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Abstract— As multi-agent systems proliferate, there is in-
creasing demand for coordination protocols that protect agents’
sensitive information while allowing them to collaborate. To
help address this need, this paper presents a differentially
private formation control framework. Agents’ state trajectories
are protected using differential privacy, which is a statistical
notion of privacy that protects data by adding noise to it.
We provide a private formation control implementation and
analyze the impact of privacy upon the system. Specifically, we
quantify tradeoffs between privacy level, system performance,
and connectedness of the network’s communication topology.
These tradeoffs are used to develop guidelines for calibrating
privacy in terms of control theoretic quantities, such as steady-
state error, without requiring in-depth knowledge of differential
privacy. Additional guidelines are also developed for treating
privacy levels and network topologies as design parameters to
tune the network’s performance. Simulation results illustrate
these tradeoffs and show that strict privacy is inherently
compatible with strong system performance.

I. INTRODUCTION

Multi-agent systems, such as robotic swarms and social
networks, require agents to share information to collaborate.
In some cases, the information shared between agents may be
sensitive. For example, self-driving cars share location data
to be routed to a destination. Geo-location data and other data
streams can be quite revealing about users and sensitive data
should be protected. However, this data must still be useful
for multi-agent coordination. Thus, privacy in multi-agent
control must simultaneously protect agents’ sensitive data
while guaranteeing that privatized data enables the network
to achieve a common task.

This type of privacy has recently been achieved using
differential privacy. Differential privacy stems from the com-
puter science literature, where it was originally used to
protect sensitive data when databases are queried [1], [2].
Differential privacy is appealing because it is immune to
post-processing and robust to side information [1]. These
properties mean that privacy guarantees are not compromised
by performing operations on differentially private data, and
that they are not weakened by much by an adversary with
additional information about data-producing agents [3].

Recently, differential privacy has been applied to dynamic
systems [4]–[12]. One form of differential privacy in dy-
namic systems protects sensitive trajectory-valued data, and
this is the notion of differential privacy used in this paper.
Privacy of this form ensures that an adversary is unlikely
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to learn much about the state trajectory of a system by
observing its outputs. In multi-agent control, this lets an
agent share its outputs with other agents while protecting its
state trajectory from those agents and eavesdroppers [4]–[7].

In this paper, we develop a framework for private multi-
agent formation control using differential privacy. Formation
control is a well-studied network control problem and can
be robots physically assembling into geometric shapes or
non-physical agents maintaining relative state offsets. For
differential privacy, agents add privacy noise to their states
before sharing them with other agents. The other agents use
privatized states in their update laws, and then this process
repeats at every time step. The private formation control
protocol can be implemented in a completely distributed
manner, and, contrary to some other privacy approaches, it
does not require a central coordinator.

Beyond the privacy implementation, we develop guidelines
for calibrating privacy in formation control. Specifically, we
bound the quality of formation, or performance of the system,
in terms of agents’ privacy parameters and connectedness of
the network. We develop guidelines by using these bounds
to trade off degraded performance for stricter privacy re-
quirements and a less connected communication topology.
This ultimately allows us to formulate privacy guidelines
based on control-theoretic properties without requiring users
to have an in-depth understanding of differential privacy. Fur-
thermore, we develop necessary and sufficient conditions for
when private formation control networks achieve a desired
performance level.

The rest of the paper is organized as follows. Section
II gives graph theory and differential privacy background.
Section III states the differentially private formation control
problem and Section IV solves it. Section V provides guide-
lines for calibrating privacy based on performance require-
ments for specific communication topologies. In Section VI,
we analyze the sensitivity of system performance to changes
in privacy and communication topology. Next, Section VII
provides simulations, and Section VIII concludes the paper.

II. BACKGROUND AND PRELIMINARIES

In this section we briefly review the required background
on graph theory and differential privacy.

A. Graph Theory Background

A graph G = (V,E) is defined over a set of nodes V and
edges are contained in the set E. For N nodes, V is indexed
over {1, ..., N}. The edge set of G is a subset E ⊆ V × V ,
where the pair (i, j) ∈ E if nodes i and j share a con-
nection and (i, j) /∈ E if they do not. This paper considers
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undirected, weighted, simple graphs. Undirectedness means
that an edge (i, j) ∈ E is not distinguished from (j, i) ∈ E.
Simplicity means that (i, i) /∈ E for all i ∈ V . Weightedness
means that the edge (i, j) ∈ E has a weight wij = wji > 0.
Of particular interest are connected graphs.

Definition 1 (Connected Graph): A graph G is connected
if, for all i, j ∈ {1, ..., N}, i 6= j, there is a sequence of
edges one can traverse from node i to node j. 4

This paper uses the weighted graph Laplacian, which
is defined with weighted adjacency and weighted degree
matrices. The weighted adjacency matrix A(G) ∈ RN×N

of G is defined element-wise as

A(G)ij =

{
wij (i, j) ∈ E
0 otherwise

.

Because we only consider undirected graphs, A(G) is sym-
metric. The weighted degree of node i ∈ V is defined as di =∑
j|(i,j)∈E wij . The maximum degree is dmax = maxi di.

The degree matrix D(G) ∈ RN×N is the diagonal matrix
D(G) = diag(d1, ..., dN ). The weighted Laplacian of G is
then defined as L(G) = D(G)−A(G).

Let λk(·) be the kth smallest eigenvalue of a matrix. By
definition, λ1(L(G)) = 0 for all graph Laplacians and

0 = λ1(L(G)) ≤ λ2(L(G)) ≤ · · · ≤ λN (L(G)).

The value of λ2(G)) plays a key role in this paper.
Definition 2 (Algebraic Connectivity [13]): The

algebraic connectivity of a graph G is the second smallest
eigenvalue of its Laplacian and G is connected if and only
if λ2(L(G)) > 0. 4

Agent i’s neighborhood set N(i) is the set of all agents
agent i can communicate with, N(i) = {j | (i, j) ∈ E}.

B. Differential Privacy Background

This section provides a brief description of the differ-
ential privacy background needed for the remainder of the
paper. More complete expositions can be found in [4], [14].
Overall, the goal of differential privacy is to make similar
pieces of data appear approximately indistinguishable from
one another. Differential privacy is appealing because its
privacy guarantees are immune to post-processing [14]. For
example, private data can be filtered without threatening its
privacy guarantees [4], [15]. More generally, arbitrary post-
hoc computations on private data do not harm differential
privacy. In addition, after differential privacy is implemented,
an adversary with complete knowledge of the mechanism
used to implement privacy has no advantage over another
adversary without mechanism knowledge [1], [2].

In this paper we use differential privacy to pri-
vatize state trajectories of mobile autonomous agents.
We consider vector-valued trajectories of the form
Z = (Z(1), Z(2), ..., Z(k), ...), where Z(k) ∈ Rd for all k.
The `p norm of Z is defined as ‖Z‖`p =

(∑∞
k=1 ‖Z(k)‖pp

) 1
p ,

where ‖ · ‖p is the ordinary p-norm on Rd. Define the set

`dp := {Z | Z(k) ∈ Rd, ‖Z‖`p <∞}.

The set `dp only contains trajectories that converge to the
origin. However, we want to privatize arbitrary trajectories,
including those that do not converge at all. To do so,
we consider a larger set of trajectories. Let the truncation
operator PT be defined as

PT [y] =

{
y(k) k ≤ T
0 k > T

.

Then we define the set

˜̀d
p = {Z | Z(k) ∈ Rd, PT [Z] ∈ `dp for all T ∈ N},

and we will privatize state trajectories in this set.
Consider a network of N agents, where agent i’s state

trajectory is denoted by yi. The kth element of agent i’s
trajectory is yi(k) ∈ Rn for n ∈ N. Agent i’s state trajectory
belongs to ˜̀n

2 .
Differential privacy is defined with respect to an adjacency

relation. We provide privacy to single agents’ state trajecto-
ries (rather than collections of trajectories as in some other
works), and our choice of adjacency relation is defined for
single agents. In the case of dynamic systems, the adjacency
relation gives a notion of how similar trajectories are and
specifies which trajectories must be made approximately
indistinguishable from each other.

Definition 3 (Adjacency [5]): Fix an adjacency parameter
bi > 0 for agent i. Adjbi : ˜̀n

2 × ˜̀n
2 −→ {0, 1} is defined as

Adjbi(vi, wi) =

{
1 ‖vi − wi‖`2 ≤ bi
0 otherwise.

4

In words, two state trajectories of agent i are adjacent if
and only if the `2-norm of their difference is upper bounded
by bi. This means that every state trajectory within distance
bi from agent i’s state trajectory must be made approximately
indistinguishable from it to enforce differential privacy.

To calibrate differential privacy’s protections, agent i se-
lects privacy parameters εi and δi. These parameters deter-
mine the level of privacy afforded to xi. Typically, εi ∈
[0.1, ln 3] and δi ≤ 0.01 for all i [5]. The value of δi can be
regarded as the probability that differential privacy fails for
agent i, while εi can be regarded as the information leakage
about agent i.

The implementation of differential privacy in this work
provides differential privacy for each agent individually.
This will be accomplished by adding noise to sensitive
data directly, an approach called “input perturbation” privacy
in the literature [16]. The noise is added by a privacy
mechanism, which is a randomized map. We now provide
a formal definition of differential privacy, which states the
guarantees a mechanism must provide. First, fix a probability
space (Ω,F ,P). We are considering outputs in ˜̀n

2 and use a
σ-algebra over ˜̀n

2 , denoted Σn2 [17].
Definition 4 (Differential Privacy): Let εi > 0 and δi ∈

[0, 12 ) be given. A mechanism M : ˜̀n
2 × Ω −→ ˜̀n

2 is (εi, δi)-
differentially private if, for all adjacent yi, y′i ∈ ˜̀n

2 , we have

P[M(yi) ∈ S] ≤ eεiP[M(y′i) ∈ S] + δi for all S ∈ Σn2 . 4
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The Gaussian mechanism will be used to implement dif-
ferential privacy. The Gaussian mechanism adds zero-mean
i.i.d. noise drawn from a Gaussian distribution pointwise in
time. Stating the required distribution uses the Q-function,
defined as Q(y) = 1√

2π

∫∞
y
e−

z2

2 dz.
Lemma 1 (Gaussian Mechanism [4]): Let bi > 0, εi > 0,

and δi ∈ (0, 12 ) be given, and fix the adjacency relation Adjbi .
Let yi ∈ ˜̀n

2 . The Gaussian mechanism for (εi,δi)-differential
privacy takes the form ỹi(k) = yi(k) + wi(k), where wi
is a stochastic process with wi(k) ∼ N (0, σ2

i In) and
σi ≥ bi

2εi
(Kδi +

√
K2
δi

+ 2εi) where Kδi = Q−1(δi). This
mechanism provides (εi,δi)-differential privacy to yi. �

For convenience, let κ(δi, εi) = 1
2εi

(Kδi +
√
K2
δi

+ 2εi).

III. PROBLEM FORMULATION

In this section we state and analyze the differentially
private formation control problem.

Problem 1: Consider a network of N agents with com-
munication topology modeled by the undirected, simple,
connected, and weighted graph G. Let yi(k) be agent i’s
state at time k, N(i) be agent i’s neighborhood set, γ > 0,
and wij be a positive weight on the edge (i, j) ∈ E. We
define ∆ij ∈ Rn for all (i, j) ∈ E as the desired relative
distance between agents i and j.

i. Implement the formation control protocol

yi(k + 1) = yi(k) + γ
∑

j∈N(i)

wij(yj(k)− yi(k)−∆ij),

(1)
in a differentially private manner.

ii. Analyze the relationship between network performance,
privacy, and the underlying graph topology. 4

We will solve Problem 1 by bounding the performance
of the network in terms of the privacy parameters of each
agent and the algebraic connectivity of the underlying graph.
This will allow us to analyze the relationship between
performance, privacy, and topology.

Remark 1: We consider formation control in Rn, which is
equivalent to running n independent scalar-valued formation
controllers. Therefore, for simplicity we analyze the scalar
case.

Before solving Problem 1, we give the necessary defi-
nitions for formation control. First, we define agent- and
network-level dynamics. Then, we detail how each agent
will enforce differential privacy. Lastly, we explain how
differentially private communications affect the performance
of a formation control protocol and how to quantify quality
of a formation.

A. Multi-agent Formation control

The goal of formation control is for agents in a network to
assemble into some geometric shape or set of relative states.
Multi-agent formation control is a well researched problem
and there are several mathematical formulations one can use
to achieve similar results [18]–[24]. We will define relative
distances between agents that communicate and the control
objective is for all agents to maintain the relative distances

to each of their neighbors. This approach is similar to that
of [20] and the translationally invariant formations in [24].

For the formation to be feasible, ∆ij = −∆ji for
all (i, j) ∈ E. The network control objective is driving
limk−→∞(yj(k)− yi(k)) = ∆ij for all (i, j) ∈ E. It is
important to note that there is an infinite set of points that
can be in formation; the formation can be centered around
any point in Rn and meet the control requirement, i.e., we
allow formations to be translationally invariant [24].

Now we define the agents’ update law. Let {p1, ..., pN} be
any collection of points in formation such that pj−pi = ∆ij

for all (i, j) ∈ E and let p = (pT1 , . . . , p
T
N )T ∈ RnN

be the network-level formation specification. We consider
the formation control protocol in Equation (1). As noted
in Remark 1, we analyze convergence of Equation (1) at
the component level. Thus, while yi ∈ Rn, we select an
arbitrary l ∈ {1, . . . , n} and provide analysis for

x(k) = (y1,l(k) . . . yN,l(k))
T ∈ RN ,

i.e., each agents lth component, which proceeds identically
for each l ∈ {1, . . . , n}. Below, we also use the vector of lth

components of p, denoted

q = (p1,l . . . pN,l)
T
.

Let x̄(k) = x(k)− q. Then we analyze

x̄(k + 1) = (I − γL(G))x̄(k). (2)

Letting P = I − γL(G), we may write x̄(k + 1) = Px̄(k).
In this form, we have the following convergence result.

Lemma 2 ( [23], Theorem 2): If G is connected, P is
doubly stochastic, and γ ∈ (0, 1

dmax
), then the pro-

tocol in Equation (2) reaches consensus asymptotically
and x̄(k) −→ 1T 1

n x̄(0)1. �
Because the protocol in Equation (2) reaches consen-

sus over x̄, it solves the translationally invariant formation
control problem [24]. Using δij to denote the state offset
between agents j and i in the appropriate dimension, the
node-level protocol in Equation (1) can be rewritten for a
single component as

xi(k + 1) = xi(k) + γ
∑

j∈N(i)

wij(xj(k)− xi(k)− δij),

which we use below.

B. Private Communications
When agent j transmits x̄j(k) to the agents in N(j),

it is potentially exposing its state trajectory, xj , to them
and adversaries or eavesdroppers. Agent j therefore sends
a differentially private version of x̄j(k) to its neighborhood.

Agent j starts by selecting privacy parameters εj > 0, δj ∈
(0, 12 ), and adjacency relation Adjbj with bj > 0. Agent j
then privatizes its state trajectory xj with the Gaussian
mechanism. Let x̃j denote the differentially private version
of xj , where, pointwise in time, x̃j(k) = xj(k) + vj(k),
with vj(k) ∼ N (0, σ2

j ) and σj ≥ κ(δj , εj)bj . Thus agent
j keeps the trajectory xj differentially private. Agent j then
shares ˜̄xj(k) = x̃j(k)−qj , which is also differentially private
because subtracting qj is merely post-processing [14].
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C. Private Formation Control

When each agent is sharing differentially private informa-
tion, the node-level formation control protocol becomes

x̄i(k + 1) = x̄i(k) + γ
∑

j∈N(i)

wij(˜̄xj(k)− x̄i(k)), (3)

where agent i uses x̄i rather than ˜̄xi because it always has
access to its own unprivatized state. The stochastic nature
of this protocol implies that agents no longer exactly reach
a formation, and, in particular, the states will never exactly
converge to a steady-state value.

To analyze performance, let β(k) := 1
N 1Tx(k)1 + q −

1
N 1T q1, which is the state vector the protocol in Equation
(2) would converge to with initial state x(k) and without
privacy. Also let e(k) = x(k)− β(k), which is the distance
of the current state to the state the protocol would converge to
without differential privacy. To quantity the effects of privacy
on the network as a whole, let eagg(k) := 1

n

∑n
i=1E[e2i (k)]

be the aggregate error of the network, and let

ess := lim sup
k−→∞

eagg(k)

be the steady-state error of the network.
Problem 1 requires us to quantify the relationship between

privacy, encoded by (εi, δi); performance, encoded by ess;
and topology, encoded by λ2. These quantitative tradeoffs
are the subject of the next section.

IV. DIFFERENTIALLY PRIVATE FORMATION CONTROL

In this section we solve Problem 1. First, we show how
the private formation control protocol can be modeled as
a Markov chain. Then, we solve Problem 1 by deriving
performance bounds that are functions of the underlying
graph topology and each agent’s privacy parameters.

A. Formation Control as a Markov chain

Problem 1 takes the form of a consensus protocol with
Gaussian i.i.d. noise perturbing each agent’s state, which
has been previously studied in [18]. We begin by expanding
˜̄xj(k) in Equation (3), which yields

x̄i(k+1) = x̄i(k)+γ
∑

j∈N(i)

wij(x̄j(k)+vj(k)−x̄i(k)). (4)

For the purposes of analysis, we will consider equivalent
network-level dynamics given as follows.

Lemma 3: Let agents use the communication graph G
with weighted Laplacian L(G). Then Equation (4) can be
represented at the network level as x̄(k+1) = Px̄(k)+z(k),
where P = I − γL(G) and z(k) ∼ N (0, Z) where Z =
diag(s21, ..., s

2
N ), with s2i = γ2

∑
j∈N(i) w

2
ijσ

2
j .

Proof: See Lemma 3 in [25].
For analysis, we use the network-level update law x̄(k +

1) = Px̄(k) + z(k). The main result of this paper uses the
fact that a stochastic matrix P can serve as the transition
matrix of a Markov chain and the properties of the Markov
chain can be used to analyze the network dynamics.

B. Solving Problem 1

Now we state the first of our main results: a bound
on performance in terms of agents’ level of privacy and
underlying graph topology.

Theorem 1: Consider the network-level private formation
control protocol x̄(k + 1) = (I − γL(G))x̄(k) + z(k). If
γ
∑
j∈N(i) wij < 1, γ ∈

(
0, 1

dmax

)
, G is connected and

undirected, and σi ≥ κ(δi, εi)bi for all i, then ess is upper-
bounded by

ess ≤
γ(N − 1)2 maxi κ(δi, εi)

2b2i
Nλ2(L(G))(2− γλ2(L(G)))

.

Proof: See [25, Theorem 1].
We can simplify Theorem 1 when each agent has the same

privacy parameters. Next, and from this point on, we consider
the case where σ = κ(δ, ε)b so that each agent adds the
minimum amount of noise needed to attain (ε, δ)-differential
privacy.

Corollary 1 (Homogeneous Privacy Parameters):
Let each agent in the network have the privacy
parameters ε and δ and the adjacency parameter b.
Then ess ≤ γκ(δ,ε)2b2(N−1)2

Nλ2(L(G))(2−γλ2(L(G))) .
The rest of the paper focuses on the homogeneous case

presented in Corollary 1, though all forthcoming results are
easily adapted to the heterogeneous case by considering
minima and maxima over all agents where appropriate.

V. NETWORK DESIGN GUIDELINES

In this section we give guidelines for designing a differen-
tially private formation control network. The goal is to design
the network so that ess does not exceed a given limit eR.
The question of interest is: Given a specific communication
topology, how much privacy is each agent allowed to have
for ess ≤ eR? As noted in Remark 1, we do this for each
dimension of formation control individually. A smaller value
of ε corresponds to being more private. Therefore an upper
bound on ess, which is the measure of system performance,
implies a lower bound on ε, each agent’s privacy parameter.

We derive an impossibility result and sufficient conditions
in terms of ε for ess ≤ eR for specific networks. We consider
connected graphs G with uniform weights, where wij = w
for all (i, j) ∈ E. By construction, the graphs we consider in
this paper are weight-balanced, which implies that for any
weights, the protocol in Equation (2) will converge to the
unweighted average as seen in Lemma 2. Throughout this
section we fix δ to be some small number and let ε vary to
tune the level of privacy, which is common in differential
privacy implementations [26].

Theorem 2 (Impossibility Result): Given a network of
N agents with specified ε, δ, b, and eR, com-
pute λ2(G). Then ess ≤ eR cannot be assured if

ε < 2bz1
NeRλ2(G)

(
b+ eRKδλ2(G)N√

eRz1λ2(G)N

)
, where z1 = γ(N−1)2

2−γλ2(G) .

Proof: See Theorem 2 in [25]. �
We now derive necessary and sufficient conditions for

assuring ess ≤ eR for common graphs: the complete graph,
line graph, cycle graph, and star graph. These conditions
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G
N

10 100 1, 000 10, 000

Complete 0.0074 0.0081 0.0084 0.0116
Cycle 0.0380 1.4514 199.35 159591
Line 0.7533 3.2127 714.70 635752
Star 0.0235 0.0820 0.2661 0.8849

TABLE I: Comparison of the lower bounds on ε for various
communication topologies and numbers of agents. This table
illustrates that more-connected graphs accommodate privacy
better when the network size grows, because they allow ε to
be smaller, which gives stronger privacy protections.

can easily be checked a priori and give a network designer
a simple means of determining whether a specific network
will meet performance requirements. Proofs of Corollaries
3-5 are similar to that of Corollary 2 and are omitted.

Corollary 2 (Complete graph): The complete graph has
algebraic connectivity λ2(L(G)) = wN [27]. Consider a
network of N agents with specified ε, δ, γ, b, w, and eR, and
communication topology modeled by the complete graph.
The network can be shown to satisfy ess ≤ eR if and only

if ε ≥ 2bγ(N−1)2
N2eRw(2−γwN)

(
b+

eRKδwN
√

2−γwN)

(N−1)√eRγw

)
.

Proof: See Corollary 2 in [25]. �
Corollary 3 (Cycle Graph): The cycle graph has alge-

braic connectivity λ2(L(G)) = 2w
(
1− cos

(
2π
N

))
[27].

Consider a network of N agents with specified ε, δ, γ, b,
w, and eR, and communication topology modeled by the
cycle graph. The network is assured to satisfy ess ≤ eR if
and only if ε ≥ bz2

NeR2w(1−cos( 2π
N ))

+ Kδ√
z2eRw(1−cos( 2π

N ))N
,

where z2 = (N−1)2γ
1−γw(1−cos( 2π

N ))
.

Corollary 4 (Line Graph): The line graph has algebraic
connectivity λ2(L(G)) = 2w

(
1− cos

(
π
N

))
[27]. Consider

a network of N agents with specified ε, δ, γ, b, w, and
communication topology modeled by the line graph. The
network is assured to satisfy ess ≤ eR if and only if
ε ≥ bz3

NeR2w(1−cos( πN ))
+ Kδ√

z3eRw(1−cos( πN ))N
, where z3 =

(N−1)2γ
1−γw(1−cos( πN ))

.

Corollary 5 (Star Graph): The star graph has algebraic
connectivity λ2(L(G)) = w [27]. Consider a network
of N agents with specified ε, δ, γ, b, w, and eR, and
communication topology modeled by the star graph. The
network is assured to satisfy ess ≤ eR if and only if

ε ≥ 2bγ(N−1)2
NeRw(2−γw)

(
b+

eRKδwN
√

2−γw)

(N−1)
√
eRγwN

)
.

Remark 2: Fix δ = 0.01, b = 5,w = 1, γ = 10−4, and
eR = 100. The lower bounds on ε found in Corollaries 2-
5 were calculated numerically for networks with a varying
number of agents, the results of which are in Table I.

VI. SENSITIVITY RESULTS

Theorem 1 and Corollaries 2-5 show that performance of
a network is a function of the network topology, each agent’s
privacy parameters, adjacency relationship, step size, and the

number of agents. Some of these parameters are global, in
that the parameter depends on the entire network, and some
are local, in that the parameter can change at the agent
level. For example, the network communication topology is
a global parameter while each agent’s privacy parameter, ε,
is a local parameter.

Consider the following example: Given a network that
is not performing as desired, one option is to change the
network’s topology and allow more agents to communi-
cate, while another option is loosening the agents’ privacy
requirements. Depending on design constraints, it may be
more effective to allow more agents to communicate or to
relax privacy requirements. It is useful to understand when
changing ε is more effective than changing the network
topology and vice versa. In this section we therefore analyze
how sensitive network performance is to local changes in
privacy and global changes in topology.

Theorem 3: Let η1 =
2εγ+γK2

δ+2
2γ + 1

2

√
2εK2

δ +K4
δ ,

η2 =
2εγ+γK2

δ+2
2γ − 1

2

√
2εK2

δ +K4
δ , α = ε2 +

3εK2
δ

2 + 1
γ2 +

K4
δ

2 , and µ =
K2
δ (4ε

2+4εK2
δ+K

4
δ )

2
√

2εK2
δ+K

4
δ

. Then ess is more sensitive

to λ2 than ε when λ2 > η1 −
√
α+ µ or when λ2 < η2 −√

α− µ.
Proof: See Theorem 3 in [25]

Remark 3: These results can be formulated in such a way
that there is some cost associated with changing λ2(L(G))
and a cost associated with changing ε. Making an optimal
change to achieve performance criteria will largely depend
on application. This will be explored in a future publication.

The results presented in Theorem 3 can be instantiated for
specific graphs. For example, consider the following.

Corollary 6: Let δ = 0.00135, such that Kδ = 3, and let
ε = 0.01. Let γ = 1

10 . The network’s performance is more
sensitive to the network topology than ε when λ2 > 5.55134.

To illustrate these results, consider the following. The star
graph over N = 10 nodes has λ2 = 1, which implies that
the network’s performance is more sensitive to changes in
the privacy parameter ε. The complete graph over N = 10
nodes has λ2 = 10, which implies the network’s performance
is more sensitive to changes in the network topology.

VII. SIMULATION RESULTS

In this section, we present private formation control simu-
lation results. Consider a network of N = 5 agents running
a differentially private formation controller. Agents i’s state
at time k is yi(k) ∈ R2, and every agent’s state trajectory is
in ˜̀2

2. The agents’ communication topology is modeled by
the star graph over 5 nodes with weights wij = 1 for all
(i, j) ∈ E. The network’s algebraic connectivity is λ2 = 1.
The formation specification is

p =

[
0 −20 20 20 −20
0 20 20 −20 −20

]T
,

where row i denotes agent i’s desired location in the for-
mation. Thus p specifies a formation where agents 2-5 will
form a square with agent 1 at the center.
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Fig. 1: Agent 1’s error in the first element of its state and
the upper bound on ess. The upper bound is on the steady
state value of ess, however it holds point-wise in time for
e11 and components of other agents’ states.

We consider the homogeneous case where each agent has
identical privacy parameters, (εi, δi) = (ln 3, 0.00135) for all
i and every agent also has an identical adjacency parameter
bi = 2 for all i. Let γ = 1

5 . Let e11 denote the error of the
first element of agent 1’s state. The protocol in Equation (3)
was run for 100 time steps

Figure 1 shows e11 at every time step as well as the upper
bound found in Theorem 1, where we see that e11 never
converges to 0 due to the stochastic nature of the protocol,
but remains in some neighborhood of 0. The bound on ess
presented in Theorem 1 is on the expected steady state value
of square aggregate error, though we see that this bound also
holds point-wise in time for e11 in this simulation. These
results were typical throughout numerous simulation runs.

VIII. CONCLUSIONS

In this paper, we have studied the problem of differen-
tially private formation control. This work enables agents to
assemble formations while only sharing differentially private
output data with a bounded steady state error. We developed
guidelines for calibrating privacy under different control-
theoretic requirements. The tunable parameters in this work
are the privacy parameters and the topology itself, balancing
the corresponding trade offs is a subject of future work.

REFERENCES

[1] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[2] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of cryptography
conference. Springer, 2006, pp. 265–284.

[3] S. P. Kasiviswanathan and A. Smith, “On the’semantics’ of differential
privacy: A bayesian formulation,” Journal of Privacy and Confiden-
tiality, vol. 6, no. 1, 2014.

[7] J. Le Ny and M. Mohammady, “Differentially private mimo filtering
for event streams,” IEEE Transactions on Automatic Control, vol. 63,
no. 1, pp. 145–157, 2017.

[4] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2013.

[5] K. Yazdani, A. Jones, K. Leahy, and M. Hale, “Differentially private
lq control,” arXiv preprint arXiv:1807.05082, 2018.

[6] M. T. Hale and M. Egerstedt, “Cloud-enabled differentially private
multiagent optimization with constraints,” IEEE Transactions on Con-
trol of Network Systems, vol. 5, no. 4, pp. 1693–1706, 2017.

[8] A. Jones, K. Leahy, and M. Hale, “Towards differential privacy for
symbolic systems,” in 2019 American Control Conference (ACC).
IEEE, 2019, pp. 372–377.

[9] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative
synchronous consensus,” in Proceedings of the 2012 ACM Workshop
on Privacy in the Electronic Society, ser. WPES ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 81–90.
[Online]. Available: https://doi.org/10.1145/2381966.2381978

[10] Y. Wang, Z. Huang, S. Mitra, and G. E. Dullerud, “Differential privacy
in linear distributed control systems: Entropy minimizing mechanisms
and performance tradeoffs,” IEEE Transactions on Control of Network
Systems, vol. 4, no. 1, pp. 118–130, 2017.

[11] Z. Xu, K. Yazdani, M. T. Hale, and U. Topcu, “Differentially private
controller synthesis with metric temporal logic specifications,” in 2020
American Control Conference (ACC). IEEE, 2020, pp. 4745–4750.

[12] Y. Wang, M. Hale, M. Egerstedt, and G. E. Dullerud, “Differentially
private objective functions in distributed cloud-based optimization,” in
2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 3688–3694.

[13] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathe-
matical journal, vol. 23, no. 2, pp. 298–305, 1973.

[14] C. Dwork, “Differential privacy,” Automata, languages and program-
ming, pp. 1–12, 2006.

[15] K. Yazdani and M. Hale, “Error bounds and guidelines for privacy
calibration in differentially private kalman filtering,” in 2020 American
Control Conference (ACC), 2020, pp. 4423–4428.

[16] J. Le Ny, Differential Privacy for Dynamic Data. Springer, 2020.
[17] B. Hajek, Random processes for engineers. Cambridge university

press, 2015.
[18] A. Jadbabaie and A. Olshevsky, “Scaling laws for consensus protocols

subject to noise,” 2015.
[19] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-

mally rigid formations of multi-robot networks,” International Journal
of control, vol. 82, no. 3, pp. 423–439, 2009.

[20] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle cooperative control,” IEEE Control systems magazine,
vol. 27, no. 2, pp. 71–82, 2007.

[21] W. Ren, “Consensus strategies for cooperative control of vehicle
formations,” IET Control Theory & Applications, vol. 1, no. 2, pp.
505–512, 2007.

[22] J. A. Fax and R. M. Murray, “Information flow and cooperative con-
trol of vehicle formations,” IEEE transactions on automatic control,
vol. 49, no. 9, pp. 1465–1476, 2004.

[23] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[24] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[25] C. Hawkins and M. Hale, “Differentially private formation control,”
arXiv preprint arXiv:2004.02744, 2020.

[26] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C.
Pierce, and A. Roth, “Differential privacy: An economic method for
choosing epsilon,” in 2014 IEEE 27th Computer Security Foundations
Symposium. IEEE, 2014, pp. 398–410.

[27] N. M. M. De Abreu, “Old and new results on algebraic connectivity
of graphs,” Linear algebra and its applications, vol. 423, no. 1, pp.
53–73, 2007.

6265

Authorized licensed use limited to: University of Florida. Downloaded on January 30,2021 at 21:26:52 UTC from IEEE Xplore.  Restrictions apply. 


