ReachINN*: A Tool for Reachability Analysis of
Neural-Network Controlled Systems

Jiameng Fan!*, Chao Huang?*, Xin Chen?®, Wenchao Li', and Qi Zhu?

! Boston University, Massachusetts, USA. {jmfan,wenchao}@bu.edu
2 Northwestern University, Illinois, USA. {chao.huang,qzhu}@northwestern.edu
3 University of Dayton, Ohio, USA. xchen4@udayton.edu

Abstract. We introduce ReachNN*| a tool for reachability analysis
of neural-network controlled systems (NNCSs). The theoretical founda-
tion of ReachNN* is the use of Bernstein polynomials to approximate
any Lipschitz-continuous neural-network controller with different types
of activation functions, with provable approximation error bounds. In
addition, the sampling-based error bound estimation in ReachNN* is
amenable to GPU-based parallel computing. For further improvement in
runtime and error bound estimation, ReachNN* also features optional
controller re-synthesis via a technique called wverification-aware knowl-
edge distillation (KD) to reduce the Lipschitz constant of the neural-
network controller. Experiment results across a set of benchmarks show
7x to 422x efficiency improvement over the previous prototype. More-
over, KD enables proof of reachability of NNCSs whose verification re-
sults were previously unknown due to large overapproximation errors.
An open-source implementation of ReachNN* is available at https:
//github.com/JmfanBU/ReachNNStar.git!

Keywords: Neural-network controlled systems - Reachability - Bern-
stein polynomials - GPU acceleration - Knowledge distillation.

I
1 Introduction

There has been a growing interest in using neural networks as controllers in areas
of control and robotics, e.g., deep reinforcement learning [I3], imitation learn-
ing [147], and model predictive control (MPC) approximating [3l9]. We consider
neural-network controlled systems (NNCSs) that are closed-loop sampled-data
systems where a neural-network controller controls a continuous physical plant
in a periodic manner. Given a sampling period § > 0, the neural-network (NN)
controller reads the state = of the plant at the time t = id fori = 0,1,2, ..., feeds
it to a neural network to obtain the output u, and updates the control input
in the plant’s dynamics to u. Our tool ReachNN* aims to solve the following
reachability problem of NNCSs.

*Jiameng Fan and Chao Huang contributed equally.
We acknowledge the support from NSF grants 1646497, 1834701, 1834324, 1839511, 1724341,
ONR grant N00014-19-1-2496, and the US Air Force Research Laboratory (AFRL) under contract
number FA8650-16-C-2642.

https://github.com/JmfanBU/ReachNNStar.git
https://github.com/JmfanBU/ReachNNStar.git

2 Fan et al.

Problem 1. The reach-avoid problem of a NNCS is to decide whether from any
state in an initial set X, the system can reach a target set Xy, while avoiding
an unsafe set X, within the time interval [0, T].

A major challenge facing reachability analysis for NNCSs is the presence of non-
linearity in the NN controllers. Existing reachability analysis tools for NNCSs
typically target specific classes of NN controllers [5,12,15,2]. Sherlock [5] and
NNV [15] for instance only consider neural networks with RELU activation
functions, while Verisig [12] requires the neural networks to have differentiable
activation functions such as tanh/Sigmoid.

In this paper, we present our tool ReachNN*, which is a significantly extended
implementation of our previous prototype ReachNN [11]. ReachNN* provides
two main features. First, it can verify an NNCS with any activation functions by
Bernstein polynomial approximation [11]. Second, based on the proportionality
relationship between approximation error estimation Lipschitz constant of the
NN controller, ReachNN* can use knowledge distillation (KD) [10] to retrain a
verification-friendly NN controller that preserves the performance of the original
network but has a smaller Lipschitz constant, as proposed in [6].

Another significant improvement in ReachNN* is the acceleration of the
sampling-based error analysis in ReachNN by using GPU-based parallel com-
puting. The sampling-based approach uniformly samples the input space for a
given sample density and evaluates the neural network controller and the poly-
nomial approximation at those sample points. We use the Lipschitz constant of
the neural network and the samples to establish an upper bound on the true
error (details in [11]). For networks with many inputs, this approach may re-
quire many sample points to avoid a blowup in the overapproximation. Here, we
make the observation that the sampling-evaluation step is a single instruction,
multiple data (SIMD) computation which is amenable to GPU-based accelera-
tion. Experimental results across a set of benchmarks show 7x to 422x efficiency
improvement over the previous prototype.

2 Tool Design

The architecture of ReachNN* is shown in Fig. 1. The input consists of three
parts: (1) a file containing the plant dynamics and the (bounded) reach-avoid
specification, (2) a file describing the NN controller, and (3) an optional target
Lipschitz constant for controller retraining. The tool then works as follows. For
every sampling step [id, (i + 1)d] for ¢ = 0,1,2..., a polynomial approximation
along with a guaranteed error bound for the NN controller output is computed
and then used to update the plant’s continuous dynamics. The evolution of the
plant is approximated by flowpipes using Flow*. During the flowpipe construc-
tion, it checks every computed flowpipe whether it lies entirely inside the target
set X s and outside the avoid set X,,. The tool terminates when (1) the reachable
set at some time ¢ < T lies inside the target set and all computed flowpipes do
not intersect with the avoid set, i.e. the reach-avoid specification is satisfied; or

Title Suppressed Due to Excessive Length 3

Dynamics and Reach-

avoid specification Neural-network controller Target Lipschitz constant (Optional)
(.cpp file) | |
/ [2 v ____ \
’ \
! . . . 1
Initial state set X, : Knowledge distillator (Optional) :
t=0 NN controller
: 1 1
Timesteps T Approximation error analyzer
Target set X7 PP Polynomial Polynomial approximation
Unsafe set X . . e
u [Lipschitz constant analyzer] generator
Approximation t=t+1 Polynomial
il Il error bound t<T Reachable set X, Approximation
[Flow*]

K t::Torthl\ /

Verification Result Reachable set Visualization

Fig. 1: Structure of ReachNN*,

(2) an unsafe flowpipe is detected, i.e. it enters the avoid set X,; or (3) the reach-
able set at some time t intersects with but is not entirely contained in Xy, in
which case the verification result is unknown. The tool also terminates if Flow™
fails due to a blowup in the size of the flowpipes. Along with the verification
result (Yes, No or Unknown), the tool generates a Gnuplot script for producing
the visualization of the computed flowpipes relative to Xo, X and X,,.

When the tool returns Unknown, it is often caused by a large overapprox-
imation of the reachable set. As noted before, the overapproximation error is
directly tied to the Lipschitz constant of the network in our tool. In such cases,
the user can enable the knowledge distillation option to retrain a new neural net-
work. The retrained network has similar performance compared to the original
network but a smaller Lipschitz constant. The tool will then perform reachabil-
ity analysis on the retrained network. We describe the function of each model in
ReachNN* in more detail below.

[Polynomial approximation generator] We implement this module in Python.
It generates the approximation function of a given neural network over a general
hyper-rectangle, with respect to a given order bound for the Bernstein polyno-
mials. The generated polynomial is represented as a list of monomials’ orders
and the associated coefficients.

[Approximation error analyzer| This module is implemented in Python. It
first invokes a sub-module — Lipschitz constant analyzer, to compute a Lipschitz
constant of the neural network using a layer-by-layer analysis (see Section 3.2
of [11] for details). Then, given the Lipschitz constant, this module estimates
the approximation error between a given polynomial and a given neural network
by uniformly sampling over the input space. To achieve a given precision, this

4 Fan et al.

08 T T T T T T T 08

06

04

02
N Avoid Set _ Avoid Set

04 02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
X0 x0

(a) Before KD (12718 seconds) (b) After KD (103 seconds)

Fig. 2: Reachability analysis results: Red lines represent boundaries of the obsta-
cles and form the avoid set. Green rectangle represents the target region. Blue
rectangle represents the computed flowpipes.

sampling-based error estimation may result in a large number of samples. In
ReachNN*, we leverage Tensorflow [1] to parallelize this step using GPUs.

[Flow*] We use the C++ APIs in Flow™* [4] to carry out the following tasks: (a)
flowpipe construction under continuous dynamics using symbolic remainders, (b)
checking whether a flowpipe intersects the given avoid set, (¢) checking whether
a flowpipe lies entirely in the given target set, and (d) generating a visualization
file for the flowpipes.

[Knowledge distillator] This module is implemented in Python with GPU
support for retraining. The inputs for this module are the original NN, a target
Lipschitz constant number, and a user-specified tolerance of the training error
between the new network and the original network. The output is a retrained
network. Details of the distillation procedure can be found in [6]. We note that
this module also supports distilling the original network into a new network with
a different architecture, which can be specified as an additional input.

Ezample 1. Consider the following nonlinear control system [8]: o = x1,%1 =
uxr? — o, where u is computed from a NN controller x that has two hidden
layers, twenty neurons in each layer, and ReLU and tanh as activation func-
tions. Given a control stepsize §. = 0.2, we want to check if the system will
reach [0,0.2] x [0.05,0.3] from the initial set [0.8,0.9] x [0.5,0.6] while avoiding
[0.3,0.8] x [—0.1,0.4] over the time interval [0, 7].

The verification finished in 12718 seconds and the result is Unknown, which
indicates the computed flowpipes intersect with (and are not contained entirely
in) the avoid set or the target set. The flowpipes are shown in Fig. 2a. With KD
enabled, we retrain a new NN controller with the same architecture, a target
Lipschitz constant as 0 (0 means the knowledge distillator will try to minimize
the Lipschitz constant) and a regression error tolerance of 0.4. The resulting

Title Suppressed Due to Excessive Length 5

Table 1: Comparison with ReachNN. We use [to represent the number of layers
in the neural network controller, n to represent the number of neurons in the
hidden layers, and & for the error bound in sampling-based analysis. We use
the same benchmarks from [11]. The dimensions of states are from 2 to 4 for
these benchmarks. Time shows the runtime of the reachability analysis module.
The After KD results do not include the runtime for knowledge distillation.
The average runtime for knowledge distillation is 245 seconds . Acc (short for
acceleration) denotes the ratio between the runtime of ReachNN and that of
ReachNN* on the same NNCS without applying knowledge distillation.

4 NN Controller |Setting| Verification Result Time (Seconds) Ace
Act lln g Before KD |After KD|ReachNN [11] | ReachNN*| After KD

ReLU |3]20] 0.001 | Yes(35) - 3184 26 - 112x

1 sigmoid |3[20| 0.005 Yes(35) - 779 76 - 10x

tanh 3]/20| 0.005 |Unknown(35)| Yes(35) 543 76 70 7

ReLU+tanh|3|20| 0.005 Yes(35) - 589 76 - 7

ReLU 3(20| 0.01 Yes(9) 128 5 25x

5 sigmoid |3[20| 0.001 Yes(9) — 280 13 - 21x

tanh 3/20| 0.01 | Unknown(7) | Yes(7) 642 71 69 9x

ReLU+tanh|3|20| 0.01 Yes(7) - 543 25 - 21x

ReLU [4[20| 0.01 Yes(10) Yes(10) 7842 1126 12 7x

6 sigmoid [4[20| 0.01 No(7) - 32499 7 - 422x

tanh |4]20| 0.01 No(7) - 3683 11 ~ |334x

ReLU+tanh|4|20| 0.01 Yes(10) Yes(10) 10032 1410 674 7

flowpipes are shown in Fig. 2b. We can see that the new NN controller can be
verified to satisfy the reach-avoid specification. In addition, the verification for
the new NN controller is 123x faster compared to verifying the original NNCS.

3 Experiments

We provide a full comparison between ReachNN* and the prototype ReachNN
on all the examples in [11]. If the verification result is Unknown, we apply our
verification-aware knowledge distillation framework to synthesize a new NN con-
troller and check the resulting system with ReachNN*. All experiments are per-
formed on a desktop with 12-core 3.60 GHz Intel Core i7 and NVIDIA GeForce
RTX 2060 (ReachNN does not make use of GPU).

We highlight part of the results for Benchmark #1, #2 and #6 in Table 1
due to space constraint (results on all benchmarks can be found in https://
github.com/JmfanBU/ReachNNStar.git). ReachNN* achieves from 7x to 422x

4The runtime of the knowledge distillation module does not vary much across dif-
ferent benchmarks.

6 Fan et al.

efficiency improvement on the same NNCSs (across all benchmarks also). In
Benchmark #1 and #2 with Unknown results, we applied our knowledge distilla-
tion procedure to obtain new NN controllers and performed reachability analysis
again on the resulting systems. Observe that ReachNN* produces a Yes answer
for these systems. In addition, it took a shorter amount of time to compute the
verification results compared to ReachNN. In Benchmark #6, ReachNN* took
more than 1000 seconds to obtain a Yes result in two cases. We run knowledge
distillation for these two cases to evaluate whether KD can be beneficial solely
from an efficiency perspective. In both cases, ReachNN* with KD significantly
improves runtime compared to ReachNN* without KD.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: OSDI. pp. 265-283 (2016)

2. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: Juliareach: a
toolbox for set-based reachability. In: HSCC. pp. 3944 (2019)

3. Chen, S., Saulnier, K., Atanasov, N., Lee, D.D., Kumar, V., Pappas, G.J., Morari,
M.: Approximating explicit model predictive control using constrained neural net-
works. In: ACC. pp. 1520-1527. IEEE (2018)

4. Chen, X., Abrahdm, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: CAV. pp. 258-263. Springer (2013)

5. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: HSCC. pp. 157-168
(2019)

6. Fan, J., Huang, C., Li, W., Chen, X., Zhu, Q.: Towards verification-aware knowl-
edge distillation for neural-network controlled systems. In: ICCAD. IEEE (2019)

7. Finn, C.,; Yu, T., Zhang, T., Abbeel, P., Levine, S.: One-shot visual imitation

learning via meta-learning. In: Conference on Robot Learning. pp. 357-368 (2017)

Gallestey, E., Hokayem, P.: Lecture notes in nonlinear systems and control (2019)

9. Hertneck, M., Kohler, J., Trimpe, S., Allgéwer, F.: Learning an approximate model
predictive controller with guarantees. IEEE Control Systems Letters 2(3), 543-548
(2018)

10. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
CoRR abs/1503.02531 (2015)

11. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: Reachability analysis of
neural-network controlled systems. TECS 18(5s), 1-22 (2019)

12. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: HSCC. pp. 169-
178 (2019)

13. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. International
Conference on Learning Representation (2016)

14. Pan, Y., Cheng, C.A., Saigol, K., Lee, K., Yan, X., Theodorou, E., Boots, B.: Agile
autonomous driving using end-to-end deep imitation learning. RSS (2018)

15. Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. TECS
18(5s), 1-22 (2019)

®©

Title Suppressed Due to Excessive Length 7

A Appendix

We test our tool on the benchmarks that have the same dynamics as the bench-
marks proposed in Sherlock, but with different settings of neural-network (NN)
controllers. The main difference lies on the NN controller, where the NN con-
troller we use may have different activation functions simultaneously, e.g. we
have ReLU+sigmoid NN controller for Ex. #1. The input dimension of the NN
controller, which is the dimension of the system state, ranges from 2 to 4. Each
NN controller has either 3 or 4 hidden layers, and width (the number of neurons)
of each hidden layer ranges from 20 to 100. The detailed setting can be found
in [11] and https://github.com/JmfanBU/ReachNNStar.

In addition, a navigation control benchmark with Dubins car model and var-
ious neural-network controller can be found in [6] and https://github.com/
JmfanBU/NNCS-Dubins-Car. The goal is to navigate the vehicle through a cor-
ridor. The controller drives the vehicle to turn at the first corner and avoids the
obstacle in the middle of the corridor. The state input is 3 and the controller
output is the steering as a scalar. NN controller has 2 hidden layers and each
hidden layer has 20 neurons. Different NN controllers have different activation
functions. We did the simulation in Matlab for all the benchmarks.

The main difference of our benchmarks are the heterogeneous architecture
of our NN controllers that have different activation functions, which is com-
mon in practice. Such a setting can effectively test the generality of verification
techniques.

	ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems

