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Deep Neural Network Reveals the World of Autism From a First-Person
Perspective
Mindi Ruan, Paula J. Webster, Xin Li, and Shuo Wang

People with autism spectrum disorder (ASD) show atypical attention to social stimuli and aberrant gaze when viewing
images of the physical world. However, it is unknown how they perceive the world from a first-person perspective. In
this study, we used machine learning to classify photos taken in three different categories (people, indoors, and out-
doors) as either having been taken by individuals with ASD or by peers without ASD. Our classifier effectively discrimi-
nated photos from all three categories, but was particularly successful at classifying photos of people with >80%
accuracy. Importantly, visualization of our model revealed critical features that led to successful discrimination and
showed that our model adopted a strategy similar to that of ASD experts. Furthermore, for the first time we showed that
photos taken by individuals with ASD contained less salient objects, especially in the central visual field. Notably, our
model outperformed classification of these photos by ASD experts. Together, we demonstrate an effective and novel
method that is capable of discerning photos taken by individuals with ASD and revealing aberrant visual attention in
ASD from a unique first-person perspective. Our method may in turn provide an objective measure for evaluations of
individuals with ASD. Autism Res 2020, 00: 1–10. © 2020 International Society for Autism Research and Wiley Period-
icals LLC

Lay Summary: People with autism spectrum disorder (ASD) demonstrate atypical visual attention to social stimuli. How-
ever, it remains largely unclear how they perceive the world from a first-person perspective. In this study, we employed a
deep learning approach to analyze a unique dataset of photos taken by people with and without ASD. Our computer
modeling was not only able to discern which photos were taken by individuals with ASD, outperforming ASD experts,
but importantly, it revealed critical features that led to successful discrimination, revealing aspects of atypical visual
attention in ASD from their first-person perspective.
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Introduction

The ability to attend to what is important in the environ-
ment is one of the most fundamental cognitive functions
in humans. However, people with autism spectrum disor-
der (ASD) show profound impairments in attention, espe-
cially to social stimuli such as human faces and social
scenes [Wang & Adolphs, 2017; Wang et al., 2015; Wang
et al., 2014]. Prior studies have documented that individ-
uals without ASD spend significantly more time than
peers with ASD looking at the eyes when viewing human
faces presented in movie clips [Klin, Jones, Schultz,
Volkmar, & Cohen, 2002] or photographs [Pelphrey
et al., 2002]. When comparing social versus nonsocial
stimuli, people with ASD show reduced attention to human
faces and to other social stimuli such as the human voice

and hand gestures; however, they pay more attention to
nonsocial objects [Dawson, Webb, & McPartland, 2005;
Sasson, Elison, Turner-Brown, Dichter, & Bodfish, 2011],
notably including gadgets, devices, vehicles, electronics,
and other objects of idiosyncratic “special interest”
[Kanner, 1943].

In order to better understand the atypical social behav-
ior in ASD, there is an increasing trend to employ more
natural and ecologically valid stimuli (e.g., complex
scenes taken with a natural background) [Ames &
Fletcher-Watson, 2010; Birmingham, Cerf, & Adolphs,
2011; Byrge, Dubois, Tyszka, Adolphs, & Kennedy, 2015;
Chawarska, Macari, & Shic, 2013; Rice, Moriuchi, Jones, &
Klin, 2012; Santos et al., 2012; Shic, Bradshaw, Klin,
Scassellati, & Chawarska, 2011; Wang et al., 2015] and to
test participants in a more natural setting as opposed to a
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restricted clinical setting in which core ASD behaviors
may not be seen. Tasks presenting faces in a naturalistic
setting demonstrate that people with ASD have reduced
attention to faces and specifically to the eye region
[Freeth, Chapman, Ropar, & Mitchell, 2010; Klin
et al., 2002; Norbury et al., 2009; Riby, Hancock, Jones, &
Hanley, 2013; Riby & Hancock, 2009]. In particular,
recent studies have directly tested people with ASD dur-
ing natural interactions with lab personnel [Marinoiu,
Zanfir, Olaru, & Sminchisescu, 2018; Rehg et al., 2013;
Wang et al., 2016]. For example, we asked ASD partici-
pants and controls to take photos in natural social
settings, and showed that while those with ASD take
more photos of people than controls, those photos are
more often not front-facing and/or are taken from odd
perspectives indicating a lack of social engagement
[Wang et al., 2016].
Recent studies have been employing machine learning

techniques to quantitatively characterize atypical behav-
ior in ASD. In addition to its benefits of improving and
streamlining ASD diagnosing [Duda, Kosmicki, & Wall,
2014; Tariq et al., 2018; Wall, Kosmicki, DeLuca,
Harstad, & Fusaro, 2012], machine learning can reveal
critical features of atypical behavior in ASD from various
domains of data, including eye movement [Jiang &
Zhao, 2017; Wang et al., 2015], scoring of Autism Diag-
nostic Interview-Revised (ADI-R) [Wall et al., 2012], scor-
ing of Autism Diagnostic Observation Schedule (ADOS)
[Duda et al., 2014], and home videos [Tariq et al., 2018].
Therefore, machine learning can provide an effective and
crucial way for us to identify and understand the factors
that contribute to atypical behavior in ASD.
The current study explored the feasibility of using a

deep neural network (DNN) to discern between photos
taken by participants with ASD versus those taken by
controls. These photos provide a unique first-person per-
spective of what is visually salient to the photographer
and reflect their social interactions with their environ-
ment not seen in other studies in which those with ASD
are asked to view stock photos. Therefore, by classifying
these photos, we were able to reveal aspects of aberrant
visual attention in individuals with ASD. Indeed, our
deep neural network could effectively classify whether a
photo was taken by an individual with ASD or by a peer
without ASD. Surprisingly, our machine-based approach
consistently outperformed human-based classification
ratings conducted by ASD experts. Notably, our explain-
able artificial intelligence (XAI) technique revealed the
critical features that support the classification. Together,
we showed that photos taken from a first-person perspec-
tive by those with ASD can aid in understanding their
unique visual perspective of the world and that deep neu-
ral networks may provide an efficient and objective
method to aid in the analysis of visual attention deficits
in ASD.

Methods and Materials
Participants

All participants were from our previous report [Wang
et al., 2016]. Briefly, 16 high-functioning participants
with ASD (12 male) and 21 controls (18 male) were rec-
ruited (Supplementary Table S1). All ASD participants
met DSM-5/ICD-10 diagnostic criteria for ASD, and all
met the cutoff scores for ASD on the ADOS-2 revised scor-
ing system for Module 4 [Hus & Lord, 2014], and the
ADI-R [LeCouteur, Rutter, & Lord, 1989; Lord et al., 1994]
or Social Communication Questionnaire (SCQ) [Rutter
et al., 2003]. The ASD group had a full-scale IQ (FSIQ) of
111.6 ± 12.2 (mean ± SD, from the Wechsler Abbreviated
Scale of Intelligence-II), a mean age of 29.7 ± 11.2 years,
and a mean Autism Quotient (AQ) of 29.7 ± 8.07. Con-
trols had a comparable FSIQ of 111.0 ± 9.90 (t-test,
P = 0.92, although IQ was only available on a subset) and
a comparable mean age of 33.0 ± 9.31 years (t-test,
P = 0.33). The groups were also matched for gender, race,
and education (Supplementary Table S1). Participants
provided written informed consent according to proto-
cols approved by the institutional review board of the
California Institute of Technology (Caltech), and all
methods were carried out in accordance with the
approved guidelines.

Task

Participants were provided with a camera and instructed
to take photos of anything they wanted, such as objects,
rooms, scenery, or people, and they could take as many
photos as they wished. There were three blocked condi-
tions (in counterbalanced order between participants):

1. People Block. Photographing for this block took place
in the rooms and hallway of a Caltech laboratory. Par-
ticipants were instructed to primarily take photos of
two lab members, who were fully aware of the experi-
ment and thus were prepared to pose or be expressive.
Some participants with ASD were also instructed to
take self-portraits. Participants were free to set up the
space however they liked (e.g., they could move
around the room or interact with the objects in the
room) and they could also ask the two lab members to
move or pose to their instruction.

2. Indoor Block. Photographing took place in the same
indoor environment and participants were instructed
to walk around the lab and feel free to enter lab spaces
to photograph objects.

3. Outdoor Block. Photographing took place on the
Caltech campus outside of the building. Participants
were instructed to walk anywhere on campus if they
wished and take photos of any objects or people of
their own choosing.
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During each condition, participants were asked to take
at least ten photos. Five participants with ASD completed
two sessions of the experiment and we have pooled
photos from both sessions for each participant for
analysis.

Rating by ASD Experts

ASD experts skilled in ASD evaluations using the ADOS
rated all photos independently on a 9 point scale (1 = the
photo was definitely taken by a person with ASD to
9 = the photo was definitely taken by a person without
ASD; see [Wang et al., 2016] for detailed instructions for
photo ratings). Photos, especially those taken by partici-
pants with ASD of themselves, were excluded from rating
if an ASD expert could recognize the identity of the par-
ticipant so that all raters remained blinded to which
group (ASD or control) the participant belonged. All
photos were shown in randomized order within each of
the three photo task conditions (People, Indoors, Out-
doors). Notably, these professional raters were highly
consistent in their ratings [Wang et al., 2016].

Classification

We have adopted a strategy of fine-tuning a pretrained
VGG16 convolutional neural network (CNN) on
ImageNet to discriminate photos taken by participants
with ASD from those taken by controls (Fig. 1A). This
CNN is capable of recognizing a large class of objects
[Simonyan & Zisserman, 2014], including faces, indoor
objects, and outdoor objects, and is thus suitable for our
photo stimuli. The CNN consisted of a feature extraction
section (13 convolutional layers) and a classification
section (three fully connected [FC] layers). The feature
extraction section was consistent with the typical archi-
tecture of a CNN. We applied a 3 × 3 filter with 1-pixel
padding and 1-pixel stride to each convolutional layer,
which followed by a Batch Normalization (BatchNorm)
and Rectified Linear Unit (ReLU) operation. Some of the
convolutional layers were followed by five 2 × 2 max-
pool operations with a stride of 2. There were three FC
layers in each classification section: the first two had
4096 channels each, and the third performed a two-way
ASD classification and thus contained two channels. Each
FC layer was followed by a ReLU and 50% dropout to
avoid overfitting. A nonlinear Softmax operation was
applied to the final output of VGG16 network to make
the binary classification prediction. It is worth noting
that classification was performed and fine-tuned for each
task condition separately. Our analysis was carried out in
three main steps:

1. Data preparation. There was a total of 1672 photos in
our dataset (Supplementary Table S1). The People
Block contained 490 photos from participants with

ASD and 217 photos from controls. The Indoor Block
contained 265 photos from participants with ASD and
229 photos from controls. The Outdoor Block con-
tained 229 photos from participants with ASD and
242 photos from controls. Photos from all participants
were pooled for training and testing. To augment the
dataset, before training, the input images were ran-
domly cropped to a random size and then rescaled to
224 × 224 RGB images, meanwhile the images had a
0.5 probability to be horizontally flipped. In each
training/testing run (separately for each task condi-
tion), the dataset was randomly split into three parts:
60% served as the training set, 20% served as the vali-
dation set, and 20% served as the test set. We repeated
the procedure 10 times with different random splits of
training and testing data. Additional different splits of
training and testing data were also tested and we
derived qualitatively the same performance (see
Results).

2. Training the DNN. Our VGG16 network ran on the
deep learning framework of PyTorch [Paszke
et al., 2017; Subramanian, 2018]. To improve model
performance with our small dataset, we have applied
Transfer Learning to our model. For the feature extrac-
tion part, we loaded the pretrained weights on
ImageNet and froze the convolutional layers to pre-
vent their weights from updating during training.
With a better feature extraction, our dataset was
mainly used to train the FC layers to improve its abil-
ity of classification. Training was performed by the
Stochastic Gradient Descent (SGD) optimizer with the
base learning rate of 10−3.

3. Permutation test. To further confirm the results, statis-
tical significance was estimated by permutation test.
There were ten runs, and in each run, photo labels
were randomly shuffled and the training/testing pro-
cedure was repeated. P-values were calculated by com-
paring the observed accuracy to that from the
permutation test.

Receiver Operating Characteristic Curves

We used receiver operating characteristic (ROC) curves to
evaluate and compare classification performance. We
constructed two kinds of ROC curves, respectively calcu-
lated from professional rating scores and our model pre-
diction output, as a comparison. For the rating scores,
three independent ASD experts familiar with the clinical
presentation of ASD and research reliable on the ADOS-2
were asked to evaluate and score every photo from our
dataset. The score represents how confident they are that
the photo was taken by a participant with ASD or a con-
trol (scores from 1 to 9; 1 = confident the photo was
taken by a participant with ASD, 9 = confident the photo
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was taken by a control participant). Thus, curves of
human performance were constructed based on the
experts’ average scores for each photo.
For our model, following the last layer, the Softmax

operation output the probability distribution of the pre-
dictions as positive (a participant with ASD took the
photo) or negative (a control participant took the photo).
The prediction probabilities were used to construct the
ROC curve. To reduce bias in the dataset, we tested our
model 10 times with ten different splits of training and
testing data; but every shuffle of the training, validation,
and test datasets was based on the same split ratio. The
area under the curve (AUC) of the ROC was calculated by
integrating the area under the ROC curve (trapezoid rule).
Note that since ROC is a probability curve, AUC indicates
the degree or measure of separability (i.e., tells how well
the model is capable of distinguishing between classes
such as ASD versus control).

Saliency Analysis

To detect salient objects in the photos, we applied the
most recent saliency detection algorithm to extract the
saliency map from an input photo [Hou et al., 2017]. This
algorithm applies short connections to the skip-layer
structures within a Holistically-Nested Edge Detector
(HED-SC). By taking full advantage of multilevel and
multiscale features extracted from fully convolutional
neural networks, HED-SC can offer fine-granularity repre-
sentations at each layer leading to state-of-the-art
saliency detection performance. We calculated the aver-
age saliency values for two regions. The central region

consisted of a rectangle located at the image center and
sized by 1/3 width × 1/3 height of the image; and the
peripheral region consisted of the rest of the image.

Results
Model Performance

We designed a DNN that effectively discriminated photos
that were taken by participants with ASD from photos
taken by controls (Fig. 1A). The model reached an accu-
racy of 81.3% ± 3.34% (mean ± SD across runs) for the
People Block, 59.4% ± 3.95% for the Indoor Block,
and 63.2% ± 4.30% for the Outdoor Block (Fig. 1B). The
DNN performance was above chance for all conditions,
including the People Block (permuted: 66.5% ± 5.49%;
unpaired two-tailed t-test between observed versus per-
muted performance: t(18) = 7.27, P = 9.33 × 10−7), the
Indoor Block (permuted: 49.7% ± 5.93%; t(18) = 4.30,
P = 4.32 × 10−4), as well as the Outdoor Block (permuted:
47.8% ± 5.73%; t(18) = 6.79, P = 2.34 × 10−6; Fig. 1B),
demonstrating that the VGG model could be applied to
successfully discriminate all categories of photos as hav-
ing been taken by people with ASD, but photos of people
were the most discriminative. Notably, our model perfor-
mance still held when we excluded all self-portraits from
the People Block (80.8% ± 3.13%; P = 1.13 × 10−6),
suggesting that our classification was not simply driven
by self-portraits from participants with ASD (note that
only participants with ASD took self-portraits). Our
results were also consistent with our prior published
report from ASD experts experienced in ADOS adminis-
tration demonstrating that photos from the People Block

Figure 1. Model architecture and performance. (A) Model architecture. The input was a fixed-size 224 × 224 RGB image. The image
was passed through a stack of convolutional layers, where the filters were used with a very small receptive field of 3 × 3. The convolution
stride was fixed to 1 pixel; the spatial padding of convolutional layer input was such that the spatial resolution was preserved after con-
volution (i.e., the padding was 1-pixel for 3 × 3 convolutional layers). Spatial pooling was carried out by five max-pooling layers, which
followed some of the convolutional layers. Max-pooling was performed over a 2 × 2 pixel window, with stride 2. Three fully connected
(FC) layers followed a stack of convolutional layers: the first two had 4096 channels each, the third performed a two-way ASD classifica-
tion and thus contained two channels. The final layer was the Softmax layer. All hidden layers were equipped with the rectification
(ReLU) nonlinearity. (B) Model prediction accuracy. Our model could differentiate photos taken by those with ASD from those taken by
controls in all conditions. Error bars denote ±SEM across runs and circles show individual values. Asterisks indicate significant difference
in prediction accuracy between observed (magenta) versus permuted (gray) runs using unpaired t-test: ***: P < 0.001.
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are most discriminative between participants with ASD
and controls. It is worth noting that ASD experts did not
successfully discriminate photos from the Outdoor Block
as having been taken by those with versus without ASD
[Wang et al., 2016].

We conducted the following control analyses to con-
firm our model performance. (1) We employed a tenfold
cross-validation that derived 83.7% ± 3.87% accuracy for
the People Block, 64.6% ± 6.60% accuracy for the Indoor
Block, and 59.3% ± 5.92% accuracy for the Outdoor
Block. (2) We further tested model bias by randomly assig-
ning a label to each photo (i.e., each photo had a 50%
probability to be labeled as ASD or control). We derived a
chance performance (i.e., 50% accuracy) for all three con-
ditions: we derived 47.3% ± 14.3% accuracy for the Peo-
ple Block (paired t-test against 50%: P = 0.57), 50.8% ±
6.58% accuracy for the Indoor Block (P = 0.70), and
47.9% ± 6.57% accuracy for the Outdoor Block (P = 0.33),
suggesting that our model was not biased toward
reporting one category of photos. (3) Consistent with (2),
we derived similar results (People Block: accu-
racy = 77.0% ± 5.58%, AUC = 0.85 ± 0.052; Indoor Block:
accuracy = 63.3% ± 3.50%, AUC = 0.68 ± 0.052; Outdoor
Block: accuracy = 64.2% ± 5.24%, AUC = 0.71 ± 0.048)
when we used an equal number of photos from partici-
pants with ASD and controls, suggesting that the results
could not simply be attributed to more photos having
been taken by participants with ASD. (4) Although
blurred photos are a major characteristic indicating ASD
[Wang et al., 2016] (also see below in Fig. 2), when we
excluded all blurred photos from the analysis, we still
derived similar results (People Block: accuracy = 81.3% ±
4.50%, AUC = 0.91 ± 0.030; Indoor Block: accuracy =

64.7% ± .73%, AUC = 0.69 ± 0.060; Outdoor Block: accu-
racy = 61.0% ± 5.77%, AUC = 0.68 ± 0.062). (5) We con-
ducted a leave-one-participant-out analysis by training
the classifier with photos from all but one participant and
testing on the remaining participant. We found an above-
chance performance (People Block: accuracy = 61.7% ±
27.9% [mean ± SD across participants/validations],
AUC = 0.72; Indoor Block: accuracy = 55.8% ± 25.0%,
AUC = 0.59; Outdoor Block: accuracy = 59.7% ± 23.2%,
AUC = 0.60), suggesting that photos from different partic-
ipants within a group shared similar features and our
model could generalize to predict whether a new photo
was taken by a control participant or a participant in the
ASD group. The People Block still showed the best perfor-
mance, likely because the way that participants from each
group composed the photos was more consistent. Note
that AUC could only be assessed if we pooled photos from
different participants because there was only one label for
each participant; and we derived an accuracy of 67.0% for
the People Block, an accuracy of 56.8% for the Indoor
Block, and an accuracy of 58.6% for the Outdoor Block, if
we pooled all photos to assess prediction performance.
We next explored the factors that led to correct
classification.

Model Explanation Through Layer-Wise Relevance
Propagation

To provide an explanation of our model’s output in the
domain of its input, we applied layer-wise relevance prop-
agation (LRP) to our trained classifier. LRP can use the
network weights created by the forward-pass to propagate
the output back through the network up until the

Figure 2. Layer-wise Relevance Propogation (LRP) explanation. (A–K) Photos that were classified as having been taken by participants
with ASD. (L–O) Photos that were classified as having been taken by controls. Red pixels positively contributed to the classification
whereas blue pixels negatively contributed to the classification. (J, K) Photos that were incorrectly classified as having been taken by
participants with ASD. (N, O) Photos that were incorrectly classified as having been taken by controls. The cyan box in (F) illustrates
where the subject of the photo was located.

INSAR Ruan et al./Autism DNN 5



original input image. The explanation given by LRP is a
heatmap of which pixels in the original image contribute
to the final output (Fig. 2; red pixels positively contributed
to the classification whereas blue pixels negatively contrib-
uted to the classification). In the People Block, we found
that classification of a photo as having been taken by par-
ticipants with ASD was driven by the following factors:
(1) photos had a view of the subject’s back (Fig. 2A) or
side (Fig. 2B); (2) subjects in the photos did not pose or
look at the camera (Fig. 2A–C); (3) subjects in the photos
were not expressive (Fig. 2B,C); (4) photos had an odd
visual perspective (Fig. 2D–F; the cyan box in Fig. 2F
denotes where the subject was located); and (5) photos
were blurred (Fig. 2G; also note that the eyes in this
photo looked at the camera and negatively contributed
to classifying this photo as taken by participants with
ASD [as shown in blue]). In contrast, photos with rich
facial expressions and a regular angle of view (Fig. 2L,M)
would lead to our classifier identifying them as having
been taken by controls. Similarly, in the Indoor Block
and Outdoor Block, photos that were blurred (Fig. 2H) or
slanted (Fig. 2I) were classified as having been taken by
participants with ASD. These features derived from
machine learning were consistent with intuition from
ASD experts from our prior study [Wang et al., 2016],
suggesting that both approaches (human ratings and
DNN) adopted a similar strategy in discriminating the
photos.

Notably, in the photos that were mistakenly classified
as being taken by participants with ASD (Fig. 2J,K), front
view of the face (Fig. 2J) and facial expressions (Fig. 2K)
still contributed to classification of the photos as having
been taken by controls (i.e., negatively contributed to
classifying the photos as from participants with ASD). On
the other hand, in the photos that were mistakenly classi-
fied as being taken by controls (Fig. 2N,O), front view of
the face and rich facial expressions (Fig. 2N) led to such
classification whereas the view of the subject’s back
(Fig. 2O) still contributed to classification of the photos
as having been taken by participants with ASD
(i.e., negatively contributed to classifying the photos as
from controls). Therefore, these results suggest that our
classifier adopted a consistent strategy in classifying the
photos and the incorrectly classified photos might be
driven by other factors.

Saliency Analysis of Photos

Since participants with ASD demonstrate atypical visual
saliency [Wang et al., 2015], we employed a saliency
model to detect salient objects in the photos (see
Methods). We found that in the People Block (Fig. 3A–C),
photos taken by participants with ASD had similar
saliency values compared to those taken by controls for
both the central region (ASD: 149 ± 59.8 [mean ± SD],
controls: 145 ± 65.2; two-tailed unpaired t-test: t(705) =

Figure 3. Saliency analysis. (A–C) People Block. (D–F) Indoor Block. (G–I) Outdoor Block. (A, B, D, E, G, H) Example photos (left) with
detected saliency maps (right). (A, D, G) Photos taken by participants with ASD. (B, E, H) Photos taken by controls. (C, F, I) Average
saliency value. Error bars denote ±SEM across photos. Solid bars denote the central region and open bars denote the peripheral region.
Asterisks indicate significant difference between ASD and controls using two-tailed unpaired t-test: *: P < 0.05, **: P < 0.01, and ***:
P < 0.001. Red: ASD. Blue: controls.
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0.90, P = 0.37, effect size in Hedges’ g (standardized mean
difference): g = 0.073, permutation P = 0.37) and the
peripheral region (ASD: 61.1 ± 29.4, controls: 63.1 ± 27.6;
t(705) = 0.82, P = 0.41, g = 0.067, permutation P = 0.37).
In the Indoor Block (Fig. 3D–F), photos taken by partici-
pants with ASD were less salient in the central region
(ASD: 125 ± 79.2, controls: 141 ± 79.5; t(492) = 2.20,
P = 0.028, g = 0.20, permutation P = 0.036) but not in the
peripheral region (ASD: 48.9 ± 31.7, controls: 51.9 ± 33.1;
t(492) = 1.00, P = 0.32, g = 0.091, permutation P = 0.32).
Notably, in the Outdoor Block (Fig. 3G–I), photos taken
by participants with ASD were less salient in both the
central region (ASD: 62.5 ± 68.2, controls: 80.0 ± 76.5; t
(469) = 2.62, P = 0.009, g = 0.24, permutation P = 0.008)
and the peripheral region (ASD: 24.5 ± 20.8, controls:
33.4 ± 26.5; t(469) = 4.05, P = 5.87 × 10−5, g = 0.37, per-
mutation P < 0.001). As expected, the central region of
the photos was more salient than the peripheral region
(all Ps < 10−14). Together, our results suggest that photos
taken by participants with ASD contained less salient
objects compared to photos taken by controls, especially
in the central region of the visual field. Notably, this new
finding was not revealed in our previous human evalua-
tions [Wang et al., 2016].

Comparison With Human Performance

Lastly, we compared our DNN model with human ASD
experts who scored each photo based on the degree to
which they thought it had been taken by a participant
with ASD or by a control participant (Fig. 4). For the Peo-
ple Block, the AUC value for the model’s performance
was 0.89 ± 0.024 (mean ± SD across runs) and human
performance was 0.66 ± 0.046 (Fig. 4A,B; paired t-test;
t(9) = 16.8, P = 4.15 × 10−8, g = 5.85, permutation
P < 0.001; note that in each run, the test data were the
same for the current machine learning analysis and for
ratings by ASD experts). For the Indoor Block, the AUC
value for model performance was 0.66 ± 0.059 and

human performance was 0.66 ± 0.055 (Fig. 4C,D; t(9) = 0,
P = 1.0, g = 1.87 × 10−15, permutation P = 0.99). For the
Outdoor Block, the AUC value for model performance
was 0.70 ± 0.051 and human performance was
0.49 ± 0.066 (Fig. 4E,F; t(9) = 7.12, P = 5.57 × 10−5,
g = 3.34, permutation P < 0.001). Together, this result
suggests that our classifier could generally outperform
professional ASD experts and might be used as an effec-
tive method to better understand visual attention in ASD
and to possibly diagnose individuals with ASD.

Discussion

In this study, we developed a machine learning algorithm
that can effectively discriminate photos taken by partici-
pants with ASD from photos taken by controls. Despite
the relatively small size of our training data, our VGG-
based algorithm has shown consistent discriminating
performance. Importantly, our analysis revealed critical
features that led to such successful discrimination and
showed that photos taken by participants with ASD con-
tained less salient objects, especially in the central visual
field. Notably, our machine learning based ASD classifica-
tion even outperformed classification by human ASD
experts. Together, our findings can provide deeper insight
into aberrant visual attention in ASD from a unique first-
person perspective, which may in turn serve as a useful
objective diagnostic tool for ASD.

Our findings also suggest that photos taken of people
were the most relevant to discern between photos taken
by ASD participants from those taken by controls, consis-
tent with general social deficits in ASD [Wang &
Adolphs, 2017]. Given that participants needed to com-
municate with the person being photographed when the
photos in the People Block were taken, the photos from
the People Block not only showed how participants with
ASD perceived other people, but also reflected the degree
to which they communicated with others. Therefore, our
results also reflect deficits in social communication and

Figure 4. Our classifier model outperformed human ASD experts. (A, B) People Block. (C, D) Indoor Block. (E, F) Outdoor Block. (A, C,
E) ROC curves. (B, D, F) Area under the ROC curve (AUC values). Error bars denote ±SEM across runs and circles show individual values.
Asterisks indicate significant difference in performance between machine learning (purple) and ASD professionals (yellow) using paired
t-test: ***: P < 0.001.
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interaction typical of ASD. It is worth noting that the
experimenters being photographed had abundant experi-
ence working with participants with ASD, so they were
very comfortable around individuals with ASD. Although
the experimenters were not blinded to which participants
had ASD, they were instructed to respond to participants
with ASD and controls similarly.
It is also interesting to note that participants with ASD

tended to take more photos of people than did controls.
This observation has not been exploited by the current
machine learning algorithm, but suggests that partici-
pants with ASD may prefer to use a camera as a surrogate
interface for interacting with other people. Furthermore,
ASD is highly heterogeneous at the biological and behav-
ioral levels [Happe, Ronald, & Plomin, 2006]; and all par-
ticipants involved in this study were high-functioning
since our photographing task required cognitive abilities
to use the camera as well as basic social communication
skills to interact with others when they took photos of
the other people. Therefore, our results may not apply to
all individuals across the autism spectrum. However,
machine learning has immense potential to enhance
diagnostic and intervention research in the behavioral
sciences, and may be especially useful considering the
heterogeneous nature of ASD [Bone et al., 2015].
The computational framework developed in this study

can be readily extended to future studies that investi-
gate other complex human social behavior and/or other
neurological conditions. There have been several studies
that have used photos to reveal predictive markers of
psychiatric and/or neurological disorders. For example,
Instagram photos have been found to reveal predictive
markers of depression [Reece & Danforth, 2017]. Along
this line of research, deep learning has great potential
to support the use of first-person perspective photos as
predictive markers of visual attention deficits for other
neurological disorders such as stroke and traumatic
brain injury. Our present results further demonstrate
that deep learning is more accurate at discerning
whether a photo represented an ASD perspective and is
more efficient than human-based photo classification
which requires highly skilled ASD experts and is very
time intensive. Therefore, research investigating visual
attention and diagnostic methods may benefit from the
addition of first-person photos and DNNs to analyze
those photos.
It is worth noting that there is a subtle difference when

we compared the discriminating performance between
ASD experts and machine learning. While machine learn-
ing used the actual photos as the training data, ASD
experts did not have any training on this particular photo
discrimination task nor did they receive any feedback
about their performance. Rather, ASD experts had to use
their knowledge or intuition to make their judgments. A
future study will be needed to compare machine learning

with human raters (even non-ASD experts) who are simi-
larly trained on the photo discrimination task. Another
possible extension of this study is to take first-person per-
spective videos. Despite some effort of machine learning
based ASD analysis using home videos [Tariq et al., 2018],
there is still no database of first-person perspective videos
taken by individuals with ASD. We hypothesize that
video clips taken by ASD patients may contain more use-
ful and discriminative information than static photos
(e.g., motion-related saliency information is often easier
to characterize from a sequence of images rather than
from a single image). We leave such extension of this
work a possibility in a future study.

More broadly, in line with our present results, there
have been efforts to collect data from the first-person per-
spective of participants using head-mounted cameras or
head-mounted eye trackers [Bambach, Crandall, &
Yu, 2015; Borjon et al., 2018; Franchak, Kretch, Soska, &
Adolph, 2011]. These egocentric-view data have revealed
valuable information about how infants perceive faces
over their first year of life [Jayaraman, Fausey, &
Smith, 2015], how social attention is coordinated
between infants and parents [Yu & Smith, 2013], how
people navigate in a cluttered environment [Franchak &
Adolph, 2010], and how a brain lesion patient looks at
faces of other people during conversations [Spezio,
Huang, Castelli, & Adolphs, 2007]. A clear future direc-
tion will be to apply head-mounted cameras or head-
mounted eye trackers to record egocentric views from
people with ASD during their real interactions with other
people and the environment. These videos will provide
the most direct data about how people with ASD perceive
the world from their first-person perspective. Further-
more, continuous recordings from head-mounted cam-
eras or head-mounted eye trackers can generate massive
amounts of data (notably in comparison with static
photos like those used in our present study). Therefore,
deep learning, which has already shown promise to dis-
criminate ASD from controls using eye movement data
with natural scene images [Jiang & Zhao, 2017; Xie
et al., 2019], will make an important contribution to the
analysis and interpretation of such egocentric-view data.
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Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Table S1. Participant characterization. ASD was evalu-
ated using a DSM-5 diagnosis, the Autism Diagnostic
Observation Schedule-2 (ADOS-2) [Lord et al., 1989],
Autism Diagnostic Interview-Revised (ADI-R) [Lord,
Rutter, & Couteur, 1994], and Social Communication
Questionnaire (SCQ) [Rutter, Bailey, Berument, Lord, &
Pickles, 2003]. The ADOS-2 was scored according to the
latest algorithm and calibrated severity scores (CSSs) were
derived for exploratory correlation analyses [Hus &
Lord, 2014]. The ADOS-2 is a structured interaction with
an experimenter that is videotaped and scored by trained
clinical staff, yielding scores on several scales. The
ADOS-2 revised algorithm cutoff scores indicating an
ASD diagnosis are 6 for Social Affect and 8 for Social
Affect plus Restricted and Repetitive Behavior. Calibrated
severity scores for each domain range from 1 to 10, with
10 indicating greatest severity. ADOS item scores were
not available for three ASD participants, so we were
unable to utilize the revised scoring system; however,
original ADOS-2 algorithm scores for these three partici-
pants are as follows: A4: Communication = 4, Reciprocal
Social Interaction (RSI) = 9, Imagination/Creativity
(IC) = 1, Stereotyped Behaviors & Restricted Interests
(SBRI) = 1; A6: Communication = 4, RSI = 5, IC = 0,
SBRI = 1; A10: Communication = 6, RSI = 11, IC = 1,
SBRI = 0.
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