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Privacy-Preserving Policy Synthesis in Markov Decision Processes
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Abstract—In decision-making problems, the actions of an
agent may reveal sensitive information that drives its decisions.
For instance, a corporation’s investment decisions may reveal
its sensitive knowledge about market dynamics. To prevent this
type of information leakage, we introduce a policy synthesis
algorithm that protects the privacy of the transition probabili-
ties in a Markov decision process. We use differential privacy
as the mathematical definition of privacy. The algorithm first
perturbs the transition probabilities using a mechanism that
provides differential privacy. Then, based on the privatized
transition probabilities, we synthesize a policy using dynamic
programming. Our main contribution is to bound the ‘“cost of
privacy,” i.e., the difference between the expected total rewards
with privacy and the expected total rewards without privacy.
We also show that computing the cost of privacy has time
complexity that is polynomial in the parameters of the problem.
Moreover, we establish that the cost of privacy increases with
the strength of differential privacy protections, and we quantify
this increase. Finally, numerical experiments on two example
environments validate the established relationship between the
cost of privacy and the strength of data privacy protections.

I. INTRODUCTION

In many decision-making problems, agents desire to pro-
tect sensitive information that drives their actions from eaves-
droppers and adversaries, such as applications in autonomous
driving or smart power grids [1], [2]. In these applications, as
well as in many other sequential decision-making problems,
choosing actions can be cast as a policy-synthesis problem
wherein the environment is modeled as a Markov decision
process (MDP) [3], [4]. The goal in a policy-synthesis
problem is to find a reward-maximizing control policy based
on the transition probabilities of the underlying MDP. In this
work, we study the problem of synthesizing a policy that
protects the privacy of the transition probabilities.

Transition probabilities in an MDP govern the dynamics
of the environment and may carry information that should
be protected during policy synthesis. For example, suppose
that through market research, a corporation discovers a niche
in the market and decides to invest. Such an investment may
alert competitors to the discovered niche and leads to other
firms making similar decisions. Previous works in economics
have associated higher market shares with profitability [5],
[6]. Therefore, competitors’ entrance to the market may be
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harmful to the investing corporation. As a result, it is often
crucial for a decision-maker to choose actions that do not
reveal its knowledge about its environment dynamics.

We use differential privacy as the definition of privacy
for an MDP’s transition probabilities. Differential privacy,
first introduced in [7], is a property of an algorithm and has
been used in the computer science literature as a quantitative
definition of privacy for databases [8], [9]. It has also
recently been used in control theory [10], [11]. Differential
privacy makes it unlikely that the output of a differentially
private algorithm will reveal any useful information about
the individual entries of the input dataset; however, it may
still pass on information about the aggregate statistics of the
input dataset that are useful in down-stream analytics.

The main contribution of this paper is to develop a policy-
synthesis algorithm that enforces differential privacy for
transition probabilities with adjustable privacy and utility.
We define the utility of a privacy-preserving policy synthesis
algorithm to be the value function associated with the policy,
which in an MDP is its expected total reward [12]. Utility
loss due to privacy is a common phenomenon, and we follow
the convention in the differential privacy literature to analyze
the utility of the privacy-preserving algorithm by comparing
it to its non-private counterpart [13], [14].

In order to show that the algorithm enforces differen-
tial privacy, we exploit the fact that differential privacy
is immune to post-processing [13]. By immunity to post-
processing, we mean that arbitrary functions of the output
of a differentially private algorithm do not weaken its pri-
vacy guarantees. The algorithm first privatizes the transition
probabilities via the Dirichlet mechanism [15]. We then
use dynamic programming to synthesize a policy based on
the privatized transition probabilities. Since the dynamic
programming stage is an act of post-processing on the output
of a differentially private mechanism, its output preserves the
differential privacy provided to transition probabilities.

We employ the Dirichlet mechanism for privatization be-
cause it preserves the unique structure of the transition proba-
bilities, i.e., vectors with non-negative components that sum
to one. Using traditional differentially private mechanisms
that add infinite-support noise to transition probabilities are
ill-suited to this work as they break their structure. For ex-
ample, they can result in a transition probability vector with
negative components. Although normalization may seem a
fitting solution in order to project the perturbed vector back
onto the unit simplex, we avoid normalization because it
makes it difficult to quantify utility.

We introduce the “cost of privacy” as a measure of
the utility of the algorithm. We define the cost of privacy
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to be the difference between the expected total rewards
of the policy with privacy and that of the same policy
without privacy. Since we perturb the transition probabilities
to enforce differential privacy, the output of the dynamic-
programming stage is susceptible to suboptimality, which the
cost of privacy quantifies.

We bound the cost of privacy for both finite- and infinite-
horizon MDPs, thereby enabling a decision-maker to control
the level of privacy based on the utility loss that they tolerate.
For finite-horizon MDPs, we show that we can compute the
cost of privacy in polynomial time via a backward-in-time
recursive algorithm. For the case of infinite-horizon MDPs,
we show that an algorithm similar to policy evaluation
converges to the cost of privacy asymptotically. We show
that the number of iterations required to approximate the
cost of privacy is polynomial in problem parameters.

In order to empirically validate the expressions that we
introduce for the cost of privacy, we run the algorithm on
two example MPDs. The first example is a small MDP that
models a corporation’s investment. The second example is an
MDP with a larger state and action space, with its transition
probabilities generated randomly. We run the algorithm at a
range of privacy levels and visualize our results by plotting
the cost of privacy versus privacy level. The results illustrate
the trade-off that we establish between the strength of data
privacy and utility. Furthermore, we observe that the bounds
we provide for the cost of privacy are meaningful in the
sense that they empirically provide a close approximation to
the cost of privacy.

Related work. The works in [16]-[18] study the problem
of learning a policy in an MDP while enforcing differential
privacy. The key difference between this paper and the works
above is that we protect the transition probabilities which
belong to the probability simplex, whereas the other works
protect the sensory data that are scalars. We emphasize that
although scalars can be readily privatized using traditional
differentially private mechanisms, transition probabilities
need to be treated specially to ensure that they remain non-
negative and sum to one.

The problems of robust and distributionally robust MDPs
are related to this paper. Robust policy synthesis in an
MDP is the problem of synthesizing a policy that mitigates
uncertainties present in transition probabilities [19], [20].
Distributionally robust MDPs assume that the planner has
access to a probability measure over the uncertainty sets [21].

We base the cost of privacy bounds on a concentration
bound that we derive for the output of the Dirichlet mecha-
nism. Finding the worst-case cost of privacy coincides with
lower bounding the value of a distributionally robust policy
where the uncertainties in the transition probabilities adhere
to the concentration bound of the Dirichlet mechanism.

II. PRELIMINARIES

In this section we set the notation and definitions used
throughout the paper.

A. Notation

We denote the set of real numbers by R. Let (-)7 denote
the transpose of a vector. We define the unit simplex to be
A(n) :={z e R" | 172 = 1,2 > 0}, where 1 is the vector
of all ones in R™ and the inequality is evaluated element
wise. We use the notation A°(n) to denote the interior of
A(n). For a finite set A, its cardinality is denoted by |.AJ.
E[-] and Var(-) denote the expectation and the variance of a
random variable, respectively. || - |1 and || - || denote the
one and infinity norm of a vector, respectively. For a vector
p, we use the notation p; to denote the ™ component of p.
We use the gamma function

I(z):= /OOO 2* " Vexp (—x)dz.

B. Markov decision processes

An MDP is a tuple M = (S, A, 7, P,T,v) where S is
the set of states, A is the set of available actions at state
se S,and r : S x A, — R is the reward function that
indicates the one-step reward for taking action a at state
s. P :={P(s,a) € A(|S]) | (s,a) € S x A} is the set of
transition probabilities. Finally, 7" is the time horizon and ~y
is the discount factor.

We now define a policy, that is, a rule for making a
sequence of decisions in an MDP. In particular, let hy :=
{s0, ag, 0, 81,01,71,...,5:} be a history until stage ¢, and
let 7. (s:) denote the set of all possible histories that end in
state s;. A policy m : H¢(s:) — A (] As,|) maps a history hy
to a probability distribution over the set of actions, A,,.

A policy  is evaluated by its value function V;* : S — R,
that is defined as

St = 5] .

The expectation is taken over the stochasticity of the policy
m and transition probabilities P. We study the problem
of privacy-preserving policy synthesis, and in a synthesis
problem, the goal is to find an optimal policy with the highest
value function beginning at initial state sq.

In this paper, we restrict our attention to Markovian
policies, i.e., the class of policies that only depend on the
most recent state of the history. Markovian policies are
shown to be optimal under some mild conditions [22]. We
use the notation m;(a | s) to show the probability of taking
action a at state s and stage t.

T

Z’Yi_tﬁ'

i=t

Vi(s):=E

C. Differential privacy

For an algorithm that satisfies differential privacy, it is
unlikely to tell apart nearby input datasets based on obser-
vations of the algorithm’s output. Nearby datasets are defined
formally by an adjacency relationship. We first state the
adjacency relationship used in this paper.

Definition 1 (From [15], Definition 1). For a constant b €
(0,1], two vectors p,q € A(n) are said to be b-adjacent
if there exist indices i,j such that p_(; ;) = q_(;,4) and
lp—qlly <b.
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The above definition considers two vectors in the unit
simplex adjacent if they only differ in two indices, i, 7, by no
more than b in their 1-norm. Note that the usual adjacency
relationship in the differential privacy literature considers
two input datasets adjacent if they only differ in one entry
[13]; however, it is not possible for the elements of the unit
simplex to differ in only one entry because their components
must sum to one.

Definition 2 (Probabilistic differential privacy [15]). Fix a
probability space (2, F,P) and b € (0,1]. A mechanism
M A(n) xQ— A(n) is said to be probabilistically (e, d)-
differentially private if, for all p € A(n), we can partition
the output space A(n) into two disjoint sets, Q1,$, such
that P[M(p) € Qs]| < 6, and for all ¢ € A(n) b-adjacent to
p, we have that

PIM(p) = 4]
tog <Pw<q> =]

Probabilistic (e, d)-differential privacy is known to imply
ordinary (e, §)-differential privacy [23].

> § G,ViE S Ql.

D. The Dirichlet mechanism

A Dirichlet mechanism with parameter £ > 0 takes as
input a vector p € A¢ and outputs z € A(n) according to a
Dirichlet probability distribution. Fix %k and let M([l;) denote
the Dirichlet mechanism. Then

1 n—1 n—1 kpn—1
P [Mg)(p):x} ~ B(kp) };[1 ! (1 - ;%) ;

n n
where B(kp) := [] T'(kp;)/T (k > pi> is the multi-variate
beta function. = =
The Dirichlet mechanism satisfies probabilistic (e, d)-
differential privacy [15], and has the following properties.
The expected value of the output is equal to the input
vector, ie., B /\/l([’;) (p)} = p. An increase in k results in
weaker differential privacy protections, and in particular it
increases €. However, as k increases, the output becomes
more concentrated around the input vector p.

III. PRIVACY-PRESERVING SYNTHESIS ALGORITHM

In this section, we first present the proposed privacy-
preserving synthesis algorithm. Then, we show the differ-
ential privacy of the algorithm.

A. Algorithm

The algorithm takes as input an MDP M =
(S, Aq,7, P, T,~) and the value of k that is the parameter
for the Dirichlet mechanism. It then outputs a policy 7
and its value function V7. The algorithm comprises two
stages. The first stage privatizes the transition probabil-
ities by applying the Dirichlet mechanism independently
on each transition probability vector in P. Let P :=
{P(s,a) = Mg) (P(s,a)) | P(s,a) € 73} be the set of
transition probabilities after privatization. The second stage

Algorithm 1: Privacy-preserving synthesis algorithm

Input: (S, A, 7, P, T,7), k
Output: 7, V7
1 Construct the set of privatized transition probabilities
P o= {P(s,a) = M® (P(s,a)) | P(s,a) € 73}.
2 Replace M with its privatized version
M = (87 ‘A'S7 /r7 737 T7 ’7)_
3 Synthesize policy 7 for M. B
4 Compute the value function of 7, V7.

finds an optimal policy and the optimal value of the priva-
tized MDP M := (S, A,,r,P,T,v). An optimal policy is
one that satisfies the Bellman condition of optimality, and
the optimal value is the value of such policies [22]. In the
case of a finite-horizon MDP, the second stage finds (7, V;)
such that for all t € {0,...,7 — 1} and all s € S,

Vi(s)=max Y m(als) (( a0)+7 3 P(s.a, s/)VtH(s')),

acAg s'eS

7y €arg mSXZW(a B (r(s, a)—|—72 P(s,a, s’)‘_/t+1(s’)>,

a€A; s'eS

where P(s,a,s’) denotes the privatized probability that tak-
ing action a at state s takes the agent to state s’. We assume
that the terminal values are given by a known function
Rr:S— R, ie., Vr(s) = Rr(s), forall s € S.

For an infinite-horizon discounted MDP, it can be shown
that the optimal policy is a stationary policy, i.e., a policy
that adopts the same decision rule at all stages [22]. Let V.,
denote the optimal value of M. Then, for an infinite-horizon

MDP, the second stage of Algorithm 1 computes (7, V)
such that for all s € S,

Voo (s) = mEXZﬂ'((Z B <7’(s, a)+~ Z P(s,a, s’)Voo(s’)>,

s'eS

TEarg Hl?XZ?T(a B) (r(s, a)+y Z P(s,a, s')f/oo(s’))

acAs s'€S

There are various methods suggested to efficiently compute
7 and its value function, such as dynamic programming or
linear programming [22]. The third and the fourth step of
Algorithm 1 may adopt any of these methods to synthesize
and evaluate an optimal policy for the privatized MDP M.

B. Proof of differential privacy

We prove that Algorithm 1 is (e, d)-differentially private
by differential privacy’s immunity to post-processing.

Lemma 1 (From [13], Proposition 2.1). Let M : A(n) —
A(n) be a mechanism that is (e, §)-differentially private. Let
f : A(n) — R be an arbitrary mapping. Then, f o M :
A(n) — R is (e, d)-differentially private.
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Recall that probabilistic (e, §)-differential privacy implies
ordinary (e, §)-differential privacy. Let (¢, ) denote the level
of the probabilistic differential privacy of the Dirichlet mech-
anism employed in Algorithm 1. By Lemma 1, the algorithm
is (€, 3)-differentially private because the synthesis step is an
instance of a post-processing mapping f.

IV. UTILITY ANALYSIS

Algorithm 1 synthesizes a policy 7 based on privatized
transition probabilities in 7. It then computes the value
function of 7, V/7, using P. Let V;" : S — R be the
value function that the non-private transition probabilities in
P assign to 7. The utility of Algorithm 1 is equal to V7 (s).

We assume that after the privatization stage, the algorithm
loses access to the non-private transition probabilities in P.
The reason is that in many real-world applications, a central
cloud is used to compute the policy, and agents submit their
data to the cloud [24], [25]. For agents to preserve their data
privacy, they privatize their data prior to any submission to
the cloud [26].

We start off the utility analysis of Algorithm 1 with
introducing a concentration bound on the output of the
Dirichlet mechanism. Due to space restrictions, the proofs
of the subsequent lemmas and theorems are omitted and can
be found in [27].

Lemma 2. Let Mg) denote a Dirichlet mechanism with
parameter k € Ry. Then, for all § > 0, and all p € A°(n),

; (HM%) = ;f,jff;) <5

The above lemma enables us to evaluate V7(sg),
i.e., the conditional expectation of the value func-
tion without privacy, based on the privatized tran-
sition probabilities P and k. In particular, for a
finite-horizon MDP we provide an upper bound on
|E [V{" (s0) | P, k] — Vi (so)|. For an infinite-horizon MDP,
we upper bound |E [VZ (s0) | P, k] — VZ(s0)|. We refer to
both expressions as the “cost of privacy.”

The bounds are based on the pessimistic and optimistic
value functions that possible transition-probability vectors
generate. Let o := /log(1/B)/2(k + 1), then Lemma 2
implies that for all P(s,a) € P and the corresponding
P(s,a) € P, P(||P(s,a) — P(s,a)||cc <a) > 1— B. For
all (s,a) € S x A, we define

Pap(s,a) :={BPi(s,a)+(1—-0)Ps(s,a) |

| Pa(s,a) = P(s, )| < @, Pi(s,a) € A(IS])}. (1)

We use the sets 75% 5 to compute a pessimistic and optimistic
value function to bound the cost of privacy.

A. Finite-horizon MDPs

We bound the cost of privacy for a finite-horizon MDP
by establishing a common upper and lower bound for both
E [V (so) | P, k] and V{(so). We first state a technical
lemma that we later use to prove the theorems of this section.

Lemma 3. Fix k and a set of transition probabilities P,
and let P = {P(s,a) = M® (P(s,a)) | P(s,a) € P}.
For any B> 0, let o := +/log(1/8)/2(k + 1). Then,
P(s,a) € ﬁa,g(s,a), VP(s,a) € P,
E [P(s,a) | 75,k] c 75(17;3(3,(1), VP(s,a) € P.

Theorem 1. Let M = (S, As,r,P,T,~) and k be the input,
and (7,V]") be the output of Algorithm 1, and let T < oo.
Fix 8 > 0, and let o := +/log(1/B)/2(k + 1). Let Ry :
S — R denote the terminal value function of M. Define
of + S — Rand o7 : § — R as follows. For all s €
S, let v7.(s) := Rr(s), v7.(s) := Rr(s), and for all t €
{0,...,T =1}, let

vy (s):= Zﬂ(a|s)<r(s,a)+7 min Z p(s,a, s’)vfﬂ(s’)),

acAs PE€Pa sl

o] (s):= Zfr(a | s)(r(s, a)+~ max Z p(s,a, 5’)5f+1(5’)>.

a€A, PE€Pas s

Then, we have that
|E [Vi (s0) | P, k] — Vi (s0)] < 55 (s0) — v5 (s0)-
B. Infinite-horizon MDPs

In this section, we bound the cost of privacy for an infinite-
horizon MDP. We first state a technical lemma, which we
later use to bound the cost of privacy for infinite-horizon
MDPs.

Lemma 4. Fix k and an MDP M = (S, As,r,P,T,~), and
let P = {P(s,a) = M® (P(s,a)) | P(s,a) ep}. For

any 8> 0, let o := +/log(1/B)/2(k + 1). Define mappings
£1,£2,£3 : Rls‘ X Rls‘ as

PEPap

Liv:= Zﬁ'(a|s)<r(s,a)+7 min Z p(s,a,s’)v(s')),

a€A; s'eS
Lov:= Z 7(al s)(r(s, a) —0—72 P(s,a, s')v(s’)),
a€A; s'eS

Lav:= Zﬁ'(a | s)(r(s, a)+’yZE [P(s7 a, s )v(s') f75, k:])

a€As s'es
Then, mappings L1, Lo, and L3 are y-contraction mappings,
i.e., for all v1,vo € RIS and i € {1,2,3},
[Live = Livallo <7 llve — vl -

Theorem 2. Let M = (S, A, r,P,T,~) and k be the input,
and (7,VZX) be the output of Algorithm 1, and let T = oo.
Fix 3 > 0, and let o := \/log(1/B)/2(k + 1). Forall s € S,
let vT : S — R and v7 : S — R satisfy

v (s)= 7(al 8)(7“(8, a)+y min Y p(s,a, S’)%(S’))

a€A, pepo"ﬁs’ES

o7 (s)= Zﬁ(a | s)(r(s, a)+v max Z p(s,a, s’)@go(s'))

a€ A, ])Epa,ﬁs/es
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startup 1, 0.9 startup 1, 0.1

startup 2, 0.2 startup 2, 0.8

startup 3, 0.8

startup 3, 0.2

startup 4, 0.3 startup 4, 0.7

Fig. 1: The corporation’s investment model with four possi-
ble startups to acquire, given as an MDP.

Then, we have that

|E [V (s0) | P, k] — VZ(s0)| < 05 (s0) — vL(s0)-

V. COMPUTATIONAL COMPLEXITY

In the previous section, we introduced expressions that
bound the cost of privacy for both finite- and infinite-horizon
MDPs. The bounds do not take a closed form, and they
are computed by iterative methods. In this section, we show
that the computational complexity of computing the cost of
privacy is polynomial in problem parameters for both cases.

A. Finite-horizon MDPs

Revisiting the definition of v7 and ¥ in Theorem I,
the inner minimization or maximization problem must be
solved for each of T stages and |S| states. We first consider
computing the lower bound v]. Fix (s,a) € S x A, and
t € {0,...,T — 1}. Then the inner minimization problem
can be recast as

PI,PI;,lzl:IéR\s\ S/;Sp(s,a,s/)yf(s’) (P)

subject to 17P(s,a) = 1, Py(s,a,s") >0, Vs’ €S,
17 Py(s,a) = 1, Pa(s,a,s') > 0, Vs’ €S,
1Tp(s,a) = 1,p(s,a,s’) > 0, vs' €S,
Py(s,a,s") — P(s,a,5") < a, Vs’ €S,
Py(s,a,8') — P(s,a,s) > —a, Vs’ €S,

BPI(Saa) + (1 - 6)P2(Saa) = p(S,CL).

The above optimization problem is a linear program (LP)
with 3|S| variables and 6|S| + 3 constraints. Similarly, the
inner maximization problem in o} can be cast as an LP by
negating the objective function in (P).

Considering the interior-point method that is known to
solve an LP in O(n?%) time, where n is the number of vari-
ables [28], the computational complexity of computing the
cost of privacy for a finite-horizon MDP is O (T'|S|*?|A,]).

B. Infinite-horizon MDPs

in Lemma 4, we introduced £; that is a ~y-contraction
mapping. Suppose there exists R € R such that the reward
function of the underlying MDP satisfies |r(s,a)| < R, for
all (s,a) € S x A;,. Then, all the value functions including
the private, non-private, optimistic, and the pessimistic value
function must be bounded above by a constant vp,x. Let vlk)

be the value of the k™ iteration corresponding to £1, and v$°
be the limiting value. We can write

k

k
va = 1—

o0 <20

7 <155
The above inequality indicates that in order to reach an
e-approximation of the limit, O(log(1/e€)) iterations are
required. The inner minimization problem is identical to the
finite-horizon case, which we reformulated as an LP in (P).
Combining the above arguments together, we conclude that
the required number of iterations such that Hvik) =07 |loo <
e, is O (|S]*?|As|log (1/€)). The same computational com-
plexity holds for the upper bound v7

VL

In this section, we empirically validate the developments
of previous sections, wherein we introduced the expressions
that compute the cost of privacy and their corresponding
computational complexity. We apply Algorithm 1 to two ex-
ample MDPs at a range of k£ values, which represent a range
of privacy protection levels. The first is a small-sized MDP
that represents a simple model for a corporation’s investment
planning. The second example is an MDP with a larger state
and action space, which has transition probabilities, reward
function, and terminal reward function generated randomly.
For both examples, the algorithm is run 50 times, and Figure
2, which depicts the results, shows the mean values alongside
their standard deviations that appear as error bars.

Example 1. Suppose a corporation has been tracking
four startups, and it has to decide which startup to acquire.
Assume that the corporation’s model of each of the startup’s
probability of success is given by the MDP in Figure 1.

The first empirical result of this section corresponds to
applying the algorithm to the scenario described in Example
1, and is depicted in Figure 2a.

Example 2. In this example, we apply the algorithm to a
larger MDP in order to test its scalability. In particular, the
MDP has 20 states, 5 actions available at each state, and a
time horizon of 10.

Figures 2a and 2b indicate that an increase in k improves
the approximations of the private and non-private value by
0g (so) and v (sg). Therefore the cost of privacy decreases
with k, which Figure 2c confirms.

For both examples, the negative correlation between k and
the cost of privacy is consistent with Lemma 2. An increase
in k results in a tighter concentration bound on the output of
the Dirichlet mechanism, and it lowers « in Theorems 1 and
2. A smaller « further restricts the inner optimization prob-
lem in (P); thus, it helps the optimistic and the pessimistic
value functions to provide better approximations, which leads
to a lower cost of privacy.

NUMERICAL RESULTS

VII. CONCLUSION

We introduced a privacy-preserving policy synthesis al-
gorithm that protects the privacy of the transition probabil-
ities of its input MDP. The algorithm employs a Dirich-
let mechanism to privatize the transition probabilities. We
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Value functions

Optimistic o7 (so)

Pessimistic v{j (so)

—— Example 1

—— Private V{7 (so) --- Non-private Vo(sg) —— Example 2
1 o 0 g 4-
\'\\__ 2
4w oo a.
0.5 - 5 2-
2 - g = S B B
| | | | | | | | | | U 0 — | | | |
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
k k k
a: Example 1 b: Example 2 c: The cost of privacy for both Examples

Fig. 2: Plots a and b show all the value functions that are used to compute and validate the cost of privacy for Examples 1
and 2. Plot ¢ shows the cost of privacy itself for both examples.

established a concentration bound on the output of the
Dirichlet mechanism based on its scaling parameter k. We
used the concentration bound to bound the cost of privacy
imposed by privatizing the transition probabilities. We further
showed that the cost of privacy can be computed efficiently
by establishing that the computational complexity of the
algorithm is polynomial in problem parameters. Finally, the
simulation results validated the developments in both the
soundness of the expressions we introduced for the cost of
privacy and the computational complexity associated with
computing them.
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