
Application-Aware Scheduling of Networked
Applications over the Low-Power Wireless Bus

Kacper Wardega
Boston University
Boston, MA, USA

ktw@bu.edu

Wenchao Li
Boston University
Boston, MA, USA
wenchao@bu.edu

Abstract—Recent successes of wireless networked systems in
advancing industrial automation and in spawning the Internet
of Things paradigm motivate the adoption of wireless networked
systems in current and future safety-critical applications. As
reliability is key in safety-critical applications, in this work we
present NETDAG, a scheduler design and implementation suit-
able for real-time applications in the wireless setting. NETDAG
is built upon the Low-Power Wireless Bus, a high-performant
communication abstraction for wireless networked systems, and
enables system designers to directly schedule applications under
specified task-level real-time constraints. Access to real-time
primitives in the scheduler permits efficient design exploration of
tradeoffs between power consumption and latency. Furthermore,
NETDAG provides support for weakly hard real-time applica-
tions with deterministic guarantees, in addition to heretofore con-
sidered soft real-time applications with probabilistic guarantees.
We propose novel abstraction techniques for reasoning about
conjunctions of weakly hard constraints and show how such
abstractions can be used to handle the significant scheduling
difficulties brought on by networked components with weakly
hard behaviors.

Index Terms—application-aware scheduling, real-time schedul-
ing, wireless networked systems, low-power wireless systems.

I. INTRODUCTION

Across a wide swathe of engineering domains, it is often
necessary for real-world systems to behave in a predictable
manner. To this end, engineers employ models that help to link
the passage of time with the evolution of the system under test,
allowing designs to be validated for predictability. Systems
designed in this fashion are generally called real-time systems,
in the sense that the system was designed in a modeling
framework that considers real-world timing aspects alongside
the system evolution [1]. In the context of computer engineer-
ing, real-time system design is concerned with the real-time
properties of computation. Commonly, it is stipulated that the
latency of some computation have predictable behavior. Real-
time models of computer systems rely heavily on assumptions
made about the underlying hardware and software where the
computation is occurring. As such, it is important to revisit
real-time models as the hardware and software ecosystem
changes.

Recent years have shown a growing trend towards wire-
less networked systems – that is, computer systems where
independent compute-enabled components communicate via
wireless medium. Wireless networked systems can be desirable
over wired counterparts for several reasons: they may be

cheaper to install and maintain, more flexible w.r.t. changing
requirements, and amenable to mobile hardware components.
From the viewpoint of real-time systems however, the wireless
transmission of messages introduces significant uncertainties.
In response, considerable effort has been made to study the
real-time implications of de-wiring a system and to patch
and update previous real-time models to extend to wireless
networked systems. For example, mature real-time design
methodologies for wireless networked systems leverage multi-
channel TDMA for message transmission [2]. The primary
shortcomings of existing techniques is a continued dependence
on the particular network topology.

The Glossy flooding protocol shows promise as a foun-
dation for the design of real-time applications on top of
wireless networked systems in a topology-agnostic fashion [3].
Glossy floods are reliable, fast, and energy-efficient, while
simultaneously providing all-to-all wireless communication
and accurate clock synchronization. The authors of Glossy
have long argued that the reliability of Glossy floods makes
Glossy suitable for real-time applications, and have proposed a
Low-Power Wireless Bus (LWB) abstraction on top of Glossy
floods for enabling message-passing within wireless networked
applications [4].

As individual Glossy floods have demonstrably high success
rates, e.g. in excess of 99%, applications running over the
LWB can be shown indirectly to have strong real-time perfor-
mance. Our observation is that there is no current mechanism
by which system designers can directly schedule applications
to adhere to pre-determined real-time constraints. Another
drawback of current approaches is the overwhelming focus
on probabilistic, or soft, real-time properties of applications.
The weakly hard paradigm [5], an alternative approach which
focuses on a bounded non-deterministic viewpoint of real-time
performance, has gone unstudied in the context of the LWB.
In response, we claim the following contributions in this work:
• Improve upon the current state-of-the-art time-triggered

LWB scheduler design by providing access to task-level
soft and weakly hard real-time primitives.

• Provide the first openly-available implementation of a
time-triggered LWB scheduler.

• We are the first to enable weakly hard real-time con-
straints on networked applications applications running
over the LWB. We propose a novel abstraction technique

mailto:ktw@bu.edu
mailto:wenchao@bu.edu

for layered weakly hard constraints and show how the
layering abstraction can be used to schedule weakly hard
real-time applications over the LWB.

II. BACKGROUND

A. Low-power wireless bus
The LWB abstracts wireless communication and allows

compute nodes to communicate with one another as if all
of the nodes were connected by a single wired bus [4].
The LWB is time-triggered, and communication over the bus
takes place in rounds. Each communication round consists of
a beacon that conveys information about the current round,
followed by any number of contention-free slots that contain
application messages. Within a round, the beacon and each of
the subsequent slots are transmitted in an all-to-all fashion by
independent Glossy floods.

Glossy (see [3]) floods are themselves event-triggered as
opposed to time-triggered. The beginning of a round triggers
all of the nodes to turn on their radios in RX mode, sans the
source node which begins by transmitting data, namely the
message to be flooded, header and local clock information,
and a relay counter (initially 0). All nodes that successfully
receive transmitted data immediately (triggered by radio event)
increment the relay counter and switch to TX mode and begin
re-transmission of the data. Nodes switch to RX mode each
time they finish transmitting. Furthermore, nodes turn off their
radios once the round is over (time-triggered) or once they
have transmitted NTX times, a tunable parameter of the Glossy
flood.

The event-triggered Glossy flood is reconciled with the
time-triggered LWB through an estimate of how long the
Glossy flood should take to complete. The estimate of flooding
time is founded on hardware measurements of the radio wake-
up time, delay, bit-rate, the software gap (of incrementing the
relay counter), the width of the data, and finally a lower bound
on the maximum relay counter. The maximum relay counter is
a function of the bound on network diameter, D(N), and NTX.

Fig. 1. NETDAG operates on applications that can be written as a task-
dependency graphs (top). Messages that originate at the same node are treated
as being the same. NETDAG schedules the application, taking into account
not only the proper order of tasks and messages, but also the retransmission
parameters of the Glossy floods responsible for message delivery (middle).
The Glossy flood responsible for transmitting message e0 (bottom) has
retransmission parameter χ(e0). If χ(e0) is chosen too small, then τ2, τ3, τ4
may not have the real-time behavior specified by the system designer. Too
large, and the makespan becomes unnecessarily large.

The reason it is only a lower bound is because it assumes no
failed transmissions – in our work we show how to tune NTX

in order to provide real-time guarantees. A graphical view of
a networked application running over the LWB is shown in
fig. 1.

B. DAG scheduling
The input to a DAG scheduling problem for some applica-

tion A is a labeled task-dependency graph of the application
GA = (T, E). Tasks (vertices) are labeled with WCETs and
deadlines while messages (edges) are labeled with respec-
tive widths. In the classical formulation, the objective of
the scheduler is to determine optimal task placement, e.g.
on to available compute nodes, and task start times, given
some additional information about task placement costs and
message sending costs. In contrast, task placement is known
for the typical wireless networked system, since tasks involve
interactions with the real-world from a specific compute node.
Therefore, in this work the objective of the scheduler is to
determine makespan-optimal task start times concurrently with
assignments of messages to LWB rounds and the specific
parameters of each underlying Glossy flood.

C. Real-time applications
We consider two types of real-time constraints that designers

may like to have access to when scheduling applications
over a LWB. Task-level soft real-time constraints permit the
system designer to stipulate that certain tasks must have
success probability of at least some specified amount, given
independent runs of the application. Soft real-time constraints
are useful in situations where the quality-of-service of an
application depends on the success rates of the constituent
tasks, e.g. monitoring and sensing applications. Task-level
weakly hard real-time constraints permit the system designer
to stipulate the bounded non-determinism permitted of some
task, (again) given independent runs of the application [5].
Weakly hard real-time constraints are useful in the specifi-
cation of safety-critical or industrial control applications, as
deterministic guarantees more readily lead to safety proofs.
In lieu of probabilities, weakly hard constraints take the
form of (m,K)-style constraints. A task-level constraint of
(m,K) means that the task should succeed at least m times
every K task executions. Similarly, a constraint of (m,K)
means that the task should fail (due to missing dependencies)
no more than m times every K executions. Formally, a
k-sequence ω ∈ {0, 1}∗ models a weakly hard constraint
(m,K), or ω ` (m,K), if for all indices t,

∑t+K
i=t ω(i) ≥

m. Conversely, [5] defines satisfaction sets of (m,K) as
Sκ((m,K))

def
= {ω : ω a k-sequence of length κ ∧ ω `

(m,K)} and S+((m,K)) =
⋃
κ∈N S

κ((m,K)). Table I
compares soft and weakly hard constraints.

III. APPLICATION-AWARE SCHEDULING

A. Communication-to-task transformation
Consider the problem of scheduling an application A con-

sisting of finitely many tasks T on to a network N = (P, C)

TABLE I
COMPARISON BETWEEN SOFT AND WEAKLY HARD REAL-TIME

CONSTRAINTS.
constraint soft weakly hard
guarantee probabilistic bounded non-deterministic

usage monitoring/sensing safety-critical/control

example task succeeds 84%
of the time

task succeeds at least 6 times
in every 10 consecutive executions

with message-passing over a LWB. The dependency graph
of A is given by a DAG GA = (T, E). Each task is
mapped by % : T → P to a physical computing device s.t.
∀τ, µ ∈ T, p ∈ P

(%(τ) = p ∧ %(µ) = p)⇒
(
τ
GA µ ∨ µ GA τ

)
(1)

Equation (1) is not strictly necessary, it just avoids the issue
of solving the problem of placing non-interdependent tasks
on the same compute node. The known WCET, or duration,
of τ on %(τ) is denoted τ.d ∈ N. As in prior work [4],
we assume that edges with the same source carry the same
information, since Glossy floods the message to all nodes. As
such, we consider a restricted set E∗ ⊆ E of edges with unique
source nodes. The width of a message e ∈ E∗ is denoted
e.w ∈ N. Denote by L(GA) the line graph of GA. We define a
topological partial order of an arbitrary line graph G = (V,E)
to be a function l : V → N|V | satisfying ∀r, s ∈ V

r
G
 s⇒ l(r) < l(s) (2)

The definition of a valid topological partial order l of L(GA)
assigns to each message a communication round, and allows
us to define a predecessor operator pred(τ) = {x : x ∈
l(E∗) ∪ E∗, x GA τ} for tasks τ ∈ T . The duration r.d of
a communication round r ∈ l(E∗) is then given by

r.d = δr (a+ (2χ(r) + b)(c+ dγ))

+
∑
r=l(e)

a+ (2χ(e) + b)(c+ d× e.w) (3)

As mentioned in § II-A, (3) is just an estimate based
on hardware profiling, message widths, and the best-case
maximum relay counter. The a, b, c, d are known constants,
χ(r), r ∈ l(E∗) is the unknown Glossy parameter NTX for
the beacon of round r, χ(e), e ∈ E∗ is the unknown Glossy
parameter NTX for the slot containing message e, and δr is a
binary variable that indicates if round r is non-empty.

We can now define a feasible schedule for A on N over
the LWB as a tuple (ζ, χ, l), where ζ : T ∪ l(E∗) → N, χ :
E∗ ∪ l(E∗)→ N>0 satisfy the conditions:

∀τ, µ ∈ T, τ GA µ⇒ ζ(µ)− µ.d > ζ(τ)

∀r, s ∈ l(E∗), l(r) < l(s)⇒ ζ(s)− s.d > ζ(r)

∀τ ∈ T, e ∈ E∗, (r = l(e))⇒(
e
GA τ ⇒ ζ(τ)− τ.d > ζ(r)

∧ τ GA e⇒ ζ(r)− r.d > ζ(τ)
)

(4)

that tasks and communication rounds occur in the correct

order,
∀r ∈ l(E∗), x ∈ T ∪ l(E∗) \ r,

(ζ(x) < ζ(r)− r.d) ∨ (ζ(x)− x.d > ζ(r))
(5)

and that no task occurs at the same time as any communica-
tion.

In plain English, ζ sets the deadlines of the tasks and
communication rounds, while χ tunes the number of re-
transmissions (NTX parameter) of each message slot and round
beacon. Our scheduler design admits only those applications
where the task-dependency graph and task/message properties
such as duration and width are known; as such, our sched-
uler design is termed application-aware. Table II contains a
glossary of all symbols used throughout the text.

B. Soft real-time applications

For soft real-time applications, the system designer has
probabilistic constraints FS : T → [0, 1) selecting the desired
minimum probability that a task succeeds given independent
runs of A. Note that FS has structure dictated by GA, namely
that ∀τ, µ ∈ T , τ GA µ ⇒ FS(τ) > FS(µ). The reason
for the strict inequality on the RHS is that since messages
are passed over the LWB, there is no way to ensure 100%
transmission performance. We assume that the designer knows
a priori the success rate of a Glossy flood as a function of
the parameter NTX, i.e. the success rate of message sending
is a monotonically increasing function λS : N→ [0, 1). Since
flooding failures are independent, we can write the satisfaction
of FS(τ) as

FS(τ) ≤ Πx∈pred(τ)λS(χ(x)) (6)

A feasible schedule that also satisfies FS is called a feasible
soft real-time schedule. We have implemented makespan-
optimal soft real-time scheduling through both MILP and SMT
encodings [6], [7].

TABLE II
GLOSSARY OF SYMBOLS AND NOTATIONS.

D(G) diameter of graph G
NTX retransmission parameter of a Glossy flood

A, GA = (T, E) an application and its task-dependency graph
E∗ messages with unique senders

Sκ((m,K)),
S+((m,K))

κ-length sequences,
sequences that satisfy (m,K)

N = (P, C) physical network
ρ mapping of tasks to physical nodes

L(G) line graph of graph G
G
 order induced by DAG G

δr
binary symbolic variable indicating round r is
non-empty

a, b, c, d known Glossy flood parameters

χ(e), χ(r)
symbolic variable specifying NTXfor the
Glossy flood for message e, for beacon of round r

l topological partial order
pred(τ) set of rounds and tasks that precede τ
ζ(τ), ζ(r) deadline of task τ , round r
λS, λWH soft, weakly hard network statistic
FS,FWH task-level soft, weakly hard constraints
[(m,K)] equality class of (m,K) induced by �

⊕ min-plus abstraction for conjunction of
weakly hard constraints

C. Weakly hard real-time applications

A drawback of the soft real-time paradigm is that it can only
provide system designers with probabilistic guarantees, which
may not be strong enough for safety-critical applications.
To this end, the system designer can model communication
performance not with probabilities, but with some notion of
bounded non-determinism. In particular, the designer assigns
to each task (m,K)-style constraints FWH : T → N2 s.t.
∀(m,K) ∈ FWH(T), m ≤ K ∧m > 0. As in the soft real-time
case, FWH inherits some structure from GA. In the weakly hard
case, we have that ∀τ, µ ∈ T , τ GA µ ⇒ FWH(τ) � FWH(µ).
Here, � is a partial order (due to [5]) on weakly hard
constraints defined by the property

(α, β) � (γ, δ)⇔

γ ≤ max

{⌊
δ

β

⌋
α, δ +

⌈
δ

β

⌉
(α− β)

}
(7)

The designer in the weakly hard case knows the bounded
failure behavior of a Glossy flood as a function of the NTX

parameter, λWH : N → N2, where λWH satisfies the same
co-domain properties as FWH and is monotonically increasing
w.r.t. �. Satisfaction of FWH is significantly more difficult to
write down than for FS due to the combinatorial nature of
bounded non-determinism. As in (6), all of the Glossy floods
on which τ depends must succeed in order for τ to succeed.
Since we now have bounded non-deterministic behavior of
the Glossy floods, checking satisfaction of FWH(τ) involves
checking if for all k-sequences ωi ∈ S+(χ(i)), i ∈ pred(τ),
it is the case that the k-sequence ω, ω def

= ∧iωi, is a model
of χ(τ). To reduce the complexity of solving universally
quantified equations, we introduce the first, to the best of our
knowledge, abstraction for layered, or rather conjunctions of,
weakly hard constraints.

Given two weakly hard constraints x and y, we define the
set Ω⊕(x, y) = {[z] : ωl ∈ S+(x)∧ωr ∈ S+(y)⇒ (ωl∧ωr) ∈
S+(z)}. The set Ω⊕(x, y) contains the equality classes [z] of
weakly hard constraints that are guaranteed to hold under any
conjunction of two k-sequences ωl and ωr that satisfy x and
y respectively. We define our abstraction of the conjunction of
weakly hard constraints by

(α, γ)⊕ (β, δ)
def
= (min{α+ β, γ, δ},min{γ, δ}) (8)

At first glance, (8) may seem disappointingly simple as
it states that the conjunction of two weakly hard constraints
results in a new weakly hard constraint that adds the number
of misses allowed, restricted to the smaller of the two windows
γ, δ. Formally, we state the following results.

Soundness
Given two weakly hard constraints x and y, ∃[z] ∈
Ω⊕(x, y) s.t. x⊕ y ∈ [z].

Tightness
There exist infinitely many pairs of weakly hard
constraints x and y s.t. x⊕ y ∈ inf Ω⊕(x, y).

Proof Given weakly hard constraints (α, γ) and (β, δ), let

ωl ∈ S+((α, γ)) and ωr ∈ S+((β, δ)). Assume WLOG that
γ ≤ δ (since ⊕ commutes), then ωr ∈ S+((β, γ)) since by
corollary of (7), (β, δ) � (β, γ). Now consider any γ-length
window of ωl∧ωr, the worst case number of misses is clearly
min{α + β, γ}; the number of misses can get no worse than
by having all α misses allowed in ωl followed by all β misses
allowed in ωr. Incidentally, ⊕ is tight whenever γ = δ. �

For the price of completeness, the ⊕ abstraction for con-
junction of weakly hard constraints allows us to write the
satisfaction of FWH(τ), without universal quantifiers, as⊕

x∈pred(τ)

λWH(χ(x)) � FWH(τ) (9)

Equation (9) is not amenable to disciplined quasi-convex
programming rules, which precludes the use of MILP solvers
[8]. On the other hand, there is currently no SMT solver for a
theory including b·c, d·e functions. As a result, we again apply
corollaries of (7) to obtain our final abstraction for checking
the satisfaction of FWH(τ): ⊕

x∈pred(τ)

λWH(χ(x))

 .m ≥ FWH(τ).m

∧

 ⊕
x∈pred(τ)

λWH(χ(x))

 .K ≤ FWH(τ).K

(10)

A feasible schedule that also satisfies FWH is called a feasible
weakly hard real-time schedule. We implement weakly hard
real-time scheduling through an encoding to SMT, which
provides makespan-minimal schedules subject to the (10)
abstraction.

IV. EXPERIMENTS

A. Validation
We perform a simulation-based validation (sanity-check)

of our scheduling formulation. Given a real-time schedule
(ζ, χ, l) for an applicationA, we check the real-time properties
of a task τ of A given independent runs of the system. To
simulate κ runs of τ , we sample k-sequences ωx of length
κ at random from each predecessor x ∈ pred(τ) of τ w.r.t.
to the network statistic. The behavior of τ is then given by
ωτ (t) = ∧xωx(t). In the soft real-time case,

ωx(t)
i.i.d.∼ Bernoulli(λS(χ(x))) (11)

The test statistic is given by υ =
∑
t ωτ (t)/κ, and can

be used to construct a test for υ ≥ FS(τ). In the weakly
hard real-time case, we obtain interesting miss-patterns for
task x by synthesizing sequences that are in the satisfaction
set of λWH(χ(x)), but not in the satisfaction set of some weaker
constraints. Namely, say that λWH(χ(x)) = (mx,Kx), then we
synthesize

ωx ∈Sκ((mx,Kx))

− Sκ((mx − 1,Kx))

− Sκ((mx,Kx + 1))

(12)

Here, we just check to ensure that ωτ ` FWH(τ). Our
scheduling implementation and validation scripts are available
at https://github.com/netdag/netdag.

B. Wireless MIMO & switched controllers
Our NETDAG approach can be gracefully applied to sched-

ule safety-critical applications with multiple controllers, for
example multi-input/multi-output (MIMO) or switched control
applications (or applications that are both). MIMO applications
are those with multiple control tasks, each of which receives
input messages from sensing tasks and emits messages to
different sets of actuation tasks. Designers can leverage our
scheduler to freely configure how often each control output
is required (and by which actuation task), and NETDAG
will minimize the amount of time spent on communication.
Switched control applications are those with multiple control
tasks that each message the same actuation task – some of the
control tasks may offer a higher quality of control output at the
expense of a larger WCET. Exactly as in the MIMO situation,
system designers can simply specify how often each type of
control output is required and again the scheduler will take
care of reorganizing communications in an optimal fashion.

As a demonstration, we schedule the simple MIMO applica-
tion AMIMO consisting of six sensing tasks, three control tasks,
and four actuator tasks, and randomly selected links between
task sets. We assign the underlying network N a synthetic
weakly hard network statistic:

λ(n) =
(⌊

10e−
1
2n
⌋

+ 1, 20n
)

(13)

Equation (13) is a valid weakly hard network statistic, as
it satisfies ∀n, k ∈ N>0, n < k ⇒ λ(k) � λ(n). The system
designer can then query the NETDAG scheduler for the mini-
mum feasible latency for AMIMO under a variety of task-level
weakly hard constraints. In our experiment, we incrementally
assign weakly hard constraints to the actuation tasks. Fig.
2 reports our scheduler’s output, showing how application
latency increases as weakly hard constraints become stricter
and as more actuation tasks have weakly hard constraints.

Fig. 2. The makespan of a MIMO application increases as weakly hard
constraints are incrementally applied to the actuator tasks. The makespan also
increases as the applied weakly hard constraint becomes more strict.

C. Weakly hard constraints for control tasks
In [9], the authors demonstrate high-performance wireless

control in a cartpole environment over the LWB. The authors
demonstrate the tradeoff between the amount of time spent
in communication and the average availability of the current

control output at the actuating node. Unfortunately, it is
often difficult to reason about the safety or even stability
of a controlled system using only the average control output
availability. In [10], the authors show that it is possible to
prove forward reachability for some dynamical systems if the
behavior of the controller output is weakly hard, motivating
the usage of weakly hard constraints as a design methodology
for safety-critical systems.

In order to better understand empirically how weakly hard
behaviors impact control performance in dynamical systems,
we inject faults in the control of a classic cartpole environment.
The weakly hard miss-patterns ω are sampled according to
(12). The controller c is a state-of-the-art neural network that
maps inputs in the state space X to control outputs Y . The
control signal y is then given in terms of the observation signal
x,

y(t) = (1− ω(t))c(xt) + ω(t)y(t− 1) (14)

for time t > 0 and initial condition y0 = 0. As expected, we
observe that under fixed K, increasing the number of permitted
misses m lowers the average performance of the controller.
Conversely, under fixed m, increasing the window size K
increases average performance. These trends are highlighted
in fig. 3.

Fig. 3. Impact of changing weakly hard behavior of state-of-the-art neural
network controller on cartpole balance performance. Performance is measured
in number of time steps on average that the controller can keep the cartpole
balanced over a set of injected (m,K) faults.

D. Design space exploration
In the design of low-power real-time wireless networked

systems, system designers will like to know what options
are available as far as power consumption of the inter-node
communication layer. NETDAG offers designers the ability to
efficiently explore the impact of different radio configurations
on the real-time performance of an application. Changing the
transmission power of the radios across Qi different power
settings results in different bounds on the network diameter,
(D(N))i, and network statistics λi. The system designer,
equipped with the (D(N))i, λi, can then leverage NETDAG
to discover the minimal transmission power setting Qi that
satisfies the application’s task-level deadline constraints.

We perform a proof-of-concept experiment that illustrates
the transmission power exploration workflow by simulating
an application that is to run on physical nodes that are mobile
within the unit square. Each node has a finite number of
transmission power settings Qi ∈ Q = (0, 1]. We define the

pairwise signal strength between nodes x, y ∈ P separated
by radius r(x, y) as SSi(x, y) = Qi/r(x, y)2. Signal strength
saturates at 2 and nodes with pairwise signal strength at or
below 0.5 are out-of-range. We denote by fSSi the saturation-
and out-of-bound- filtered signal strength function with co-
domain (0.5, 2]. As the nodes move in the unit square, the
system designer profiles the worst-case average (over pairs of
nodes) pairwise signal strength, fSSi, and network diameter,
(D(N))i, against the transmission power Qi. The results of
profiling in-simulation are shown in the left two plots of fig.
4. We pick a soft real-time statistic parameterized by fSSi,

Fig. 4. Transmission power design exploration workflow. The designer
begins by profiling the network statistic and network diameter under different
TX power settings Qi. NETDAG can then provide the changing real-time
performance of an application running atop the wireless networked system.

λi(n) =
2

1 + e−fSSi·n
− 1 (15)

Equation (15) satisfies the required network statistic prop-
erties since it has co-domain [0, 1) and is monotonically
increasing for n ≥ 1. Finally, we can feed λi and (D(N))i to
NETDAG and find the end-to-end latency of some application
A. The right plot of fig. 4 shows the end-to-end latency of
AMIMO as a function of Qi.

V. RELATED WORK

The formulation of the DAG scheduling problem over
the LWB is largely the same as the one found in [11]; in
our work we do not consider the additional complexities of
operating modes. Similarly motivated by exploring the tradeoff
between control performance and communication overhead,
other scholarship has also considered modulating the com-
munication overhead for LWB-based networked applications
under changing requirements on the availability of data sent
over the LWB, namely [12] proposes efficient methods for
modulating application period at runtime for control appli-
cations. Orthogonal to our work is the enabling of dynamic
scheduling for real-time LWB-based applications. Blink is a
novel dynamic real-time wireless protocol over the LWB [13],
where the main result is a contract and guarantee system for
applications wishing to send messages over the LWB. The
authors of [14] perform extensive real-time analysis of the en-
tire transmission chain to prove real-time properties of Blink.
A key result that establishes a strong theoretical foundation
for our work (and for [11], [13], [14]) is [15], in which the
authors show that Glossy floods can be treated as independent
Bernoulli trials and demonstrate that this statistical fact can
be used by a scheduler to provide soft real-time guarantees.
Inspired by [16], ours is the first work to consider weakly hard
constraints on wireless applications over the LWB.

VI. CONCLUSION

We have presented NETDAG, a time-triggered scheduler
design for real-time wireless networked systems. NETDAG is
not only the first such scheduler with support for the weakly
hard real-time paradigm, but also the first LWB-based sched-
uler that directly supports real-time constraints in the form
of task-level soft or weakly hard primitives. The weakly hard
paradigm is a useful tool for dealing with uncertainties stem-
ming from wireless communication, and we have introduced
an abstraction to ease the scheduling of networked weakly
hard real-time applications. Furthermore, we have shown that
communication reliability is an important parameter in the
design of real-time wireless networked systems and that it
can be used to explore the energy/performance trade-off. We
believe that enabling the weakly hard paradigm is an important
step towards reliable real-time networked applications.

REFERENCES

[1] K. G. Shin and P. Ramanathan. “Real-time computing: a new discipline
of computer science and engineering”. Proceedings of the IEEE, vol. 82,
no. 1, pp. 6–24, 1994.

[2] J. Song, et al. “WirelessHART: Applying wireless technology in real-
time industrial process control”. Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pp.
377–386, 2008.

[3] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. “Efficient net-
work flooding and time synchronization with glossy”. Proceedings of
the ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), pp. 73–84, 2011.

[4] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. “Low-power
wireless bus”. Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems (SenSys), p. 1, 2012.

[5] G. Bernat, A. Burns, and S. Member. “Weakly hard real-time systems”.
IEEE Transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[6] L. De Moura and N. Bjørner. “Z3: An efficient SMT Solver”. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340, 2008.

[7] Gurobi Optimization, LLC. “Gurobi optimizer reference manual”, 2019.
[8] A. Agrawal and S. Boyd. “Disciplined quasiconvex programming”.

arXiv:1905.00562, 2019.
[9] F. Mager, et al. “Feedback control goes wireless: guaranteed stabil-

ity over low-power multi-hop networks”. Proceedings of the 10th
ACM/IEEE International Conference on Cyber-Physical Systems (IC-
CPS), 2019.

[10] C. Huang, W. Li, and Q. Zhu. “Formal verification of weakly-hard
systems”. Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC), pp. 197–207, 2019.

[11] R. Jacob, et al. “TTW: a time-triggered wireless design for CPS”.
Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE), pp. 865–868, 2018.

[12] Y. Ma and C. Lu. “Efficient holistic control over industrial wireless
sensor-actuator networks”. Proceedings - IEEE International Conference
on Industrial Internet (ICII), pp. 89–98, 2018.

[13] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele. “Adap-
tive real-time communication for wireless cyber-physical systems”. ACM
Transactions on Cyber-Physical Systems, vol. 1, no. 2, pp. 1–29, 2017.

[14] R. Jacob, M. Zimmerling, P. Huang, J. Beutel, and L. Thiele. “End-to-
end real-time guarantees in wireless cyber-physical systems”. Proceed-
ings - Real-Time Systems Symposium, pp. 167–178, 2017.

[15] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele. “On modeling
low-power wireless protocols based on synchronous packet transmis-
sions”. Proceedings - IEEE Computer Society’s Annual International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, MASCOTS, pp. 546–555, 2013.

[16] C. Huang, K. Wardega, W. Li, and Q. Zhu. “Exploring weakly-hard
paradigm for networked systems”. Proceedings of the Workshop on
Design Automation for CPS and IoT, pp. 51–59, 2019.

