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Abstract. We present a novel physically-motivated deep network for
joint shape and material estimation, as well as relighting under novel
illumination conditions, using a single image captured by a mobile phone
camera. Our physically-based modeling leverages a deep cascaded archi-
tecture trained on a large-scale synthetic dataset that consists of complex
shapes with microfacet SVBRDF. In contrast to prior works that train
rendering layers subsequent to inverse rendering, we propose deep feature
sharing and joint training that transfer insights across both tasks, to
achieve significant improvements in both reconstruction and relighting.
We demonstrate in extensive qualitative and quantitative experiments
that our network generalizes very well to real images, achieving high-
quality shape and material estimation, as well as image-based relighting.
Code, models and data will be publicly released.

Keywords: Single-image relighting, SVBRDF estimation, Physically-
based networks

1 Introduction

Single-image relighting is a canonical ill-posed challenge in computer vision, due
to the complexity of image formation where spatially-varying material and shape
interact with light in myriad ways. Inverse rendering methods have typically
recovered shape and material properties, while forward rendering acts on those
components for relighting. In this paper, we propose a novel deep network that
estimates object shape and material, while jointly learning to relight it under novel
illumination conditions, in order to achieve mutual benefits for both tasks. At
test time, we use a single image acquired using a flash-enabled commodity mobile
phone camera, with possibly unknown environment lighting, to demonstrate
recovery of arbitrary object shape and spatially-varying material of complex
reflectance, as well as relighting under novel conditions, in a single forward pass.

We achieve this through a physically-motivated modeling and network design.
We train a cascaded convolutional neural network (CNN) to estimate shape (depth
and surface normals), a spatially-varying bidirectional reflectance distribution
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Fig. 1: Three approaches for image relighting with single input images (a.1) and (a.4).
(a) Our proposed joint inverse rendering and relighting method achieves significant
improvements for both tasks, shown in (a.2), (a.3), (a.5) and (a.6). In addition point
lights, our method also edits the environment illumination (a.6) (b) Forward rendering
[19] on recovered shape and material parameters may introduce artifacts (the neck in
(b.2)) in the reconstruction stage. (¢) Image-to-image translation such as [13] lacks
physically-motivated modeling and cannot create realistic specularities in (c.1) compared
to ours (a.3). More comparisons with forward rendering are shown in Figure 9.

function (SVBRDF) consisting of diffuse albedo and specular roughness, as well as
synthesize images under different lighting conditions. Unlike prior works that use
a shared encoder but separate decoders for various SVBRDF components [18,19],
we encourage coherence among them through a shared decoder. More importantly,
while prior works have considered relighting as a separate forward problem or
used “thin” in-network rendering layers that operate at image resolution, we
use a deep network that accepts a lighting and decodes the latent shape and
SVBRDF codes to an image under novel illumination. This allows us to propose
a novel feature sharing mechanism between the inverse rendering and relighting
decoders to simulate a physically-based rendering process. Our novel network
design, feature sharing and joint training of the inverse and forward tasks allow
significant performance improvements in both reconstruction and relighting.
Our reconstruction contrasts with previous works that assume Lambertian or
homogeneous material [14], or assume near-planar surfaces as input [7,17,18].
It shares insights such as cascaded design with recent works that recover shape
and SVBRDF from a single image [19], but goes beyond them in introducing
new learning pathways through neural lighting with a shared feature space. For
relighting, prior works use multiple images for an exhaustive acquisition [6], or
interpolate from sparse samples [20, 25, 26]. The recent method of [35] learns to
interpolate using five samples captured under pre-defined directional lights. All
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these methods produce good relighting results, however, they rely on a large
number of images or specialized hardware for acquisition. In contrast, we produce
high-quality relighting using a single image captured with a flash-enabled mobile-
phone camera under unknown environment lighting, in a single forward pass of a
network, which is cheaper in terms of cost and runtime. Examples are shown in
Figure 1. All code, models and data are publicly available.?

To summarize, we make the following contributions:

— Joint shape and SVBRDF reconstruction, as well as image relighting, from a
single mobile phone image, under point light or environment illumination.

— Physically-based network and feature sharing to jointly learn inverse recon-
struction and forward relighting tasks.

— Demonstration of mutual benefits on real images through improved recon-
struction and relighting with respect to prior state-of-the-art.

2 Related Works

Shape and Reflectance Reconstruction Shape from shading has been ex-
plored from calibrated illumination and Lambertian assumption [14], as also
with arbitrary shape and reflectance under natural illumination [23]. A few re-
cent methods reconstruct SVBRDF's based on near-planar assumption under
unknown natural illumination [17] or collocated flash lighting [1, 7, 18]. Barron
and Malik [3] pose the reconstruction problem as one of statistical inference and
optimize for the most likely explanation of a single image. Recently, Li et al.
[19] propose a deep network to recover shape and SVBRDF from a single image
with purely data-driven priors. In contrast to these approaches, we reconstruct
high-quality shape and reflectance properties from a single image jointly with
relighting constraints, to achieve improvements on both tasks.

Deep Learning for Inverse Rendering Recent years, deep learning-based
methods have proven promising results for several inverse rendering problems
including indoor [9] and outdoor illumination estimation [10, 11], material recogni-
tion [4] and estimation [21], reflectance maps extraction [27], surface appearance
recovery [17], normal estimation [2] and depth estimation [8]. For shape and re-
flectance estimation, near-planar assumption is held in some works for simplicity.
To reduce the amount of required labeled training data, Li et al. [17] propose to
leverage the appearance information embedded in unlabeled images of spatially
varying materials to self-augment the training process. Deschaintre et al. [7] and
Li et al. [18] train CNNs to regress SVBRDF and surface normal of a near-planar
surface from a single image captured under flash light using in-network rendering
to provide additional supervision during training. In contrast, our approach
learns to reconstruct shape and BRDF parameters and synthesize relighted im-
ages jointly, where the relighting constraint can improve the reconstruction by a
large margin compared to the in-network rendering layer.

3 http://cseweb.ucsd.edu/ viscomp/projects/ECCV20NeuralRelighting/
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Image-based Relighting Image-based relighting methods offer realistic render-
ing of images under novel illumination without modeling the scene by directly
reconstructing the light transport function and the reflectance field. Previous
methods on light transport acquisition use either brute-force [6] or sparse sampling
[20, 25, 26]. Debevec et al. [6] proposes a dense fixed-pattern sampling method to
render faces under arbitrary changes in lighting and viewing direction based on
recorded imagery. The complete 8D reflectance field, which describes the light
transport from the incident light field to the outgoing light field, can be simplified
to a 4D function with a fixed viewpoint and 2D incident illumination [25] [26].
Recently, neural network-based method [28] leverages a neural network to exploit
the non-linear local coherence in the light transport matrix using sparse image
samples. Xu et al. [35] do relighting with five image samples captured under
pre-defined directional lights using a deep neural network trained on a large,
synthetically rendered dataset. These works demonstrate high-quality results by
modeling the complex light transport, but require multiple images to achieve this.
In contrast, our method can relight images based on a single input image under a
collocated light source, without explicitly learning the light transport. In addition
to the relighting constraint, our method also leverages BRDF reconstruction
for auxiliary learning. This allows our work to pose the two problems as a joint
learning problem in a single network, leading to significant improvements.
Cascaded Network Architecture Cascaded models have been effective in dif-
ferent tasks such as human pose estimation [34, 22|, face detection [16] and object
detection [5]. For example, Newell et al. [22] proposes eight-stacked hourglass
networks to do repeated bottom-up, top-down processing with intermediate su-
pervision to improve the performance of the network and produce more accurate
part detection. For shape and SVBRDF estimation, Li et al. [19] use a cascade
model to refine the the estimation, with rendering error from the previous stage
as input to the following stage. Similarly, our model consists of several cascades,
whose effectiveness is shown for both SVBRDF estimation and image relighting
in our experiments, for example, in Tables 1 and 2.

3 Method

Given a single image of a complex shape captured under a flash light and
environment illumination, our method can reconstruct the shape and spatially-
varying BRDF, while simultaneously synthesizing new images under novel lighting.
We solve this problem by training a cascaded CNN that derives intuitions from a
physically-based rendering process. The framework is illustrated in Figure 2.

Preliminaries and notation Our microfacet BRDF model follows [15]. Let A,
N, R, D be the diffuse albedo, normal, roughness and depth, respectively. Let [
and v be light and view directions and h be the half-vector. Our BRDF model is:

D(h,R)E(V,h)G(l,v, h, R)

S = AN DN -v)

_|_

(1)

SRS



Single-Shot Neural Relighting and SVBRDF Estimation 5

1
i
i
H
! | —
H
|
1 Relighting target
i
i
i
J
'
i
H
H

Input image

~—
Initial Network Cascade Network

Fig. 2: Overview of the proposed network architecture. We use different colors to
visualize various functional components (blue for encoder, green for InverseDecoder
used for BRDF estimation, and red for Relight Decoder used for relighting). Our design
consists of an initial model and several cascade stages for iterative refinement. Left:
The initial model has one encoder for feature extraction and two decoders for BRDF
estimation and relighting. The input has either four (without environment lighting) or
seven channels (with environment lighting). Besides using skip connections between
the encoder and the two decoders, we also feed the features from InverseDecoder to
RelightDecoder to simulate a physically-based rendering process (shown as red dotted
arrows). Right: The cascade stage is similar to the initial model. It takes the outputs
from the first stage and the original inputs as input, leading to a fifteen-channel input.
Abbreviation: N.L: new light; Env.X: the estimated environment map in the X-th
cascade; A, N, R, D: albedo, normal, roughness and depth.

where D(h, R), F(v, h) and G(I, v, h, R) are the distribution, Fresnel and geomet-
ric terms, respectively. Since we may use point lights for rendering, depth maps
are used for computing the attenuation according to the distance from the light
source to the surface. Given (1), an intuitive approach to single-image relighting
is to re-render the image with estimated BRDF parameters. Given estimated
parameters A, N, R, with a novel lighting l,,e., the relighted image I, is:

Inew = f(A’ N7 R7 lnew)~ (2)

3.1 Motivation for Our Design

Although there exist SVBRDF reconstruction methods such as [19] that can
produce high-quality estimations, relighting by directly rendering the estimated
parameters does not take advantage of any details from the original image. Such
image details are removed in the reconstruction step, which results in a loss
of details that might also be useful for new image synthesis. Another intuitive
way for relighting can be image-to-image translation [13,37] where a U-Net [30]
architecture is trained, taking a single image and new lighting as input, to generate
the relighted target. However, such translation methods fail to create physically
reasonable images without knowledge of shape and material. Instead, we seek to
bring the best of both worlds, to create relighted images that are more physically
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meaningful, while preserving details from the input image. To this end, we use
features from both the original input image and the proposed I'nverseDecoder
where shape and material intrinsics are learned. Let fe,. and f;,, be the two
groups of features extracted by the encoder and the InverseDecoder, then in
contrast to (2), we propose a RelightDecoder to synthesize an image under new
lighting l,,eqw:

Inew = RelightDecoder(fene, finvs lnew) (3)

Jointly training for the forward and inverse tasks has the advantage that
our reconstruction effectively benefits from training under several relighting
directions, allowing learning of complex relationships between appearance and
lighting directions for an object with arbitrary SVBRDF'. This arguably allows
higher accuracy and better generalization.

3.2 Joint SVBRDF Estimation and Relighting

Our basic model is built upon an encoder-decoder architecture, which consists
of a single shared encoder and the above two decoders for reconstruction and
relighting. Among the three components, there are skip connections used for
feature sharing. The input to our encoder consists of a single image, I, captured
under a collocated point light and a mask, M, stacked with the source image,
forming a four-channel input. While our formulation is more general, we choose
this setup for convenience since a light source collocated with the camera can
minimize cast shadows and high-frequency specularities, which allows better
observation of the details of shape and material [12,29)].

SVBRDF estimation Unlike [18,19], which use multiple decoders to recon-
struct different parameters, we use only a single decoder, called InverseDecoder,
to reconstruct the different shape and BRDF parameters: diffuse albedo (A),
specular roughness (R), surface normal (V) and depth (D). The output of our
InverseDecoder has eight channels — three for albedo and normal each, with
one each for roughness and depth. Since all the parameters correspond to the
properties of a particular shape and material, there are internal correlations
among them, so we use a single decoder to learn the internal correlations and
predict the parameters jointly rather than independently. Compared to [19], we
observe that the design for our InverseDecoder not only has faster runtime
speed and fewer parameters, but also can achieve higher quality estimations.

Relighting For relighting, we introduce RelightDecoder which takes as in-
put a new lighting vector as well as the feature maps from the encoder and
InverseDecoder. Instead of being fed into the RelightDecoder directly, the tar-
get lighting position, l,e., is encoded by a light mapping block that contains
three fully connected layers. After concatenating the encoder feature with the
lighting vector, we feed it to the Relight Decoder, which then creates a new image
for the shape and material under a novel light source.
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Feature sharing As shown in Figure 2 (red dotted lines), in addition to using
skip connections to transfer the encoder features to the two decoders for retaining
spatial details, we also build skip connections between the InverseDecoder and
the RelightDecoder. This design is inspired by the physically-based rendering
where a realistic image can be formed by the interaction of shape and BRDF
parameters with incident illumination. This allows joint training of the two
different but related tasks: reconstruction and relighting, allowing the latent space
to encode how appearances vary with light source positions for various shape
and SVBRDF configurations. This bidirectional connection provides physical
hints for image relighting to produce photorealistic results. as well as introducing
additional supervision for SVBRDF estimation, while most other works tend
to use in-network rendering layers without learnable parameters to achieve this.
Thus, this skip connection between leads to significant improvements in relighting
and SVBRDF reconstruction compared with previous works.

Standard encoder-decoder methods such as [33,36] do well on relighting faces
with environment lighting, but not for complex shapes with arbitrary SVBRDF
under point lights. Qualitatively, we show in Fig 1 that an image translation
method does not handle specularities, while our method produces photorealistic
outputs since it is physically-motivated. Indeed, the joint learning of relighting
and SVBRDF requires new design choices. In Table 1, we quantitatively show
that our architecture does better than a single encoder-decoder by ablation study.

Environment map In practice, environment illumination is always present
outside of darkroom settings, which has a significant effect on the appearance. In
addition to relighting under only a point light, our method can also be generalized
to relighting under a point light with an arbitrary unknown environment map. To
make our model environment-aware, we append a new branch to our encoder to
predict environment maps modeled by spherical harmonics (SH). For each color
channel, our network estimates the first nine SH coefficients. Following [19], we
add an image with the background to our input which can provide more context
information for SH coefficient estimation. Thus, the input to our network with
environment map estimation has seven channels.

Cascade refinement The level of detail required for SVBRDF reconstruction
and relighting for complex shape is often too high for a single encoder-decoder
architecture. Similar to [19], we use a cascaded network to refine our estimation.

Let A,, N, Ry, Dy, I"°™ be the SVBRDF estimates and direct rendered image

nydn

of the n-th cascade. Let Initial Net and CascadeNet be our basic model and
cascade models, then our entire model is:

17°° Ay, No, Ro, Do = InitialNet(I ., M)

1% A,, Ny, Ry, D,, = CascadeNet(Ise, My Ap—1, No—1, Ry—1, Dy, T2 T2
(4)
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The effectiveness of our cascade is quantitatively demonstrated in Table 1
and Table 2. With two cascade stages, both reconstruction and relighting are
significantly improved qualitatively and quantitatively.

3.3 Training details

Training data To our best understanding, there is no such large-scale dataset
that includes both BRDF parameters and various images illuminated under
different light sources. Thus, we adopt the shapes and BRDF parameters of
the the synthetic dataset from [19] and render a new dataset. We implement a
rendering layer using the BRDF model defined by Equation 1 with PyTorch [24]
deep learning framework and CUDA acceleration. Instead of pre-rendering all the
training set, we render images in an online manner. For each iteration, we render
relighting target image under random point light sources as the supervision. In
this way, our model can see more varied samples as our ground-truth are rendered
with a larger set of lights compared with an offline rendering method. We define
the position of the point light as the hemisphere in front of the shape. We use a
light power of 5.95 and a FOV of 60 degrees for rendering in our work.

Network design We use UNet architecture [30] for our Initial Net. We use large
receptive fields to capture the appearance under point light. Thus, our encoder
has 6 convolutional layers with strides of 2. Except for the first layer whose kernel
size is 6, all following layers have a kernel size of 4. For InverseDecoder, we use
transposed convolutions for decoding and add skip links to retain details. After
deconvolution, we use a residual block and a single convolution layer to yield
final SVBRDF parameters. The Relight Decoder consists of six deconvolutional
layers, three residual blocks and one output layer. Instead of feeding the feature
from the encoder to relighting decoder directly, we first use a small light mapping
block which contains three fully connected layers to handle the novel lighting.
The encoded lighting vector is concatenated with the encoder features and then
passed to the Relight Decoder. We concatenate both the feature from the encoder
and InverseDecoder to the RelightDecoder. For environment estimation, we
pass the highest-level feature from the encoder through two fully connected layers
to regress the 3 x 9 coefficients. For CascadeNet, each encoder and decoder
contains three convolutional layers and three residual blocks. It has the same
feature sharing mechanism among the three modules.

Loss function We use L2 loss as supervision for BRDF estimation and image
relighting. Due to the large range of depth map, we use the inverse transformation
in [18] to project it into a fixed range. Given an estimation I and its ground
truth 7, the L2 loss £ here is given by

1

L=—
i i M

=1 - M3 ()
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Ground-truth Prediction

Fig. 3: Reconstruction and relighting results on synthetic data. The input images are
shown in the first column, following four columns show the BRDF estimations. The
remaining four columns show the relighting images under four new light sources. For
each case, the first row is our estimation and the second row is the ground-truth. The
new light source is shown as an orange point in a unit circle projected from a hemisphere.

Let Lo, Ly, L, La, Leny, Lrerir be the L2 losses for albedo, normal, roughness,
depth, environment map and relighting, the final loss function for our network is:

L= )\a»ca + )\n»cn + Arﬁr + >\d£d + Aenv£env + )\relitﬁrelit (b)

where Ay = A\, = Apetit = 1, Ar = Ag = 0.5 and M.y = 0.01.

Training strategy We train the networks stage-by-stage. We use a batch size of
16. We use Adam optimizer, with an initial learning rate of 10~ for encoder and
2 x 10~ for decoders and decrease it by half after every two epochs. We train
the initial stage and the two cascade stages for 14, 10 and 9 epochs, respectively.

4 Experiments

We validate the effectiveness of our method with detailed evaluations on synthetic
and real data. We also compare with previous state-of-the-art on both relighting
and SVBRDF estimation. All code, models and data will be publicly released.

4.1 Ablation Study

Feature sharing When training our RelightDecoder, we feed the features
from the encoder, as well as the features from InverseDecoder to simulate a
physics-based rendering process, which gives a better performance compared
with that without feature sharing. According to the first three experiments —
Inv, Relit, Inv-Relit-CO in Table 1, it turns out that both the relighting and
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A N R D | Render Relight MS-SSIM
Inv 1.64 4.02 4.65 1.80| 1.42 - -
Relit - - - - - 1.18 0.867
Inv-Relit-CO | 1.57 3.67 4.31 1.74| 1.31 1.07 0.888
Inv-Relit-C1 | 1.43 3.42 4.18 1.55| 1.20 1.02 0.889
Inv-Relit-C2 |1.39 3.32 4.18 1.44| 1.14 0.99 0.893

Table 1: Quantitative results of different architecture choices for both SVBRDF recon-
struction and relighting under only a point light source. Inv means a InverseDecoder
is trained. Relit means training a RelightDecoder. Inv-Relit means we train the
Relight Decoder with feature sharing from InverseDecoder. The Render column in
right hand of the table means relighting using the reconstructed BRDF's and the novel
lighting. Cn means cascade stage n and CO0 is the initial stage. By default, we use L2 error
and the magnitude is 1072, In addition to MSE, we compute the Multi-Scale-Structural
Similarity (MS-SSIM) between our relighting results and its targets.

I; I3-bg-CO I3-bg-C1 I5-bg-C2 Table 2: Quantitative results
Albedo (1077) 1.386 1.324 1.166  1.157 for design choices under en-
Normal (1072) 3.741 3.608  3.344  3.340 vironment illuminations. Iy
Roughness (1072) |4.486 4.447  4.305 4.289  means an image illuminated by
Depth (1072) 1.802 1.747  1.467 1.455 both point light and environ-
Relight (1073) 9.194 9.062 8.630  8.626 ment map, -bg means a back-
Relight (MS-SSIM)|0.892 0.902 0.907  0.908 ground image is taken as input.

the reconstruction performance get improved by feature sharing. For relighting,
the skip connections between the encoder and RelightDecoder give our model
the ability to retain details from the original image, while the features from
InverseDecoder help the RelightDecoder to learn a physics-based rendering
process. Thus, the relighting performance exceeds both the reconstruction-based
method and image-to-image translation method with a large gap. For BRDF
reconstruction, a re-rendering loss is always proven to be useful in reconstruction
tasks [7,18,19]. For the InverseRender in our model, we apply L2 loss function
to all the estimated parameters explicitly, as well as an implicit supervision
from the relighting branch, which plays a role that is similar to the rendering
loss in aforementioned works. In forward phase of training, features from the
InverseDecoder are passed to the Relight Decoder. Then, the gradients from the
RelightDecoder will be back-propagated to the InverseDecoder in backward
phase, acting as an implicit supervision. Thus, a joint training of inverse rendering
and relighting give a significant improvement for both tasks.

Environment map For the relighting task under an environment mapping
as well as a point light, a possible concern can be whether the environment
background helps. We train two variants of our InitialNet — one with only a
masked image as input and the other with both masked and original images as
input. Quantitative comparison between the first two columns of Table 2 show
that both relighting and BRDF estimation are improved with a context input.
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Real input  Albedo Normal Roughness Depth Lights Relighting

Fig. 4: Reconstruction and relighting results on real data illuminated by the flash light
of mobile phone in a darkroom. The input images are shown on the first column, and
the following four columns show the BRDF reconstructions. The remaining columns
show the light sources and relighting images illuminated under the corresponding lights.

Real input

Albedo Normal Roughness Depth Lights Relighting

Fig. 5: Reconstruction and relighting results on real data illuminated by a flash light
and arbitrary indoor environment.

Cascade design We show the effectiveness of our cascade design by the quan-
titative result in Table 1 and 2. By adding two cascades after the InitialNet,
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Fig. 6: Relighting results on DiLiGenT dataset consisting of real images. We use the
images illuminated by directional lights as reference to demonstrate our relighting
performance and the robustness of our method.

Real input BRDF Lietal. Ours GT Lietal. Ours GT Li et al. Ours GT

Fig. 7: Comparison between our relighting results with [19], as well as the ground-truth.
We capture these ground-truth images using a gantry with a cellphone flash light bound
to it. Note that our method can produce realistic results compared to the ground-truth.
Limitation: in some cases, cast shadows cannot be produced (e.g. Relit 3 of the cat).

both the relighting and reconstruction performance are improved significantly. In
our experiment, we find that more cascade stages provide do not provide very
significant improvement, and are expensive to train and hard to fit in memory in
inference. Thus, two cascade stage suffices.

4.2 Generalization to Real Data

We use synthetic data to validate our method in Figure 3 and real images to
demonstrate that our method can generalize to real data in Figures 4 and 5.
For real data, images are captured using an iPhone with the flash enabled. For
relighting under a single point light source, images are captured in a darkroom. It
is evident that our method produces accurate SVBRDF estimations and relighting
outputs, with high-quality shadows and specular highlights under a variety of
lighting positions.

We provide ground-truth comparison using two examples in DiLiGenT dataset
[31], as well as our own captured images. For DiLiGenT dataset, note that
the images are captured under directional lights, so the images are not exactly
matched to our relighting task. We demonstrate our approach by using its ground-
truth as reference. We take as input the images acquired under a directional
light that is approximately collocated to the camera. For each light source in the
dataset, our method uses a point light source to approximate it. Example results
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Fig. 8: Comparison on shape and material reconstruction with previous works on
real data. Left: We compare the diffuse albedo estimation with [32,19]. Our method
outperforms [32] significantly in visual quality and is also comparable with the state-of-
the-art method [19]. Right: We use two real images to compare the normal estimation
with [19, 3]. For a shape full of bumps (the owl), our method produces a more accurate
and superior result than [19]. For the pumpkin shape, the accuracy and visual quality
of our normal is significantly higher compared with that of [3].

ok

Table 3: Quantitative comparison of
SVBRDF estimation with [19], using
their proposed test set. We use MSE
and the magnitude is 1072,

Albedo Normal Rough Depth
Lietal [19]] 1.215 3.822 4.858 1.505
Ours 1.157 3.340 4.289 1.455

in Figure 6 show that our network is robust enough to yield plausible results on
real inputs which do not correspond to the training assumptions. In Figure 7,
we show two groups of ground-truth comparison with real images, as well as the
results from [19]. Images are captured using a gantry, where we bind a cellphone
flash to simulate a point light. The results demonstrate that our method can
produce realistic relighting images while also reducing the artifacts.

4.3 Comparative Study

We do comparisons study in two aspects, image relighting and SVBRDF esti-
mation. First, we compare our proposed method with previous works for shape
and material estimation and intrinsic image decomposition. Then, we include a
comprehensive comparison with [19] to show our superior in both reconstruction
and relighting tasks.

Comparisons on SVBRDF estimation with previous works For SVBRDF
estimation, we compare our work with [3, 19, 32]. The diffuse albedo estimation
with [19,32] is shown in Figure 8. By comparison, we observe that our SVBRDF
estimation is comparable with the state-of-the-art method [19] and outperforms
[32] significantly. The result of [32] is smooth and lots of details lost in recon-
struction. By contrast, our methods can produce a more detailed estimation. We
provide normal estimation comparison in Figure 8, our method outperforms [19]
and [3] and produce more accurate estimations according to the visual quality.
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Albedo Normal  Roughness Depth Relit 1 Relit 1 Relit 2

Real input

Lietal

Fig. 9: Comparison with [19] on relighting a real image (zoom in to see details). Since
we learn to jointly relight, our relighting results are less susceptible to errors in shape
or SVBRDF estimation.

Obviously, for the owl shape which is full of bumps, Li et al. [19] fails to recover
a high-quality normal, while our method produces a superior result.

Quantitative comparison with [19] for SVBRDF estimation We first
provide a quantitative comparison with [19] using their test set, in Table 3. We
obtain significantly improved results for all components of shape and SVBRDF.
This shows that our joint learning of SVBRDF estimation and relighting allows
insights from the forward problem to benefit the inverse problem, in comparison
to the method of [19] which focuses only on the inverse problem.

Qualitative comparisons with [19] on real data We also compare with [19]
for reconstruction and relighting on real images acquired by a mobile phone
camera. To relight in the case of [19], we apply forward rendering using the
estimated SVBRDF, while our relighting output is predicted by the network. In
Figure 9, green rectangles show artifacts introduced by [19] due to inaccuracy
in the estimation of surface normal and roughness, while the visual quality of
ours is better. Figure 10 shows that our SVBRDF estimation is also qualitatively
better. The video in our supplementary material shows further comparisons.

4.4 Environment Illumination Editing

In addition to relighting under a new light source, our model may also be fine-
tuned to allow relighting with a novel environment map. For the new environment
map, we compute the SH coefficients. Then, we replace the estimated environment
coefficients with the new ones as input to the Relight Decoder. The environment
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Real input Albedo  Normal Roughness Depth Normal Roughness Depth

Albedo

Fig. 10: Comparison with [19] on SVBRDF estimation on real images. While both
methods produce high-quality estimates, some factors such as roughness are better
estimated by our method.

Real input BRDF Fleconstruction Real input BRDF Reconstruction Real input BRDF Reconstruction
'ar Ay [

® o

Mean 0.144 0.306 0.295 0.287 Mean 0.318 0.272 0.134 0.205 Mean 0.258 0.266 0.222 0.238
Var. (102) 0.532 0.328 0.841 0.438 :Var. (10?) 1.332 0.371 0.626 0.393 :Var.(10?) 1587 0.796 0.695 0.621

Fig.11: Mean and variance of SVBRDF estimation under various environment maps.

Real mput Rellghtlng under dlfferent views of novel environment map

Fig.12: Environment map
editing on real data. Given
a single real image as input,
our network relights it under
a new environment map. Four
different views are shown in
the figure. Note the recovery
of fine details, such as the
green, violet and red tinges on
objects in the three rows, re-
flecting the colors in the corre-
sponding environment maps.

editing model is fine-tuned on the pre-trained model without any cascade stages
involved. Example results are shown in Figure 12. Note that the edited images
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display realistic shading variations, shadows and specularities. We also include
examples of environment illumination editing in the supplementary video.

4.5 Variance under different environment maps

It is non-trivial to obtain ground truth shape and material measurements aligned
with input images. So, we report variance in estimation outputs with different
environment maps as an indirect indicator of the accuracy. Using a turntable
setup, we acquire images of the same object when illuminated by different parts of
an indoor environment. In Figure 11, we show the average across all pixels of the
mean and variance of SVBRDF estimates. While some qualitative differences in
roughness are understandable for such an underconstrained problem, we observe
that variances are quite low, indicating the overall accuracy.

5 Conclusion and Future Work

We present a joint learning approach to reconstruct object shape and SVBRDF,
while relighting it under a new light source given only a single image. We achieve
this by training a cascaded CNN with feature sharing mechanism between the
two branches, following the intuition of a physically-based rendering process.
Our model is able to progressively refine the estimates, leading to high-quality
reconstruction and relighting results on both synthetic and real data. Our future
work includes extending the light sources from point lights to a more general
illumination. Another direction that can be explored in the future is to study
how multiple highly-correlated tasks in forward and inverse rendering can benefit
from a joint learning strategy.
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