoor room using a CNN to
predict its horizontal position and heading, and a downward-
facing laser sensor to predict its height.

VII. SUMMARY

We have presented a localization method for the GT-MAB
that does not require an external motion capture system
or complex SLAM and filtering algorithms for navigation.
Instead, we describe a CNN that can be used to regress
the horizontal position and heading of the GT-MAB, and
the integration of a small, light-weight laser sensor that
can accurately predict the height of the GT-MAB. We have
shown that with this localization method and several PID
controllers that control the GT-MAB’s position, height, and
heading, the GT-MAB is able to autonomously navigate

to waypoints within an indoor environment. The waypoint
following task shows that our localization method is accurate
enough to use as an input to PID controllers in order to
control the GT-MAB to different locations in a room. This
work serves as a foundation for future experiments using
the CNN localization output as an additional measurement
for sensor fusion algorithms. We can also explore localizing
and controlling the GT-MAB in larger indoor environments
using our localization method, such that the GT-MAB could
potentially guide people to different rooms within a building.
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