Towards Verification-Aware Knowledge Distillation
for Neural-Network Controlled Systems

(Invited Paper)

Jiameng Fan*, Chao Huang’, Wenchao Li*, Xin Chen! and Qi Zhuf
*Boston University, TNorthwestern University, IUniversity of Dayton
jmfan@bu.edu, chao.huang@northwestern.edu, wenchao@bu.edu, xchen4 @udayton.edu, qzhu@northwestern.edu

Abstract—Neural networks are widely used in many ap-
plications ranging from classification to control. While these
networks are composed of simple arithmetic operations, they are
challenging to formally verify for properties such as reachability
due to the presence of nonlinear activation functions. In this
paper, we make the observation that Lipschitz continuity of a
neural network not only can play a major role in the construction
of reachable sets for neural-network controlled systems but
also can be systematically controlled during training of the
neural network. We build on this observation to develop a
novel verification-aware knowledge distillation framework that
transfers the knowledge of a trained network to a new and easier-
to-verify network. Experimental results show that our method
can substantially improve reachability analysis of neural-network
controlled systems for several state-of-the-art tools.

I. INTRODUCTION

Neural networks [10] are used in a wide variety of appli-
cations, such as image classification [L1], natural language
processing [20]], and control of autonomous agents [22]. De-
spite their growing popularity, there are reservations about
incorporating these nonlinear function approximators into
safety-critical systems. One particular challenge is the verifica-
tion problem of neural-network controlled systems (NNCSs),
where a neural network is used as the controller in a closed-
loop control system [[15].

Several approaches have been proposed recently to reason
about the reachability of NNCSs [15] [17, [7]. All of them rely
on computing sound overapproximation of the reachable sets
by leveraging specific nonlinearities of the neural networks,
such as piecewise linearity for ReLU networks (networks with
ReLU activation units) and differentiability for tanh networks.
The first contribution of this paper is an observation that the
treatment of nonlinearity can play an important role in the
tightness of the overapproximations and/or computation time.
We discuss this observation later in detail with an illustrative
example. The second observation is that it is possible to control
the “degree of nonlinearity” when training a neural network.
The degree of nonlinearity that we consider in this paper is
the Lipschitz constant of a neural network. Armed with these
two observations, we propose a novel technique that extracts
an easier-to-verify neural network from the original neural
network while preserving control performance.

Specifically, we consider the framework of knowledge dis-
tillation |1, [12]] as a way to obtain a new neural network
that imitates the original network’s behaviors but avoids large
overapproximation errors. Knowledge distillation is the idea
that after a cumbersome model has been trained, we can use
a different kind of training to transfer the knowledge of this
cumbersome model into a more structured or simpler model. In
our case, we are more concerned with the ease of verification

than the size of the model (although these two are related
in certain cases). In the true spirit of knowledge distillation,
we do not assume access to the original training data. This
allows our method to be generally applied to different settings
with how the original neural network might be trained, such
as using reinforcement learning or supervised learning.

It has been shown that neural networks with many different
types of activation functions are indeed Lipschitz continu-
ous [16]. The magnitude of the Lipschitz constant of a neural
network can substantially influence its effectiveness for a va-
riety of tasks. For classification, the Lipschitz constant affects
the robustness of a neural network to adversarial attacks [26]].
In reinforcement learning, the Lipschitz constant of a neural-
network controller can be upper bounded to guarantee stabil-
ity [18] or plays an important role in constructing the stability
certificate [3]]. For verification of NNCSs, ReachNN [15]
relies on the Lipschitz constant to conduct error analysis —
smaller Lipschitz constant leads to tighter overapproximation
and shorter verification time. While we focus on reducing the
Lipschitz constant of the distilled neural network in this paper,
we note that one can in fact replace Lipschitz constant with
other verification-related metrics in our framework.

The joint consideration of training error and the value
of Lipschitz constant naturally gives rise to a two-objective
optimization problem. The first objective is to learn the input-
output mapping of the original network, which can also be
viewed as a regression problem. The second objective is to
reduce the Lipschitz constant of the distilled network. To bal-
ance these two objectives, we develop a two-objective gradient
descent method to simultaneously reduce the regression error
and the Lipschitz constant of distilled network. We describe
this method in detail in Sec. In Sec. we present a
case study on a neural-network controlled autonomous vehicle
with a reach-avoid requirement. We show that reachability
analysis can be significantly improved for the distilled network
compared to using the original network.

Our work can be viewed as a paradigm shift from the
traditional approach where verification is considered only after
the design is done. For the verification community, this also
opens up the possibility of reducing verification complexity
by influencing how a system is trained. To the best of our
knowledge, this is the first work that explicitly guides the
training process by incorporating verification knowledge for
reasoning about NNCSs.

A. Motivating Examples

We now present several examples that highlight the im-
portance of Lipschitz constant for verifying NNCSs. These
examples motivate the development of our verification-aware



knowledge distillation approach. Consider the following non-
linear control system [8]:
i’l = X2, i’g :ungxl

where © = (21, x2) is the state variable and w is the control
input that is computed by a neural-network controller x,
namely u = x(x). We want to check if the system will reach
the target region [0,0.2] x [0.05,0.3] from anywhere in the
initial set [0.8,0.9] x [0.5,0.6].

To study the impact of Lipschitz constant on verification
of NNCSs, we first train multiple neural networks with dif-
ferent Lipschitz constants. Specifically, we train three neural
networks with a large spread on Lipschitz constants for each
type of ReLLU/tanh/RelLU-tanh networks mimicking the same
optimal controller. We consider three different reachability
analysis tools to verify NNCSs, namely ReachNN, Verisig,
and Sherlock. Since certain tools are designed to handle neural
networks with specific types of activation functions, we use
ReachNN to verify ReLU-tanh networks, Verisig to verify tanh
networks, and Sherlock to verify ReLLU networks. We note that
ReachNN can in fact verify all three types of networks while
Sherlock or Verisig can only handle one type.

Fig. 1 shows the result of the reachability analysis by
different verification tools. We can observe that, for each tool,
when the Lipschitz constant of the neural network controller
grows, the reachable set expands more quickly. In some cases,
the verification tools terminate due to either uncontrollable
approximation error (Fig. 1f) or excessively long computation
time (Fig. 1c). Interestingly, while a large Lipschitz constant
can have a big impact on ReachNN and Verisig, it does not
result in significant growth of the reachable sets computed
by Sherlock. In the case of ReachNN, the estimation of the
overapproximation error utilizes a sampling-based strategy and
directly depends on the Lipschitz constant of the network.
For Verisig, even though it does not make any explicit use
of the Lipschitz constant of the network, results indicate
that the Lipschitz constant has an indirect yet significant
impact on the precision of its reachable set computation.
On the other hand, the results with Sherlock show that the
blowup in reachable sets as in the case of ReachNN and
Verisig should be attributed to the change in the controller
(due to a larger Lipschitz constant) and is in fact primarily
caused by the construction of the overapproximation. These
observations motivate us to train neural networks with smaller
Lipschitz constants so that the resulting networks are easier to
verify while maintaining control performance (measured via
regression error with respect to an original network).

II. RELATED WORK
A. Verification of NNCSs

When deploying neural-network controlled systems
(NNCSs) in safety-critical scenarios, it is crucial to ensure
that the unsafe states are unreachable. Tuncali et al. [28]
propose the use of barrier certificates for the safety verification
of NNCSs. In this paper, we consider more general reach-
avoid specifications, where the system is required to reach a
target region while avoiding unsafe regions. A key element
in reachability analysis of NNCSs is the characterization of
behaviors of the neural-network controller. For instance, output
range analysis provides a straightforward characterization

of a neural network in terms of a guaranteed range of the
output given a set of inputs [19, 25, 29]. However, output
range itself does not capture the actual input-output mapping.
As a result, simply using output range to approximate the
neural-network controller in a closed-loop system can lead
to highly conservative results [7]. This thus motivates the
use of a more tractable functional model (e.g. polynomials)
to approximate the input-output mapping instead of the
aforementioned set-based approximation. State-of-the-art
tools include Sherlock [7], Verisig [17] and ReachNN [15].
Since this functional model is an approximation of the
true neural network behaviors, the challenge is how to
appropriately bound the error of the approximation. We
discuss these three reachability tools in detail below.

Verisig leverages an interesting insight that differentiable
activation functions can be equivalently transformed into dif-
ferential equations. By applying this transformation for every
neuron, a neural network is then transformed into a hybrid
automaton and the transformed system can be verified by
existing techniques [5, 14]. One limitation of Verisig is that,
since differentiability of the activation functions is required, it
cannot handle ReLU networks.

Sherlock targets ReLU networks which can be viewed as
piecewise linear functions and computes overapproximation of
reachable sets in a flowpipe-construction manner. It uses the
Flow* tool [5] to compute the flowpipes (i.e. a set of states
reachable by continuous dynamics from an initial set within
a given time interval) under continuous dynamics and over-
approximates the neural network by a regressive polynomial
along with a remainder interval which is computed by solving
a mixed-integer linear program.

ReachNN is more general than Verisig and Sherlock in the
sense that it can handle any Lipschitz continuous network.
At the core, it uses Bernstein polynomials to approximate the
neural-network controller. On the flip side, without using more
specific nonlinearity information of the target network, Huang
et al. [15] resorts to a sampling-based approach to estimate the
approximation error which is in turn based on the Lipschitz
constant of the network. When the Lipschitz constant is large,
it requires a large number of samples to perform the error
estimation, which is time-consuming.

Motivated by the examples in Sec. I-A, where the Lipschitz
constant of a neural network clearly plays a role in the pre-
cision of the reachable set estimation, this paper explores the
direction of leveraging this information to retrain an existing
neural network into one that has similar performance but with
a Lipschitz constant that is as small as possible.

B. Knowledge Distillation

The particular framework that we use in this paper for
retraining a neural network is known as knowledge distillation.
There is a long history of work with ideas of distillation [6, 4,
1]. In its modern incarnation, Hinton et al. [12] formulates the
idea of knowledge distillation as compressing the knowledge
of an ensemble of models into a single model. The idea also
extends to procedures such as the distillation of large but easy-
to-train networks into small but harder-to-train networks [24],
transfer from one architecture to another [9], integration with
first-order logic [13] or other prior knowledge [30], and
has been used in defense against adversarial attacks [23]
and improving training stability [27]. The common theme
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Fig. 1: Flowpipes computed by ReachNN, Verisig and Sherlock for different types of networks with different Lipschitz constants
L. ReachNN, Verisig and Sherlock are used to verify on ReL.U-tanh, tanh and ReLLU neural networks respectively. Red curves
denote the trajectories of (x1,x2) of the system simulated from randomly sampled states within the initial set. Blue rectangles
represent the target region. Green rectangles are the flowpipes produced by ReachNN, gray rectangles are the flowpipes
computed based on Verisig, and deep blue rectangles are the flowpipes computed using Sherlock.

behind this body of work is to use high-performing DNNs
or prior knowledge to guide the training of shallower or more
structured models.

Some recent work has also explored the idea of using
knowledge distillation to circumvent the high complexity of
the original networks in verification. Bastani et al. [2] propose
to extract decision tree models from trained neural networks
in the setting of reinforcement learning. Though decision tree
policies are easier to verify, their application is limited to
controllers with discrete outputs. In this paper, we consider
neural network controllers whose outputs are continuous and

the direction of transferring knowledge from a hard-to-verify
network to an easy-to-verify network without losing accuracy.

III. PRELIMINARIES

In this paper, we will mainly focus on the problem of
reachability in neural-network controlled systems. We con-
sider feed-forward neural networks (specifically multilayer
perceptrons) as controllers for NNCSs. A feed-forward neural
network, s consists of k—1 > 0 hidden layers, and in each
layer, there are N >0 neurons. Specifically, « is given by

k() = kg (Kp—1( - K1 (; Wi, b1); Wa, ba); Wi, by)



where W; and b; for7 = 1,2, ..., k are learnable parameters as
linear transformations connecting two consecutive layers and
k; represents an element-wise nonlinear activation function
following the linear transformations. We focus on three com-
monly used activation functions, ReLU, tanh and sigmoid. We
define the type of closed-loop systems that use neural networks
as the controllers as follows.

Definition 1 (Neural-Network Controlled Systems [15]). A
neural-network controlled system (NNCS) is denoted by a
tuple (X, U, F, k, Xo), where X denotes the state space whose
dimension is the number of state variables, U denotes the
control input space whose dimension is the number of control
inputs, F defines the continuous dynamics © = f(z,u),
Kk X — U defines the input/output mapping of the neural-
network controller, and Xo C X denotes the initial state set.

The function f is assumed to be Lipschitz continuous in
x and continuous in w. Thus, NNCS is deterministic and
unique solution to the dynamics exists for some time horizon
[0, Tynaz) for given control inputs. The forward flowmap of
an NNCS (X,U, F, k, X) is a function ¢ : XoxR>o—X.
The function represents the evolution of NNCS starting from
xo with fixed control to ¢y (xg,t) at the time ¢.

Definition 2 (Reach-Avoid Problem). Given a NNCS A, an
initial set X, a target set Xuger, an avoid set X yi0, and a
bounded time horizon [0,T). We ask whether all executions of
A starting from Xo will reach Xiyreer while avoiding Xayoia in
the time interval [0, T).

Several state-of-art verification tools [7, 17, 15] rely on
computing overapproximation of the exact reachable set to
solve this reach-avoid problem. Thus, the ability to prove a
reach-avoid property fundamentally depends on the quality of
the overapproximation.

Definition 3 (Lipschitz Continuity). A real-valued function
f+ X — R s called Lipschitz continuous over X € R", if
there exists a non-negative real number L, such that for any

z,x' € X:
If(z) = f(@)| < Lllz — 2|

We compute the Lipschitz constant by using the upper
bound estimation method from Ruan et al. [25]. The com-
putation is done as follows.

Lemma 1 (Lipschitz constant for sigmoid/tanh/RelLU [25,
26)). Fully connected layers with the sigmoid activation func-
tion S(Wax + b), tanh activation function T(Wz + b), and
ReLU activation function R(Wz+b) have % |W||, [W|, [|[W ||
as their Lipschitz constants, respectively.

’

As we have seen in Fig. 1, neural networks with large
Lipschitz constants can be challenging for verification tools
to control the overapproximation error. ReachNN [15] directly
use value of the Lipschitz constant in its error analysis. The
basic idea of ReachNN is to approximate the neural network
with Bernstein polynomials and bound the approximation error
by using the following approach.

Theorem 1 (S-Error Estimation [15]). Assume  is a Lipschitz
continuous function of x = (x1,- -+ ,&y) over X = [l1,u1] X
- X [l um] with a Lipschitz constant L. Let P, q be the
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Fig. 2: Teacher-Student Paradigm

Bernstein polynomial approximation of k with the degree d =
(di, -+ ,dm) € N, and X, = {ci o<k<p—1 be the sampling
set with any given positive integer vector p = (p1,--+ , Pm)-
Then the error bound £4(p) can be computed as

Uj—lj

)24+  max

Dj 0<k<p-1 [P, ac)—rler)ll . (1)

The first term on the right side of Eq. 1 shows that the
Lipschitz constant L is directly related to the error bound. If L
is large, to reduce the first term we will need more samples (i.e.
larger number of partition p;, where j=1,...,m) which also
increases computation time. On the other hand, if L is small,
then less samples might be needed to keep the error small.
This relationship motivates the use of knowledge distillation
to retrain the original neural-network controller to reduce its
Lipschitz constant.

IV. METHODS

We propose an iterative algorithm that retrains a neural
network such that it simultaneously reduces the regression
error with respect to the original input-output mapping and
the Lipschitz constant of the resulting neural network.

A. Teacher-Student Paradigm

For more general applicability, we do not assume access to
the original training data since the neural-network controller
could have been trained using very different methods, such as
reinforcement learning or MPC-guided training. We consider
a teacher-student paradigm, where the original network acts
as the reacher, and we aim to train a new neural network (i.e.
the student) that can match the teacher’s behaviors. During
the retraining process, the student can query the teacher
for “knowledge”, which are input-output pairs in this case.
Figure 2 illustrates the teacher-student paradigm.

Here, the teacher is the trained feed-forward neural network
mapping from state space to control input space, Kteqcher(*) :
r +— u, where the parameters are unknown. The student is
represented by another feed-forward neural network param-
eterized by 6, k(;0) : x — u. To eliminate effects caused
by choosing different network architectures, we assume the
structure of the student is the same as that of the teacher.
In addition, using the same architecture makes it possible to
make the regression error arbitrarily small.



B. Two-Objective Gradient Descent

At the high level, the retraining problem can be viewed as an
optimization problem with two objectives. One is minimizing
the regression error of input-output mappings between the
original network and the retrained network, J;,s5(6). The other
is minimizing a verification-related loss function, J;;, (). In
this case, Jj;;,(0) represents difference between the current
value of the Lipschitz constant and some target value, Liqrget
(which may not be known a priori). A straightforward way to
optimize these two objectives would be to combine them into
a single objective by taking a weighted sum. This is similar
to using a regularization term top penalize large Lipschitz
constants. The drawback of this approach is that it is difficult to
tune the weights or know when it is possible to further reduce
the Lipschitz constant without increasing the regression error.

We propose a two-objective gradient descent method in-
spired by Task-Novelty Bisector [31] to simultaneously reduce
the regression error and the Lipschitz constant. We formulate
the loss functions Ji,ss(0) and Jy;,(0) as follows.

Jloss (0) = EINX [(K(IE 0) - "{original(x))z] (2)
Jlip(e) = (L9 - Ltar’get)2 (3)

Their gradients with respect to the new network parameters
are denoted as:

0J14,
Jiip = afgp (4)

9J1oss
Gloss = 319

Taking a weighted sum of the two objective functions is
similar to taking the weighted average of the corresponding
gradients g;,ss and gj;,. However, similar to the problem of
weight tuning, the weighted average could result in biased
gradient descent on the two objectives. In our case, it will be
either losing regression accuracy or making the network hard
to verify. To address this issue, we update the new network
in the direction of the angular bisector of the two gradients
and average the projected vectors of the two gradients on this
direction if gjoss-g1sp>0 as illustrated in Fig. 3a. This results in
an update that is expected to reduce both the regression error
and the Lipschitz constant. If gjss - 915p<0, we will update
along a gradient that is the projected vector of g;,ss onto the
hyperplane perpendicular to g;;;,, as shown in Fig. 3b. This
gradient prioritizes reducing the regression error over seeking
for smaller Lipschitz constant and avoids increasing Jy;,(6)
explicitly.
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Fig. 3: Final update gradient that improves both objectives

C. Gradient Reprioritization Scheme

For general neural networks, the two-objective gradient
descent approach cannot guarantee that the Lipschitz constant
will not increase when gjoss - G1ip<0. It is also possible
that the case of gjoss - g1ip>0 will not appear later in the

iterations. Hence, there are two options for this two-objective
optimization problem. One is to specify a target Lipschitz
constant and search for a network with the smallest regression
error. The other is to specify the regression error bound and
search for a network with the smallest Lipschitz constant.

In general, it is difficult to know a prior how small the
Lipschitz constant or the regression error need to be. Nev-
ertheless, the system that we are verifying at the end uses
the retrained network instead of the original network as the
controller. This means our approach is viable as long as we can
prove reachability of the resulting system. Thus, we consider
searching for network with the smallest Lipschitz constant that
satisfies a pre-specified regression error bound or with the
smallest Lipschitz constant such that reducing the regression
error will increase the Lipschitz constant. The second case also
implies that the gradient should be zero or vanishing for this
two-objective optimization.

To further balance the gradients of two objectives, we
propose to reprioritize the gradient direction to g;;, when
Jloss - 91ip<0 and the regression loss is less than some error
bound . Instead of projecting g¢;,ss onto the hyperplane
perpendicular to g;;;,, we prioritize reducing the Lipschitz
constant. As shown in Fig. 3c, the final gradient takes the
projection of g;;;, onto the hyperplane that is perpendicular
0 Giosss final=Giip— i Gloss- On one hand, if this
gradient does not increase the regression error, we can further
reduce the Lipschitz constant without increasing the regression
error. On the other hand, if this gradient results in a larger
regression error, we can follow the original two-objective
gradient descent rule to reduce the regression error. In a
nutshell, this reprioritization scheme addresses the issue where
the vanilla two-objective gradient descent approach constantly
reduces the regression error after satisfying the regression error
bound but neglects to reduce the Lipschitz constant.

To speed up the retraining process and avoid getting stuck at
local optima, we use simulated annealing to inject stochasticity
when choosing the regression loss error bound ¢;,s5 in the
neighborhood of ¢. Algorithm 2 formalizes this procedure.

D. Two-Objective Knowledge Distillation

We summarize our algorithm below. By combining the
two-objective gradient descent and simulated annealing, our
method retrains a new network with a smaller Lipschitz con-
stant while preserving the (control) performance of the original
network. The process terminates when the final gradient is
vanishing, i.e. gioss * Giip=—1 OF ||gioss||||giip||=0, or when
the Lipschitz constant cannot be reduced further with our
reprioritization scheme, or when the two gradients agree with
each other. For the first case, it means that taking any gradient
direction will negatively impact at least one of the objectives.
Algorithm 1 describes our proposed method formally.

V. CASE STUDY

In this section, we present a case study involving an
autonomous driving task. We consider a simple Dubins car
model, and a neural-network controller that controls the car to
navigate around static obstacles to reach a target region. For
convenience, the original neural network is trained from an
optimal controller that satisfies the reach-avoid specification.
We first describe the system dynamics. Then, we describe the
training and retraining process. Finally, we show the proposed



Algorithm 1 Two-Objective Knowledge Distillation

Algorithm 2 Simulated Annealing for Error Bound Selection

1: Input: State space X', sample size N, target Lipschitz
constant Lyqge¢, €rror bound ¢, learning rate .

2: Initialize: New network parameters 6, regret loss = +o0,
Lipschitz constant reducing list L, €;055s = €, reducey, =
False, stop = False

3: while loss > ¢ do

4: Sample N state samples from X as x1,...,2N
5: loss = 30 (((2450) = Foriginai(:))?)

6: Compute the Lipschitz constant Ly by Lemma. 1.
7 if reducej;, then

8 Append Ly to Ly

9: if Ly < min(L,) then

10: stop = True

11: end if

12: end if

13: Compute the gradients g;,ss and gy,

14: if gi0ss - G1ip > 0 and not stop then

bisector(gioss,9iip)

15: 9dir = Trisector(gioss-grip)|

16: 9final = W * 9dir | * 9dir

17: reduceyj, = True

18: else

19: if Jloss * glip::_l or ||gloss||||glip||::0 then
20: break — Termination

21: else if stop and loss<e then

22: break — Termination

23: end if

24: Compute new €55 using Algorithm 2.
25: if loss > ¢;,55 or stop then

26: 9final = Gloss — wglzp

27: else if Ly > L;qr g+ then

28: 9final = Glip — %gloss

29: loss = +oo, reducey, = True

30: end if

31: end if

32: =0+ grina
33: end while

knowledge distillation process improves the effectiveness of
the verification tools.

A. Experiment Setup

The continuous dynamics of a Dubins car is defined by

& =wcosf, y=wsind, OH=u

where (z,y) is the coordinate of the car and represents the
car’s position in a 2D plane. The variable 6 is the angle
between the car’s heading orientation and the z-axis. We
denote v as the speed of the car and 6 as the turning rate which
we will refer to as steering control u. In our experiments, we
assume that car speed, v, is constant.

The car is placed in a corridor environment, where obstacles
consist of walls and a square obstacle represented by yellow
lines in Fig. 4. The car starts from a location in the initial set
[—4.5, —4.4]x[0,0.1] X [0, 0.1]. Its steering control is bounded
in the interval [—1, 1] and we set car speed as v=1. The target
region lies in [1.5,2.25]x[—3.5, —2.75] x[—m, 7]. The overall

1: Input: Error tolerance e, Error Bound ¢;,55, Iteration
number k, Initial Temperature 7T, Factor 8 > 0 and loss

2: Epew ~ Uniform(0.5¢,1.5¢)
3: if loss < g, then

4: return c,,.,,

5: else

6: T = 1_{%k

7: P = exp(—+)

8 if P > Uniform(0, 1) then
9: return c,,c,,

10: else

11: return €,

12: end if

13: end if

control goal is to drive the car to the target region without
colliding with the obstacles.

B. Training of the Original Neural Network

We used a feed-forward neural network with two hidden
layers and 20 neurons in each hidden layer as the controller.
The network has ReLU activation function for hidden layers
and tanh activation function for output layer. It takes state
vector (z,y,6) as inputs and outputs steering control u. We
used the Level Set Toolbox [21] to compute a value map over
state-control space and derive the optimal control that will
keep the car away from obstacles at all times and reach the
target region at the 40" time step.

We built the training set by randomly sampling states
from the state space and collecting the corresponding optimal
controls. The training set consists of 1,300,000 state-control
pairs. The original network was trained from this training set
with squared loss and stochastic gradient descent. In practice,
such a neural-network controller might be trained from a
variety of methods or by a third party. Thus, we assumed that
we did not have access to this training data.

C. Retraining and Verification

After training the initial neural network, we used ReachNN
to check the reach-avoid property. ReachNN reports Unknown
since the overapproximation of the reachable set intersects
with avoid set at the 15" step. However, when we simulated
the controller from randomly chosen states in the initial set, we
observed that the controller can successfully meet the reach-
avoid objective. The simulated trajectories are shown in red in
Fig. 4c. It turns out that the original neural-network controller
has a large Lipschitz constant 244.3, which contributes to the
large overapproximation error.

We retrained two networks from the original neural network
with two different Li,eec values 100.0 and 0.0. For the other
hyperparameters, we set the error tolerance ¢ to 0.05, learning
rate o to 10~3, and queried 100,000 samples from the original
neural-network controller at each iteration. For Ly = 100.0,
we were able to obtain a network with a Lipschitz constant
of 100.0 after distillation. For Ligeee = 0.0, we obtained a
network with a small Lipschitz constant 13.1. We verified the
system with these two neural-network controllers separately
using ReachNN and the results are shown in Fig. 4.
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(d) Verisig: L = 17.1, Time: 12s

(e) Verisig: L = 150.4, Time: 12s

(f) Verisig: L = 348.6, Time: 15s

Fig. 4: Reachability analysis results: Yellow lines represent boundaries of the obstacles and form the avoid set. Blue square
represents the target region. Three ReLU-tanh neural-network controllers with different Lipschitz constants are checked using
ReachNN ((a) - (c)). Similarly, three tanh neural-network controllers are checked using Verisig ((d) - (f)). Note that while it
appears that Verisig terminates when the overapproximation is still tight, by monitoring the execution of Verisig, we found the
width of the remainder that represents the approximation error would explode in the following control step.
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Fig. 5: Evolution of Lipschitz constant and regression error
during the distillation process for the network used in Fig. 4a.

In Fig. 4a, we can see that the neural network with a smaller
Lipschitz constant turns the car more slowly. As a result, the
car ends up being closer to the square obstacle compared to a
neural network with a larger Lipschitz constant. On the other
hand, even though the three neural-network controllers do not
have identical behaviors or performance, sampled simulation

trajectories indicate that they may all satisfy the reach-avoid
specification. The reachable sets computed by ReachNN ended
up being very different for the three NNCSs. For the network
with L = 100.0, the reachable set blows up and intersects
with the wall before it reaches the target region at the 34"
step. For the network with the smallest Lipschitz constant
L = 13.1, ReachNN was able to show that the reachable
set is contained in the target set at the 40" step and never
intersects with the obstacle regions. This result clearly shows
the benefit of reducing the Lipschitz constant of the neural-
network controller via our distillation approach in reachability
analysis.

We also evaluated Verisig in the same manner and the results
are shown in Fig. 4d, 4e and 4f. We first trained a tanh
neural-network controller similar to the setting in Sec. V-B
and retrained two new tanh networks with the same ¢ but
different Lyq,ge¢s. For the controllers with larger Lipschitz
constants, Verisig terminates earlier and reports unknown as
the verification result. This could be because a larger Lipschitz
constant causes more neurons to activate in the network for
the same inputs, which in turn results in constructing a larger
equivalent hybrid automaton which is more difficult to handle
for reachability analysis.

Fig. 5 illustrates the evolution of Lipschitz constant and



regression error during the distillation process for training
the controller in Fig. 4a. The values were sampled every
100 iterations. We can observe that the Lipschitz constant
decreases over time but both the Lipschitz constant and the
regression error fluctuate. The fluctuations in fact follow a
certain pattern that reflects the effect of our two-objective
gradient descent approach and reprioritization scheme. A
decrease in the regression error is often coupled with an
increase in the Lipschitz constant. When the regression error
is small enough, it triggers the reprioritization scheme and
our algorithm switches to focusing on reducing the Lipschitz
constant, which in turn may cause an increase in the regression
error. Eventually, our algorithm returned a network with a
small Lipschitz constant and a small regression error with
respect to the original network.

VI. CONCLUSION

In this paper, we present a novel technique to distill a
trained network to produce a new neural network that is
more verification friendly. The key idea is to modify the
usual gradient descent to balance the two objectives of re-
ducing the regression error of retraining and reducing the
Lipschitz constant of the target network. We show that our
technique enables state-of-the-art verification tools to tighten
the overapproximation of reachable set computations and also
reduce their computation time. In the future, we plan to
explore related ideas such as model compression/pruning for
verification of neural networks and NNCSs.
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