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Abstract—Control schemes for autonomous systems are often designed
in a way that anticipates the worst case in any situation. At runtime,
however, there could exist opportunities to leverage the characteristics
of specific environment and operation context for more efficient control.
In this work, we develop an online intermittent-control framework that
combines formal verification with model-based optimization and deep
reinforcement learning to opportunistically skip certain control computa-
tion and actuation to save actuation energy and computational resources
without compromising system safety. Experiments on an adaptive cruise
control system demonstrate that our approach can achieve significant
energy and computation savings.

Index Terms—opportunistic intermittent control, safety guarantee,
formal methods, robust control invariant, safe RL, energy saving

I. INTRODUCTION

For safety-critical autonomous systems such as robots and auto-
mated vehicles, control schemes are often designed conservatively
so that system safety can be maintained in a wide variety of
situations [1]-[3]. During the operation of these systems, however,
such schemes can be overly conservative and result in unnecessary
resource and/or energy consumption. This paper first makes the
observation that certain control steps, even if they are skipped, do not
impact either the performance or safety of the overall system. Armed
with this observation, we propose an online scheme that opportunis-
tically skips control computation and the corresponding actuation
steps by learning specific characteristics of the system’s operating
environment. We further show that safety could be maintained with
this more efficient control scheme.

Consider the example of an adaptive cruise control (ACC) system,
in which an ego vehicle automatically adjusts its speed to maintain
a safe distance from the vehicle in front. To ensure the safety
across a variety of situations (e.g. an aggressive front vehicle vs. a
conservative front vehicle), the ego vehicle may adopt a safe control
scheme such as one that based on robust model predictive control
(RMPC) [1]. At each control step, the RMPC calculates the actuation
signal based on the two vehicles’ speeds and their relative distance.
However, it does not make any prediction on the front vehicle’s
intent. In practical scenarios, the front vehicle may exhibit certain
behavior patterns, e.g., an aggressive driver that accelerates and
decelerates frequently, or stop-and-go in a traffic jam. We argue that
we can design more computation/energy-efficient control schemes by
learning and exploiting these patterns. The key is how to learn these
patterns quickly and how to guarantee system safety when certain
control steps are skipped.

In this work, we consider systems with an existing safe controller,
and develop a novel online intermittent-control framework to op-
portunistically skip the computation and actuation of the underlying
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controller by leveraging the characteristics of specific operation
context and environment. For instance, at each control step of the
above ACC example, our method will decide whether to run the
underlying RMPC and apply its actuation/control input, or simply
apply a zero control input. Such opportunistic skipping could help
save computational resources for running the underlying control
algorithm and save actuation energy by applying zero control inputs.
To achieve both safety and efficiency, our method addresses two key
challenges: 1) How to ensure the system safety when zero input is
applied at some control steps? 2) How to effectively leverage the
characteristics of specific operation context and environment?

For the first challenge, our framework uses formal analysis to
guarantee the system safety under skipping of controls. Specifically,
we first compute a strengthened safe set based on the notion of
robust control invariant and backward reachable set of the underlying
safe controller. Intuitively, the strengthened safety set represents the
states at which the system can accept any control input at the current
step and be able to stay within safe states, with the underlying safe
controller applying input from the next step on. We then develop a
monitor to check whether the system is within such strengthened safe
set at each control step. Whenever it is found that the system state is
out of the strengthened safe set, the monitor will require the system to
apply the underlying safe controller for guaranteeing system safety.

For the second challenge, we develop two approaches to leverage
the characteristics of operation context and environment when the
system is within the strengthened safe set, depending on the type
of the underlying safe controller and whether the characteristics are
known explicitly. In the simpler case where the safe controller has an
analytic expression and the characteristics can be explicitly captured,
we use a model-based approach to decide the skipping choices by
solving a mixed integer programming (MIP) program. Otherwise,
we use a deep reinforcement learning (DRL) approach to learn the
mapping from the current state and the historical characteristics to
the skipping choices, which implicitly reflects the impact of specific
operation context and environment.

Related work: Our work is related to the rich literature on weakly-
hard systems and fault-tolerant control systems. In weakly-hard
systems, occasional deadline misses are allowed for control com-
putation in a bounded manner, e.g., the typical (m, K) constraint
allows at most m deadline misses in any K consecutive control
instances [4]-[6]. In fault-tolerant control systems, broader fault types
(e.g., sensing, actuation, or system errors) and fault models (e.g.,
stochastic model) are considered [7]. However, while these works
try to preserve the system safety [8]-[10] or stability [11], [12]
under passive faults, our work considers skipping control operations
proactively to save resources for control computation and reduce
energy for actuation.

Our work is also related to methods on safe reinforcement learn-



ing [13]-[15], as we also restrict the possible system actions to a
safe set for ensuring safety. The difference is that our approach
computes the safe action set by deriving the robust control invariant
and backward reachable set of an underlying controller and then
leverages the safe set for proactively exploring control skippings.

In summary, this work makes the following novel contributions.

e We develop a novel online intermittent-control framework for
opportunistically skipping the computation and actuation of an
underlying safe controller to save computational resources and
actuation energy. Our framework can be generally applied to
various underlying controllers in a discrete linear time-invariant
system, and achieves both safety and efficiency.

e Our framework ensures safety by developing a formal method to
compute a strengthened safe set of the underlying controller.

e Our framework achieves efficiency by developing a model-based
approach and a DRL-based approach to decide the skipping
choices of the underlying controller under different scenarios. The
model-based approach is applied when the underlying controller
has an analytic expression and the characteristics of specific
operation context and environment are explicitly known; while
the DRL approach is applied otherwise.

o We demonstrate the effectiveness of our approach through exten-
sive experiments on an ACC case study, using the widely-used
SUMO (Simulation of Urban Mobility) simulator [16].

II. PROBLEM FORMULATION

We consider a discrete linear time-invariant (LTI) system described
by the following difference equation:
z(t+ 1) = Az(t) + Bu(t) + w(t), t >0, (1)
where € R"™ is the state variable, v € R™ is the control
input variable, and w is a bounded perturbation. A and B are
transformation matrix. We assume that the state space of the system
is R". The constraints on the safe state, the control input, and the
bounded perturbation are
z(t) € X, u(t) € U, w(t) € W, 2)
where X C R™, U C R™ and W C RF are polytopes, and 0 € X,
0 € U, 0 € W. Note that X represents the set of safe states, and
perturbation w(t) captures the characteristics of the specific operation
context and environment.

We assume that such system can be controlled by a safe feedback
controller . At each sampling instant ¢ = 0,1, - - -, the system reads
the state x(¢) of the plant and feeds it to the controller ~ to obtain
the control input v = x(x). The new input u(t) will be applied at
the next time step. We use 1-norm of the input ||u(¢)||1 to represent
the energy cost at each control step.

A well-designed controller x may ensure the system safety by sus-
taining any possible perturbation. However, when applying in prac-
tice, such design may be over-conservative and energy-consuming.
Thus, the question is whether we can save actuation energy (and
possibly also computational resources) by skipping the computation
and actuation of control inputs (i.e. using zero inputs) at some steps.
This requires effectively leveraging the dynamic characteristics of
specific operation context and environment at runtime (reflected via
the pattern of perturbation w(¢)), while guaranteeing system safety.

We use a binary indicator z(t) at time step ¢ to represent the
skipping choice: 1 denotes actuating the control input computed by
the controller x, and 0 denotes skipping the control and applying
zero input. Our online opportunistic intermittent-control problem can
be formulated as follows.

Fig. 1: Three safe state sets of different levels: strengthened safe set
X', robust invariant set X, and original safe set X. For instance,
for x1 € X', in the next time step the system may steer to either
2 or x3 that are both within X; and hence safe and controllable.
For x3 € X; — X', the system may steer to x4 in the next step by
applying actuation from k, which is still controllable. However, if
applying zero input at x3, the system may go out of X; and steer
to x5 € X — Xy. x5 is a safe state for now. However there is no
guarantee that the system will remain within X in the next step, even
with the actuation from x.

Problem 1 (Online Opportunistic Intermittent-Control Problem).
Given a dynamical system defined in Equation (1) and a controller
K that can ensure system safety, i.e., x(t) € X, the opportunistic
intermittent-control problem is to determine the skipping choice
variable z(t) at each control instant t, such that the system will stay

within X and the overall energy cost Y o= ||u(t)| is minimized.

ITI. OPPORTUNISTIC INTERMITTENT-CONTROL FRAMEWORK

There are two key aspects of our approach: 1) ensuring that the
system always stays within the safe state space X, and 2) deciding
the skipping choice variable z(t) by leveraging the characteristics of
perturbation w.

For the first aspect, to ensure system safety, we define three safe
state sets of different levels, namely the original safe set X, the
robust invariant set X, and the strengthened safe set X ' as shown
in Figure 1. The original safe set X is the largest of the three, and
given by the problem definition. While the system is still safe within
this set, there is no guarantee that it will stay within X for the next
time step, even with the input from the underlying safe controller .
Thus, we consider the robust invariant set X; C X. When the system
is within this set, it is still controllable and can remain in this set by
applying the controller x. Finally, for considering skipping controls,
we define the strengthened safe set X’ C X;. When the system is
within this set, it will stay within X; (and thus controllable and safe)
for the next time step, regardless of the skipping choice at the current
step (i.e., regardless of whether z(t) is 1 or 0). Intuitively, the goal
of our framework is to make skipping choices when the system is
within the strengthened safe set X', and to apply the underlying safe
controller x whenever the system goes out of X’ but is still within
the robust invariant set X; (x will be applied until the system goes
back to X’). Note that the system is guaranteed to never go out of
X1 and thus maintain safety.

For the second aspect of our approach, to decide the skipping
choices, we develop a model-based approach and a DRL-based
approach for different scenarios based on whether the underlying
controller has an analytic form and whether the characteristics of the
perturbation w(t) is known.

The schematic of our opportunistic intermittent-control framework
is shown in Figure 2. Its flow is shown in Algorithm 1. As afore-
mentioned, to ensure safety, we will first compute the robust invariant
set X and the strengthened safe set X’ (lines 1). In our approach,
the initial state has to be within X; (line 2). During operation, at
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Fig. 2: Schematic of our online opportunistic intermittent-control framework. Note that at time step ¢ — 1 and ¢ + 2, the system state is in
the strengthened safe set X', and thus the skipping choice variable can be freely chosen.

each time step ¢, we will monitor the current state z:(¢) by collecting
sensor inputs. If z(¢) is within X', we know that the system will
remain within X regardless of whether we skip the actuation from
K at this step, and we will determine the skipping choice z(t) via
a function € that uses the model-based approach or the DRL-based
approach (line 6). If z(t) is out of X’ (i.e., within X; — X), we
cannot skip the actuation of x and have to set the skipping choice
z(t) to 1 (line 9). Finally, depending on the value of z(t), either the
actuation input from ~ or zero input will be applied (lines 10 to 15).

Algorithm 1: Opportunistic Intermittent-Control Framework

1 Compute robust invariant set X; and strengthened safe set X';
2 Initialization: ¢ + 0, (0) € X7;
3 while rue do
4 Monitor the current state x(¢) via sensor inputs;
if x(t) € X' then
‘ z(t) < Q(z(t),w(t));
else
‘ z(t) «+ 1,
end
10 if z(t) = 1 then
11 | u(t) « w(xz(t));

E-TE-CHEE B

12 else

13 | u(t) + 0;

14 end

15 Actuate the control input wu(t);
16 t+—t+1;

17 end

The key components in our framework is the computation of X7
and X' for ensuring safety, and the design of the function  for
making skipping decisions. Next, we will introduce their details.

A. Ensuring Safety: Computation of Robust Invariant Set X; and
Strengthened Safe Set X'

To compute X and X', we first introduce the concept of robust
control invariant set [17] and backward reachable set [18].

Definition 1 (Robust Control Invariant Set). Given a discrete dynam-
ical system as defined in Equation (1) and a controller k, the robust
control invariant set of the system is defined as:

Xr={z|VYw e W,z € X7,32" € X1, f(x,rx(z),w) =2'}. (3)

Definition 2 (Backward Reachable Set). Given a discrete dynamical
system as defined in Equation (1), a controller k and a set Y, the
(one-step) robust backward reachable set of the system from'Y under
a skipping choice variable z is defined as:

B(Y, ) {z |VweW,z’ €Y, f(z,k(z),w) =2}, z2=1,
T e lYw e W €Y, f(x,0,w) =2}, z=0.

Definition 3 (Strengthened Safety Set). Based on Definitions 1 and 2,
we define the strengthened safe set X' as:

X' = B(X1,0)N X;. @)

Theorem 1 (Safety of Our Approach). Let X' and X1 be defined
as Equation (4) and Equation (3), respectively, our framework can
ensure the system safety for any skipping decision function ).

Proof. Since X' = B(X,0) N X; C X, the system is safe if = €
X'. Assume that at time step ¢, the monitor observes that the system
goes out of the region X', ie. z(t) € X; — X' (see Figure 2).
While at the last time step t — 1, the system was still in X', i.e
z(t—1) € X' = B(X;,0) N X; = B(Xr,0)N B(Xy,1). By the
definition of backward reachable set, we know that z(¢) € X;. Thus,
based on the definition of robust controlled invariant, the system is
controllable and will remain in X; under x. This shows that our
framework (Algorithm 1) will always maintain system safety. O

Computing X; and X’. We first consider the computation of the
robust control invariant set X;. For linear feedback control, namely
k(z) = K, the robust invariant can be computed as [19]:
Xi=a(W& (A+ BK)W®---® (A+ BK)"W),

where o and n ares hyper-parameters. @ denotes the Minkowski sum.

For more advanced control algorithms, we take robust model
predictive control (RMPC) as an example, which considers the
nominal system model and tightened constraints [1], [2]. Given a
system state x(t), RMPC solves the following optimization:

J(x(t)) £ m Z Pllz(k[t)lr + Qllu(k[t)]1
k=0
z(k + 1|t) = Az (k|t) + Bu(klt), 0<k<N-1, )
o JoE) € X, osken
w(klt) € U, 0<k<N-1,
z(0ft) = (t), z(Nt) € X,



where u(k|t) and z(k|t) denote the input and state of ¢+ k predicted
at t respectively. tg = w(0[t),--- ,u(N — 1|¢), P and Q are the
weights of the state cost and energy cost, respectively. X; is the
terminate set to ensure stability [20], and the tightened constraints
X (k) is defined recursively as follows.

X(0) = X,
X(k)y={z|zecX(k-1) A z® A" 'W C X(k-1)}, k>1.
Let u be the optimal solution. Then the first sample of uj will
be applied for actuation: x(z(t)) = u*(0[t). We leverage the idea
of explicit MPC [21] to first analyze the feasible region of MPC,
namely, the state set where MPC optimization is feasible. Assuming
the feasible set of the given RMPC is X, we have:

Proposition 1. The feasible set X of the RMPC is also its robust
control invariant set (i.e., X1 = Xr), if the terminal set X ensures
stability, that is, there exists a robust local controller k1 such that
krp(x)+w € Xp, Vo € Xr,w e W.

Proof. Given any z(t) € X, by the definition of X, we know that
the optimization problem of J(z(t)) is feasible and let the optimal
solution be uy. We also let the corresponding optimal value of
z(1|t), -+ ,x(N[t) be x*(1]¢t), - ,z*(N|t). By the methodology
of MPC, we know that the system will steer to x(t + 1) =
z*(1]t) + w(t) € X(0). Now we consider the feasibility of the
optimization problem J(x (¢ + 1)). We construct a control sequence
by combining part of the optimal value of %3 and the local controller
kL, namely u*(1]¢), - ,u*(N — 1|t), k(2" (N|t)). We have This
control sequence is feasible for J(x(t + 1)). Therefore we have
x*(1]t)€ X, which means X is the robust control invariant set. [J

After obtaining the robust control invariant X; for the RMPC,
we can compute the backward reachable set B(X;,0) using the
following formula if A is invertible:

B(Xfa 0) = Ail(XI S W)v
where © denotes the Minkowski difference.
B. Achieving Efficiency: Design of Skipping Decision Function §2
As aforementioned, we develop a model-based approach and a
DRL-based approach for making the skipping decisions (function 2
in Algorithm 1), with the system safety guaranteed by Theorem 1.
1) Model-based Approach: If the control law can be represented
as an analytic expression and the perturbation is known, i.e. w(t)
is known for any ¢ > 0, we can develop a model-based approach
for optimizing the skipping choice made in function €. Specifically,
at each time step ¢, we solve the following finite-time optimization
problem:
_min_
ZH,UH,TH

S ukle)s
k=0

x(k + 1t)=f(x(k|t), u(k|t), w(k|t)), 0<k<H-1,
z(k+1t) € X', wu(klt) €U, 0<k<H-1, (©6)
s.t. k(z(k)), =z(t)=1,
u(k) € {0, o OSkSHAL
z(0ft) = x(t),
where zg = z(0|t), - ,z(H — 1|N), ag = u(0Jt), -+ ,u(H —

1|N), and Zg = z(0|t),--- ,z(H|N). Let zj; be the optimal
solution. Then the first sample of z7; will be applied as the skipping
decision, i.e., Q(z(t)) = 2" (0[t).

Remark 1. The above optimization formulation (6) is in fact similar
to MPC [22], as it is also based on the idea of deciding present action

by predicting long-term behavior. However, note that our optimization
does not encode terminal constraint as in [20] as stability does not
need to be considered.

2) DRL-based Approach: Most advanced control schemes such as
the MPC cannot be simply represented as an analytic expression.
Furthermore, it is often impossible to know the perturbation w(t)
that reflects the specific operation context and environment a prior. In
such case, we develop a machine learning approach for the skipping
decision function {2 to learn and leverage the underlying perturbation
pattern. Since there is typically a lack of labelled data for such
systems in practice, we use a deep reinforcement learning (DRL)
based approach rather than supervise learning. Specifically, we design
the following DRL agent for 2.

Actions. The DRL agent generates two types of actions, 0 or 1,
representing the cases of z(t) = 0 or z(¢) = 1 in skipping decision.

State. The action of 2 depends on not only the observation of current
system state, but also the information of past perturbations. Thus, we
define a hyper-parameter r, which represents the memory length of
the perturbations. The state for the DRL agent is the set as s(t) =
{z(t),wt—r+1),--- ,w(t)}

Reward (Penalty) function. Typically, if the system goes out of the
strengthened safe set X’ frequently, more non-zero inputs computed
by the underlying controller x need to be applied and there is less
energy saving. Thus, the goal of the DRL agent should include both
minimizing the energy cost > ||u(¢)||1 directly and maintaining the
system within the strengthened safe set X'. Following this idea, we
design the reward function R(s1, 2, s2) of DRL with respect to the
agent predecessor state si, the action z and the successor state 2,
with consideration of both objectives:

R(s1,z,82) = —w1 - R1 — w2 - Ra,
T2 € X ,,

0, 0,
Rl = / R2 =
1, =€ X;—- X', [k (z1)]l1,

where R; and R are the reward for maintaining the system state x
in X’ and the reward for the current energy cost, respectively. w1
and wo are the weights for Ry and Ro.

2=0Az1€X’,

others.

Learning process. Our DRL agent interacts with the underlying
controller x at each time step. For convenience, we let w(—r +
1),--- ,w(—1) be 0. The DRL agent starts with the initial state
s(0) = {z(0),w(—r+1),--- ,w(0)}, and generates the first action
2(0). If 2(0) = 1 and z1€X’, the underlying controller x will be
applied to compute the control input u(0) = x(x(0)); otherwise,
we let u(0) = 0. Once u(0) is applied, the next system state x(1)
is generated. We can then calculate the reward and run the policy
network based on the reward, and then obtain the action z(1) for the
next step. We repeat this until we reach the maximum steps, which
is a hyper-parameter set in advance.

Note that when the DRL agent drives the system state out of the
strengthened safe set X' (i.e., into X; — X’), we will apply the
underlying controller « to ensure system safety. The DRL agent
will also receive a large penalty in such case (as defined above
in the reward function), so it can be motivated to keep the system
state within X’ for more efficient control and better learning of the
perturbation pattern.

IV. EXPERIMENTAL RESULTS ON AN ACC CASE STUDY

In our experiments, we conduct an extensive case study on an
adaptive cruise control (ACC) system [9], [23]. As shown in Figure 3,
there are two vehicles Ego and Front driving on the road. The Front
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Fig. 3: Schematic view of a cruise control scenario.

vehicle is moving at a velocity vy (which may change over time).
We are able to control the Ego vehicle by tuning its acceleration with
a velocity-related resistance. Let s be the relative distance between
Ego and Front, and v be the velocity of Ego. The system dynamics
follow the standard Newton’s laws of motion:
s(t+1) = s(t) = (v(t) —vs (D)9,

{ v(t+1) = () — (kv(t) —u(t))d,
where (s,v) forms the state variable and w is the control input
variable. 6 = 0.1 is the sampling/control period, and k¥ = 0.2 is
the drag coefficient. The velocity of the Front vehicle is within the
range vy € [30,50]. The ACC system tries s € [120,180] for any
possible vy. The Ego vehicle has constraints on its velocity and
actuation/control input: v € [25,55],u € [—40,40]. The control
input u is computed by the aforementioned RMPC xg [1] with the
prediction horizon set to 10.

As mentioned in Section III, for an advanced controller as RMPC,
we use double deep Q learning [24] to design the skipping decision
function €2. The hyper-parameters used in DRL are set as follows.
The perturbation memory length » = 1. The weights in the reward
function w; = 0.01 and we = 0.0001. The training and testing
of all the experiments are performed on a desktop with 4-core 3.60
GHz Intel Core i7 and NVIDIA GeForce GTX TITAN. The system
is simulated in the SUMO simulator [16]. We evaluate the fuel
consumption of 100 time steps.

A. Overall Effectiveness of Our Approach

We compare our opportunistic intermittent-control approach
against the traditional approach of only using the underlying RMPC
controller, and against an intuitive bang-bang control scheme based
on our framework. The bang-bang scheme uses the same computation
of X7 and X’ in Section III-A to ensure system safety, but uses
a simple strategy (instead of DRL) for deciding skipping choices.
Specifically, it applies zero control input whenever the system state
is within the strengthened safe set X', and applies the input from
RMPC once it is not in X7 — X' :

0 ze X',
u(@) = {HR(IJ) reX-—X\. @

In this experiment, we assume that the front vehicle is driving
under a sinusoidal velocity variation pattern with a minor disturbance.
Specifically,

vy (t) = ve +afsin(g(5t)+w, (8)

where ve = 40, ay = 9, and the random disturbance w € [—1,1].
We conducted experiments on 500 cases with randomly generated
initial state z(0).

We first compare the fuel consumption of the three approaches
(DRL-based opportunistic intermittent-control, bang-bang control,
and RMPC only). The fuel consumption data are from SUMO
simulations, and directly reflect the actuation energy cost as defined
in our Problem 1. Figure 4 shows the fuel consumption savings of
our DRL-based opportunistic intermittent-control approach and the
bang-bang control approach over the traditional method of only using
RMPC. The x-axis is the range of fuel consumption saving, and the
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Fig. 4: Fuel consumption comparison on 500 test cases. X-axis
shows the range of fuel consumption savings of our DRL-based
opportunistic intermittent-control and bang-bang control over the
traditional method of only using RMPC. The y-axis shows how many
cases (out of the 500) falls into each range for the two approaches.

y-axis shows how many cases (out of the 500) falls into each range
for the two approaches. We can clearly see that 1) both the DRL-
based opportunistic intermittent-control and the bang-bang control
achieve significant savings, showing the potential of skipping controls
when possible; 2) the DRL-based opportunistic intermittent-control
achieves substantially more savings than the bang-bang control,
showing the effectiveness of our DRL-based approach in learning the
perturbation pattern and intelligently deciding the skipping choices.
Overall, compared with RMPC, the average fuel consumption of
bang-bang control is reduced by 16.28%, while the average fuel con-
sumption of our DRL-based opportunistic intermittent-control is
reduced by 23.83%.

We also measured the computational savings from skipping
the RMPC control computation. For our DRL-based opportunistic
intermittent-control approach, the computation time for checking the
satisfaction of strengthened safe set X’ and invoking the neural
network to decide skipping choice z is in average 0.02 second;
while the average computation time for RMPC is 0.12 second. In
our experiments, out of 100 steps, the average number of steps
that skip the RMPC computation is 79.4. Thus, overall, there is
around 60% saving in computation time from our approach (i.e.,
(0.12 x 100 — (0.02 x 100 + 0.12 x (100 — 79.4)))/(0.12 x 100)).

B. Impact Analysis under Different Driving Scenarios

We further conducted a series of experiments to evaluate our
approach under different driving scenarios, particularly when the
Front vehicle exhibits different driving patterns. We are interested
to see whether our approach can effectively learn those patterns and
leverage them in achieving energy savings.

Impact of velocity range of Front vehicle. We first analyze how dif-
ferent velocity range of the Front vehicle may affect the performance
of our approach. We conduct 5 experiments Ex.1 — Ex.5, and the
range of vy of these experiments are shown in Table I. We also restrict
the Front vehicle acceleration v with a bounded range [—20, 20].
For each experiment, we test 500 cases by randomly picking feasible
initial states within X’ and random front car acceleration v’ at each
time step within [—20, 20].

TABLE I: V; setting for Ex.1 — Ex. 5

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

Range of vy [30,50] [32.5,47.5] [35,45] [38,42] [39,41]

The experimental results are shown in Figure 5. We can observe
that when the range of v; becomes smaller, our DRL-based oppor-
tunistic intermittent-control approach achieves more fuel consump-
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Fig. 5: Fuel consumption savings by our DRL-based opportunistic
intermittent-control over RMPC only under different range of vy.
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Fig. 6: Fuel consumption savings by our DRL-based opportunistic
intermittent-control under different regularity degree of vy.

tion savings over only using RMPC. This is because that a smaller
range of vy is easier for DRL to learn and leverage.

Impact of velocity regularity of Front vehicle. We then conduct
experiments to evaluate the impact of the regularity of the Front
vehicle velocity, i.e., how “random” the Front vehicle changes its
speed. We conduct experiments Ex.6 — Ex.10, which share the same
range of vy at [30, 50] but with the following differences.

o In Ex.6, vy changes completely random, i.e., a drastic change
is allowed instantly;

o Ex.7 shares the same setting with Ex.1, i.e., the velocity can
only change continuously;

« In Ex.8, the velocity changes based on Equation (8) but with
a large random disturbance. Specifically, the amplitude ay = 5
and the range of w is [—5, 5];

o The setting of Ex.9 is similar to Ex.8, with more regularity,
i.e., a larger amplitude ay = 8 and a smaller disturbance range
[—2, 2];

o The setting of Ex.10 is similar to Ex.8 and Ex.9, with even more
regularity: i.e., ay = 9 and the disturbance range is [—1, 1].

Intuitively, from Ex.6 to Ex.10, the Front vehicle velocity exhibits
more regularity. The experiments results are shown in Figure 6. From
Ex.7 to Ex.10, we can see that better regularity leads to easier
learning of our DRL-based approach and more fuel consumption
savings. However, Ex.6 is an exception, where vy is purely random
but our approach still achieves significant saving. We speculate that
this phenomenon is due to the low performance of the RMPC itself,
since there would be a mismatch between the real state and what
RMPC predicts.

V. CONCLUSION

It is often overly conservative to design safety-critical systems
with only the worst-case situations in mind. In this paper, we
propose a novel online intermittent-control framework to oppor-
tunistically skip the computation and actuation of an underlying
safe controller via learning the knowledge of the specific operation
context and environment. The framework utilizes both a model-based

approach (mixed integer programming formulation) and a learning-
based approach (deep reinforcement learning) for different situations
to intelligently make the skipping decisions. It also guarantees system
safety by formally computing a strengthened safe set based on the
notion of robust control invariant and backward reachable set of
the underlying controller. Experiments on an adaptive cruise control
system demonstrate the effectiveness of our approach in achieving
significant energy and computation savings. Future work includes
addressing more complex control systems beyond LTI.

REFERENCES

[1] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent
disturbances: predictive control with restricted constraints,” Automatica,
vol. 37, no. 7, 2001.

[2] A. G. Richards, “Robust constrained model predictive control,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2005.

[3] J. Lotberg, Minimax approaches to robust model predictive control.
Linkoping University Electronic Press, 2003, vol. 812.

[4] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m, k)-firm deadlines,” IEEE Transactions
on Computers, vol. 44, no. 12, 1995.

[5] A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg, “From

iteration to system failure: Characterizing the fitness of periodic weakly-

hard systems,” in ECRTS, 2019.

C. Huang, K. Wardega, W. Li, and Q. Zhu, “Exploring weakly-hard

paradigm for networked systems,” in Destion, 2019.

J. Jiang and X. Yu, “Fault-tolerant control systems: A comparative study

between active and passive approaches,” Annual Reviews in Control,

vol. 36, no. 1, 2012.

G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis

of timing effects on closed-loop properties of control software,” in RTSS,

2014.

P. S. Duggirala and M. Viswanathan, “Analyzing real time linear control

systems using software verification,” in RTSS. IEEE, 2015.

[10] C. Huang, W. Li, and Q. Zhu, “Formal verification of weakly-hard
systems,” in HSCC, 2019.

[11] J.Lan and R. J. Patton, “A new strategy for integration of fault estimation
within fault-tolerant control,” Automatica, vol. 69, 2016.

[12] Y. Song, Y. Wang, and C. Wen, “Adaptive fault-tolerant pi tracking
control with guaranteed transient and steady-state performance,” IEEE
Transactions on automatic control, vol. 62, no. 1, 2016.

[13] S. Junges, N. Jansen, C. Dehnert, U. Topcu, and J.-P. Katoen, “Safety-
constrained reinforcement learning for mdps,” in TACAS, 2016.

[14] N. Fulton and A. Platzer, “Safe reinforcement learning via formal
methods: Toward safe control through proof and learning,” in AAAI,
2018.

[15] M. Alshiekh, R. Bloem, R. Ehlers, B. Konighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in AAAZ 2018.

[16] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent de-
velopment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements, vol. 5,
no. 3&4, December 2012.

[17] M. Rungger and P. Tabuada, “Computing robust controlled invariant sets
of linear systems,” IEEE Transactions on Automatic Control, vol. 62,
no. 7, 2017.

[18] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachability
analysis of piecewise-linear dynamical systems,” in HSCC, 2000.

[19] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant set,”
IEEE Transactions on Automatic Control, vol. 50, no. 3, 2005.

[20] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, 2000.

[21] P. TgNdel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit mpc solutions,”
Automatica, vol. 39, no. 3, 2003.

[22] C. Huang, X. Chen, Y. Zhang, S. Qin, Y. Zeng, and X. Li, “Hierarchical
model predictive control for multi-robot navigation,” in IJCAI, 2016.

[23] A. Tiwari, “Approximate reachability for linear systems,” in HSCC,
2003.

[24] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in AAAI, 2016.

[6

=

[7

—

[8

—

[9

—



