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Abstract. We study the problem of policy repair for learning-based con-
trol policies in safety-critical settings. We consider an architecture where
a high-performance learning-based control policy (e.g. one trained as a
neural network) is paired with a model-based safety controller. The safety
controller is endowed with the abilities to predict whether the trained
policy will lead the system to an unsafe state, and take over control when
necessary. While this architecture can provide added safety assurances,
intermittent and frequent switching between the trained policy and the
safety controller can result in undesirable behaviors and reduced per-
formance. We propose to reduce or even eliminate control switching by
‘repairing’ the trained policy based on runtime data produced by the
safety controller in a way that deviates minimally from the original pol-
icy. The key idea behind our approach is the formulation of a trajectory
optimization problem that allows the joint reasoning of policy update
and safety constraints. Experimental results demonstrate that our ap-
proach is effective even when the system model in the safety controller
is unknown and only approximated.

1 Introduction

Data-driven methods such as imitation learning have been successful in learning
control policies for complex control tasks [4]. A major shortcoming that impedes
their widespread usage in the field is that the learnt policies typically do not
come with any safety guarantee. It has been observed that when encountering
states not seen in training, the learnt policy can produce unsafe behaviors [3,27].

A common approach to mitigate the safety problem at runtime is to pair
the learning-based controller5 (LC) with a high-assurance safety controller (SC)
that can take over control in safety-critical situations, such as the Simplex ar-
chitecture first proposed in [32]. The safety controller is tasked with predicting

5 We use the terms ‘controller’ and ‘control policy’ (or simply ‘policy’) interchangeably
in this paper. The latter is more common in the machine learning literature.
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an impending safety violation and taking over control when it deems necessary.
Such controllers are often designed based on conservative models, has inferior
performance compared to its learning-based counterpart, and may require sig-
nificant computation resources if implemented online (e.g. model predictive con-
trol). Moreover, frequent and intermittent switching between the controllers can
result in undesirable behaviors and further performance loss.

In this paper, we propose to leverage the runtime interventions carried out
by the safety controller to repair the learnt policy. We do not assume access to
the original training data of the LC but we assume that the policy is parameter-
ized, differentiable and given as a white-box. This means that while fine-tuning
the LC from scratch is not possible, it is still possible to improve the controller
based on new data that is gathered during deployment. In particular, we intro-
duce the concept of policy repair which uses the outputs of the safety controller
to synthesize new training data to fine-tune the LC for improved safety. Further-
more, we formalize a notion of minimal deviation with respect to the original
policy in order to mitigate the issue of performance degradation during policy
repair. The main idea in minimally deviating policy repair is the formulation of
a trajectory optimization problem that allows us to simultaneously reason about
policy optimization and safety constraints. A key novelty of this approach is the
synthesis of new safe ‘demonstrations’ that are the most likely to be produced by
the original unsafe learnt policy. In short, we make the following contributions.

− We formalize the problems of policy repair and minimally deviating policy
repair for improving the safety of learnt control policies.

− We develop a novel algorithm to solve the policy repair problem by iteratively
synthesizing new training data from interventions by the safety controller to
fine-tune the learnt policy.

− We demonstrate the effectiveness of our approach on case studies including a
simulated driving scenario where the true dynamics of the system is unknown
and is only approximated.

2 Related Work

Model-based control is a well-studied technique for controlling dynamical
systems based on the modelling of the system dynamics. Algorithms such as it-
erative Linear Quadratic Regulator (iLQR) [33] have achieved good performance
even in complex robotic control tasks. One important advantage of model-based
control is its ability to cope with constraints on the dynamics, controls and
states. Constrained Model Predictive Control [15] has been studied extensively
and proven to be successful in solving collision avoidance problems [5,6] as well
as meeting complex high-level specifications [10]. In this paper, we utilize model-
based control techniques to verify the existence of safe control as well as synthe-
size new training data to guide the policy learning.

Imitation learning provides a way of transferring skills for a complex task
from a (human) expert to a learning agent [20]. It has been shown that data-
driven methods such as behavior cloning are effective in handling robotics and
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autonomous driving tasks [25,28] when an expert policy is accessible at training
time. Model-based control techniques have already been introduced to imitation
learning to guide the policy learning process [22]. Our work shares similarity with
[22] in using a model predictive controller to generate training examples. What
distinguishes our work from theirs is that in [22] the model predictive controller
operates based on a given cost function whereas in our work we do not assume we
know any cost function. An outstanding challenge in the imitation learning area
is the lack of safety assurance during both training and final deployment. Efforts
on addressing this challenge include [36,17], where multiple machine learning
models cooperate to achieve performance and safety goals. However, the learned
models can not provide guarantees on runtime safety by themselves. In fact,
even when the dynamical model is given, existing imitation learning algorithms
lack the means to incorporate explicit safety requirements. In this paper, we use
imitation learning to formulate the problem of minimally deviating policy repair
such that a repaired policy can match the performance of the original learnt
policy while being safe.

Safe Learning research has experienced rapid growth in recent years. Many
approaches consider safety requirement as constraints in the learning process.
For example, [1,9] encodes safety as auxiliary costs under the framework of Con-
strained Markov Decision Processes (CMDPs). However, the constraints can only
be enforced approximately. [9] developed a Lyapunov-based approach to learn
safe control policies in CMDPs but is not applicable to parameterized policy and
continuous control actions. Formal methods have also been applied to certain
learning algorithms for establishing formal safety guarantees. In [37], safety is
explicitly defined in probabilistic computational tree logic and a probabilistic
model checker is used to check whether any intermediately learned policy meets
the specification. If the specification is violated, then a counterexample in the
form of a set of traces is used to guide the learning process. Providing assur-
ance for runtime safety of learning-based controller has also garnered attention
recently. [12] combines offline verification of system models with runtime vali-
dation of system executions. In [2], a so-called shield is synthesized to filter out
unsafe outputs from a reinforcement learning (RL) agent. It also promotes safe
actions by modifying the rewards. A similar idea can be seen in [23] where a
so-called neural simplex architecture is proposed and an online training scheme
is used to improve the safety of RL agents by rewarding safe actions. However,
in the context of RL, choosing the right reward is in general a difficult task,
since incorrect choices often lead to sub-optimal or even incorrect solutions. In
[8], a model predictive approach is proposed to solve for minimum perturbation
to bend the outputs of an RL policy towards asymptotic safety enforced by a
predefined control barrier certificate. A similar idea also appears in [34] where
robust model predictive control is used to minimally perturb the trajectories of
a learning-based controller towards an iteratively expanding safe target set. Our
method differs from [8,34] as we improve the runtime safety of the learning-based
control while preserving its performance from an imitation learning perspective.
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3 Preliminaries

In this paper we consider a discrete-time control system (X,U, f, d0) where X is
the set of states of the system and U is the set of control actions. The function
f : X×U → X is the dynamical model describing how the state evolves when an
control action is applied, and d0 : X → R is the distribution of the initial states.
By applying control actions sequentially, a trajectory, or a trace, τ = {(xt, ut)|t =
0, 1, . . .} can be obtained where xt, ut are the state and control action at time t.
In typical optimal control problems, a cost function c : X × U → R is explicitly
defined to specify the cost of performing control action u ∈ U in state x ∈ X.
The cumulative cost along a trajectory τ can be calculated as

∑
(xt,ut)∈τ

c(xt, ut).

An optimal control strategy is thus one that minimizes the cumulative cost.
Model Predictive Control (MPC) leverages a predictive model of the

system to find a sequence of optimal control actions in a receding horizon fashion.
It solves the optimal sequence of control actions for T steps as in (1) but only
applies the first control action and propagates one step forward to the next state.
Then it solves for a new sequence of optimal control actions in the next state.

arg min
x0:T ,u0:T

T∑
t=0

c(xt, ut) (1)

s.t. xt+1 = f(xt, ut) t = 0, 1, 2, . . . , T (2)

When the dynamics f in constraint (2) is nonlinear, the iterative Linear
Quadratic Regulator (iLQR) algorithm [14] applies a local linearization of f
along an existing trajectory which is called the nominal trajectory. It computes a
feedback control law via LQR [13], which induces a locally optimal perturbation
upon the nominal trajectory to reduce the cumulative cost. Formally, given a
nominal trajectory {(x0, u0), ..., (xT , uT )}, perturbations can be added to each
state and control action in this trajectory, i.e. xt → xt + δxt, ut → ut + δut. The
relationship between δxt, δut and δxt+1 is locally determined by the dynamics
as well as the state and control actions in the nominal trajectory as in (4)
where ∇xf(xt, ut),∇uf(xt, ut) are the partial derivatives of f(xt, ut) w.r.t x, u.

Meanwhile, based on the nominal trajectory,
∑T
t=0 c(xt, ut) in the objective (1)

is substituted by
∑T
t=0 c(δxt+xt, δut+ut)−c(xt, ut) while the decision variables

become δx0:T , δu0:T . When adopting an online trajectory optimization strategy
[33], the optimal control law has a closed form solution δut = kt + Ktδxt in
which kt,Kt are determined by the dynamics and the cumulative cost along the
nominal trajectory.

xt+1 = f(xt, ut) xt+1 + δxt+1 = f(xt + δxt, ut + δut) (3)

δxTt+1 ≈ δxTt ∇xf(xt, ut) + δuTt ∇uf(xt, ut) (4)

A control policy in general is a function π : X → U that specifies the
behavior of a controller in each state. Given a deterministic policy π, its trajec-
tory can be obtained by sequentially applying control actions according to the
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outputs of π. Specifically, for an LC such as a deep neural network, the policy is
usually parameterized and can be written as πθ where the parameter θ belongs
to some parameter set Θ (e.g. weights of a neural network). We assume that
πθ(x) is differentiable both in x and θ.

Imitation learning assumes that an expert policy πE (e.g. a human ex-
pert) can demonstrate on how to finish a desired task with high performance. The
learning objective for an agent is to find a policy π that matches the performance
of πE in the same task. Traditional approaches such as behavioral cloning con-
sider the 0-1 error e(xt, πE ;π) = I{π(x) 6= πE(x)} where I is an indicator func-
tion. In this setting, an optimally imitating policy minimizes Ex∼dπE [e(x, πE ;π)]
where dπE is state visitation distribution of πE . From another perspective, the
difference between π and πE can be estimated based on their trajectory distribu-
tions. When the trajectory distribution Prob(τ |πE) is known, one can empirically
estimate and minimize the KL divergence DKL[πE ||π] by regarding Prob(τ |π) as
the probability of π generating trajectory τ under an additional Gaussian noise,
i.e. ut ∼ N (π(xt), Σ),∀(xt, ut) ∈ τ . On the other hand, one can estimate and
minimize the KL divergence DKL[π||πE ] by treating Prob(τ |π) as being induced
from a Dirac delta distribution ut ∼ δ(π(xt)) ∀(xt, ut) ∈ τ . Both KL-divergences
are related to negative log-likelihoods.

4 Runtime Safety Assurance

In this section we discuss the runtime safety issues of LCs and introduce our basic
strategy for safe control. We consider a runtime safety requirement Φ for finite
horizon T , such as ‘if the current state is safe at step t, do not reach any unsafe
state within the next T steps’. Temporal logic can be used to formally capture
this type of safety requirements [16,24]. Given an LC with a deterministic policy
πθ , if πθ satisfies Φ globally, that is, at each time step along all its trajectories,
we denote it as πθ |= Φ; otherwise πθ 6|= Φ.

We assume that for any satisfiable Φ, there exists an SC, which we represent
as πsafe, that checks at runtime whether Φ is satisfiable if the output û = πθ(x)
of the LC is directly applied. That is, whether there exists a sequence of control
actions in the next T − 1 steps such that Φ is not violated. If true, then the
final output πsafe(x, πθ(x)) = û. Otherwise it overrides the LC’s output with
πsafe(x, πθ(x)) 6= û. We formally define the SC below.

Definition 1. Given a safety requirement Φ, the corresponding SC is a mapping
πsafe from X × U to U . In each state x ∈ X, πsafe(x, πθ(x)) = πθ(x) iff Φ is
satisfiable after applying the control action πθ(x); otherwise, πsafe intervenes by
providing a substitute πsafe(x, πθ(x)) 6= πθ(x) to satisfy Φ.

We use 〈πθ, πsafe〉 to represent the LC and SC pair. Obviously the trajectories
generated by this pair satisfy Φ everywhere if πsafe exists. There are multiple
options of implementing the SC such as having a backup human safety driver
or using automated reasoning. Depending on the safety requirement and task
environment, the difficulty of implementing safe control varies. In this paper, we
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assume that a dynamical model of f is given, possibly constructed conservatively,
and adopt a scheme known as Model Predictive Safe Control as detailed below.

4.1 Model Predictive Safe Control

This scheme exploits the dynamical model to predict safety in the future. De-
pending on the safety requirement Φ considered, a function ϕ : X → R can
be defined to quantify how safe any state x is, i.e. if ϕ(x) ≤ 0, then x is
safe; otherwise x is unsafe. Without loss of generality, we let the current step
be t = 0. Then the safety requirement can be translated into the constraints
∀t ∈ {1, 2, . . . , T}, ϕ(xt) ≤ 0. After the LC provides a candidate control output
u0 = πθ(x0), the SC first verifies the satisfiability of (7) by using an MPC-like
formulation as (5) ∼ (8).

min
x0:T ,u0:T

0 (5)

s.t. xt+1 = f(xt, ut) t = 0, 1, 2, . . . , T − 1 (6)

ϕ(xt) ≤ 0 t = 1, 2, . . . , T (7)

u0 = πθ(x0) (8)

The formula differs from MPC in that it solves a feasibility problem to check
the existence of a sequence of control actions satisfying the constraints. It is easier
to solve than optimal control since optimality is not required here. If this problem
is feasible, that is, (6) ∼ (8) can be satisfied at the same time. Then πθ(x0)
is deemed safe and the final output is πsafe(x0, πθ(x0)) = πθ(x0). Otherwise,
the SC solves another feasibility problem which is the same as (5) ∼ (7) and
has (8) removed because the unsafe candidate control action πθ(x0) is to be
substituted. Note that it is possible that (7) is unsatisfiable, in which case there
is no feasible solution. This means a safety violation is inevitable based on the
given model, but the SC can predict such outcome T steps in advance and more
drastic actions (e.g. physically changing the model) may be applied to prevent
an accident from occurring. If a feasible solution to (5) ∼ (7) can be obtained,
we let πsafe(x0, πθ(x0)) = u0 and use this solved u0 to evolve the system to the
next state.

There have been works on model predictive control of cyber-physical sys-
tems subject to formal specifications in signal temporal logic (STL) and its
probabilistic variant [26,29]. Techniques have been proposed to synthesize safety
constraints from formal specifications to accommodate optimal control of con-
tinuous systems and to reason about safety under uncertainty. In the semantics
of STL, ϕ can be viewed as the negation of the robustness satisfaction value.

In this paper, at the beginning of each time step, before solving the feasibility
problem (5) ∼ (8), we forward simulate the policy πθ for T steps. If the simulated
trajectory satisfies the safety constraint (7) already, then there is no need to
query the SC at all. Otherwise, we use the constrained iLQR approach from [7]
to solve the feasibility problem. This approach treats the simulated trajectory
as nominal trajectory and iteratively update the nominal trajectory. Also, this
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approach turns the safety constraint (7) into a penalty
∑T
t=0 exp(Mtψ(xt)) with

sufficiently large {Mt}Tt=0. And the penalty is added to the objective. By using
this approach, even if the feasibility problem cannot be solved, at least a low-
penalty solution can be provided.
Monitoring overhead. Model Predictive Safe Control (MPSC) can provide
assurance for a variety of runtime safety requirements. However, it can be more
expensive to implement in practice compared to an LC due to the need to repeat-
edly solve a (nonlinear) optimization online as opposed to performing inference
on a neural network [35]. Frequently using an SC to both verify safety and solve
safe control at runtime can be computationally taxing for the entire control sys-
tem. For instance, suppose the LC’s inference time is tLC , the time for solving

(5) ∼ (8) is t
(1)
SC and the time for solving (5) ∼ (7) is t

(2)
SC . Typically, tLC is much

smaller than t
(1)
SC or t

(2)
SC . At each step, forward simulation of the LC for T steps

takes at least T ∗ tLC time. If (7) is violated in the forward simulation, the SC

would need to be invoked and the total overhead will grow to T ∗ tLC + t
(1)
SC . If

the problem based on the LC’s candidate control output is infeasible and the SC
is required to intervene with a substitute control value, then the SC will have to

solve another MPC-like problem and the overhead will grow to T ∗tLC+t
(1)
SC+t

(2)
SC .

Thus, it would be more economical to have an inherently safe LC such that the
SC is less triggered. Motivated by this, we propose to repair the LC so that it
becomes safer and requires less intervention from the SC. In the next section, we
formally introduce the policy repair problem and describe our solution in detail.

5 Policy Repair

Fig. 1. Architecture of pairing LC’s policy πθ with an SC πsafe.

We first give a formal definition of the policy repair problem below.
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Definition 2. Given a deterministic policy πθ paired with an SC πsafe as de-
fined in Definition 1, policy repair is the problem of finding a new policy πθ∗

such that θ∗ = arg min
θ∈Θ

Ex∈X [I{πsafe(x, πθ(x)) = πθ(x)}] where I{·} ∈ {0, 1} is

an indicator function.

Definition 2 implies that a repaired policy generates safe controls most of
the time and thus the SC rarely intervenes. The first idea is to treat controls
generated by the SC as repairs at specific states, and then use this data to repair
the whole policy. A solution based on this idea is described as follows.

5.1 Naive Policy Repair

During the execution of the LC and SC pair 〈πθ, πsafe〉, due to the presence of
the SC, all the generated traces are safe. The basic idea of the naive policy repair
approach is to let the unsafe LC learn from the interventions produced by the
SC. Specifically, we iteratively execute the LC and SC pair to generate new safe
traces. After each iteration, the state-action pairs in all the previously generated
traces are used as training data to update the policy of the LC. We present the
steps in Algorithm 1 and illustrate them with a high-level diagram in Fig. 1,
where Γi is the set of traces of the 〈πθi , πsafe〉 pair at the ith iteration. We use
supervised learning to fine-tune the policy parameter to minimize the expected
error E(x,u)∼∪Γi [e(x, u;πθ)] as in line 9 of Algorithm 1. Note that at this stage,
with a slight abuse of notation, we view Γi as a data set containing (x, u) pairs.
In line 5 ∼ 7, if the SC no longer intervenes, then we have a high confidence
that the current policy is safe. According to the law of large numbers, this
confidence increases with increasing number of sampled traces. The algorithm
also terminates if a maximum iteration number is reached, in which case the SC
may still intervene and the policy repair is only partially successful.

Algorithm 1 Naive Policy Repair

1: Input an initial policy πθ0 ;
2: Given an SC πsafe; iteration parameter N > 0; policy parameter set Θ.
3: for iteration i = 0 to N do
4: Run the 〈πθi , π

safe〉 pair to generate a set Γi of trajectories.
5: if ∀(x, u) ∈ Γi, u = πθi(x) then
6: πsafe never intervenes ⇒ πθi |= Φ with high probability.
7: return πθi , Γi
8: end if
9: θi+1 = arg min

θ∈Θ
E(x,u)∼∪ij=0Γj

[e(x, u;πθ)]

10: end for
11: return πθN , ∅
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5.2 Analysis of Performance Degradation due to SC Intervention

In this section, we analyze the performance degradation due to the application of
safe controls from the SC and use it to motivate the study of better policy repair
strategies. We assume that the initial learnt policy πθ0 is given as a white-box and
its parameter θ0 has already been optimized for the control task. Inspired from
lemma 1 in [30], we analyze the performance degradation of naive policy repair
in a fixed-horizon task with maximum step length H. Recall the definition of cost
function c in Section 3. Without loss of generality, we simplify it into a function
of state, that is, from c(x, u) to c(x) and normalize it to the range [0, 1]. We use

η(π) = Eτ∼π[
∑H
t=0 c(xt)] to denote the expected cumulative cost of following

a policy π from initialization to step H. Define the value function Vπ(xt) =

Ext,ut,xt+1...∼π[
∑H
l=t c(xl)] as the expected cost accumulated by following π after

reaching state xt at step t till step H. Define the state-action value function
Qπ(xt, ut) = Ext,xt+1,ut+1...∼π,ut [

∑H
l=t c(xl)] as the expected cost accumulated

by executing ut in state xt, then following π henceforth til step H. We use an
advantage function Aπ(xt, ut) = Qπ(xt, ut) − Vπ(xt) to evaluate the additional
cost incurred by applying control action ut in xt instead of adhering to π. Based
on the lemma 1 in [30] for infinite-horizon scenario, we have the equation (9) for
any two policies π, π̂ in finite-horizon scenario.

Eτ∼π̂[
H∑
t=0

Aπ(xt, ut)] = Eτ∼π̂[
H∑
t=0

c(xt) + Vπ(xt+1)− Vπ(xt)]

= Eτ∼π̂[−Vπ(x0) +
H∑
t=0

c(xt)] = Ex0∼d0 [−Vπ(x0)] + Eτ∼π̂[
H∑
t=0

c(xt)] = η(π̂)− η(π) (9)

Assuming that η(πθ0) is the minimum for the desired task, i.e. πθ0 is the
optimal policy with respect to a cost function c, we bound the additional cost
η(πsafe)− η(π) incurred by possible interventions of πsafe.

Theorem 1. Given a 〈πθ0 , πsafe〉 pair, let ε1, ε2 and ε3 be the probability of
〈πθ0 , πsafe〉 generating a H-length trajectory where πsafe(x, πθ0(x)) 6= πθ0(x)
happens in at least one, two and three states respectively. Then, η(πsafe) −
η(πθ0) ≤ ε1H + ε2(H − 1) + ε3(H−1)H

2 .

The theorem6 shows the additional cost can grow quadratically in H when
the probability of multiple interventions from the SC becomes higher. The im-
plication of this is that even if the repaired policy πθ∗ replicates πsafe with zero
error, the repaired policy can still suffer from significant performance degrada-
tion. Since the training error is non-zero in practice, πθ∗(x) 6= πθ0(x) may happen
in more states where πsafe(x, πθ0(x)) 6= πθ0(x). One major challenge in mitigat-
ing this performance loss is that the training information of πθ0 , especially the
cost function c, could be unknown. In the next section, we describe our approach
of repairing a policy so that it also minimally deviates from the original one.

6 Proof can be found in an extended version https://arxiv.org/abs/2008.07667
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5.3 Minimally Deviating Policy Repair via Trajectory Synthesis

We firstly formally define the minimally deviating policy repair problem.

Definition 3. Given an initial policy πθ0 and an SC πsafe as defined in Def-
inition 1, minimally deviating policy repair is the problem of finding a
policy πθ∗ where θ∗ = arg min

θ∈Θ
Ex∼dπθ [e(x, πθ0 ;πθ)] subject to πsafe(x, πθ(x)) =

πθ(x),∀x ∈ X.

Informally, the objective of this repair problem is to reduce the chance of
πθ∗(x) 6= πθ0(x) while maintaining the safety of πθ∗ . Observe that the error
term e(·) in Definition 3 resembles the one in an imitation learning setting.
Then minimizing the expected error can be viewed as imitating πθ0 . On the other
hand, the equality constraint in Definition 3 can be understood as requiring πθ∗

to satisfy (7) at all steps in all its trajectories. Hence, the minimally deviating
policy repair is essentially a problem of optimizing an imitation learning objective
with safety constraints. The major challenge is that, the decision variable for the
imitation learning objective is the policy parameter θ while for safety constraints
(7) it is the state x.

(a) (b) (c) (d)

Fig. 2. (a) The grey area is the lane. The green dashed curve is the trajectory of the
vehicle. (b) The red dashed curve is the trajectory of the initial policy. (c) The blue
dashed curve is the trajectory of the policy and safety controller pair. (d) The magenta
dashed curve is the trajectory produced by the repair policy that deviates minimally
from the original one.

We use a simple example below to illustrate our problem setting and desired
solution. Consider a policy that was trained to steer a vehicle around a specific
corner as shown in Fig. 2(a). When deployed in a slightly different environment
as shown in Fig. 2(b), the policy fails to keep the vehicle inside the lane. Fig. 2(c)
illustrates that with the basic simplex setup as shown in Fig. 1, although the
safety controller manages to keep the vehicle inside the lane, frequent switch-
ing between the two controllers can lead to undesirable behaviors such as an
oscillating trajectory. Fig. 2(d) shows a more desirable trajectory produced by a
new policy trained using minimally deviating policy repair. Our approach to the
problem stated in Definition 3 is to ‘imitate’ the original policy by first synthe-
sizing and then learning from new trajectories that are similar to ones produced
by the original policy but instead do not violate the safety requirements. The
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synthesis algorithm works by iteratively improving the trajectories produced by
a naively repaired policy such as the one in Fig. 2(c) until trajectories such as
the one in Fig. 2(d) are obtained. The improvement is achieved by solving a
trajectory optimization problem of which the objective is transformed from the
imitation learning objective in Definition 3. We mainly focus on showing such
transformation in the rest of this section.

As mentioned in Section 3, to solve an imitation learning problem, we can
minimize the KL-divergence which is related to maximal log-likelihood, i.e.
arg min
θ∈Θ

DKL[πθ||πθ0 ] = arg max
θ∈Θ

Eτ∼πθ [logProb(τ |πθ0)]. Note that Prob(τ |πθ)

is induced from a Dirac Delta distribution u ∼ δ(π(x)) and Prob(τ |πθ0) is car-
ried out by adding to πθ0 an isotropic Gaussian noise N (0, Σ) with diagonal
Σ = σ2I. When a finite set Γ of trajectories of πθ is obtained, the log-likelihood
is equivalent to (10).

Eτ∼πθ [logProb(τ |πθ0)] ≈ 1

|Γ |
∑
τ∈Γ

logProb(τ |πθ0)

∝
∑
τ∈Γ

log{
∏

(xt,ut)∈τ

exp[− (πθ(xt)− πθ0(xt))
TΣ−1(π(xt, θ)− πθ0(xt))

2
]}

∝ −1

2

∑
τ∈Γ

∑
(xt,ut)∈τ

||πθ(xt)− πθ0(xt)||22 (10)

Suppose that at iteration i ≥ 1, a safe policy πθi is obtained and executed
to generate a set Γi of safe traces. Define lxt,πθi = 1

2 ||πθ0(xt) − πθi(xt)||22 and
JΓi(πθi) =

∑
τ∈Γi

∑
(xt,ut)∈τ lxt,πθi . To decrease JΓi , a new policy parameter

θi+1 = θi + δθi can be obtained by solving δθi = arg min
δθ

JΓi(πθi+δθ)− JΓi(πθ).

We further use the Gauss-Newton step [19] to expand this as shown in (11)
below.

arg min
δθ

δθT∇θJΓi(πθi) +
1

2
δθT∇θJΓi(πθi)∇θJΓi(πθi)T δθ

= arg min
δθ

∑
τ∈Γi

∑
(xt,ut)∈τ

δθi∇θπθi(xt)∇πθi lxt,πθi

+
1

2
δθTi ∇θπθi(xt)∇πθi lxt,πθi∇πθi l

T
xt,πθi

∇θπθi(xt)T δθi (11)

We note that the changes of the policy control output ut = πθi(xt) at arbi-
trary state xt can be locally linearized as from (12) to (13).

ut + δut = πθi+δθi(xt + δxt) ut = πθi(xt) (12)

δuTt − δxTt ∇xπθi(xt) ≈ δθTi ∇θπθi(xt) (13)

It implies that due to δθi, each trajectory τ = {(x0, u0), (x1, u1), . . .} of πθi
is approximately perturbed by δτ = {(δx0, δu0), (δx1, δu1), . . .}. Motivated by
the fact that πθi+δθi is safe if all of the trajectories are still safe after such per-
turbations, we optimize w.r.t the trajectory perturbations δτ ’s instead of δθi by
exploiting the relation between each (δxt, δut) ∈ δτ and δθi as in (13). Interpo-
lating the LHS of (13) in (11), we obtain a trajectory optimization problem (14)
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with linear and quadratic costs as shown in (15) ∼ (19). Note that this trajec-
tory optimization problem treats the trajectories from Γi as nominal trajectories
and solves for optimal perturbations to update those nominal trajectories. Local
linearization is used to derive the dynamics constraints as in (20) for each noimi-
nal trajectory. By adding the safety constraints (21), the trajectories can remain
safe after adding the solved perturbations. Here, we use the constrained iLQR
approach from [7] to resolve this constrained trajectory optimization problem.

arg min
{δx0:H ,δu0:H}

1

4|Γi|
∑
τ∈Γi

∑
(xt,ut)∈τ

 1
δxt
δut

T  0 QTx QTu
Qx Qxx Qxu
Qu Q

T
xu Quu

 1
δxt
δut

 (14)

where Qx = −2∇xπθi(xt)∇πθi lxt,πθi (15)

Qu = 2∇πθi lxt,πθi (16)

Qxx = ∇xπθi(xt)∇πθi lxt,πθi∇πθi l
T
xt,πθi

∇xπθi(xt)T (17)

Qxu = ∇xπθi(xt)∇πθi lxt,πθi∇πθi l
T
xt,πθi

(18)

Quu = ∇πθi lxt,πθi∇πθi l
T
xt,πθi

(19)

s.t. δxTt+1 = δxTt ∇xf(xt, ut) + δuTt ∇uf(xt, ut) t = 0, 1, . . . ,H − 1(20)

ϕ(xt + δxt) ≤ 0 t = 0, 1, 2, . . . ,H (21)

One major benefit of this formulation is that imitation learning objective
and safety constraints can be reasoned at the same time via optimal control.
As the optimization is now separable, (14) ∼ (20) provide a lower bound for
(11). By solving the linear equations (13), δθi can be inferred from the solved
perturbations {δx0:H , δu0:H}, and then be used to modify θi. Alternatively,
πθi+δθi can be obtained by training πθi with the trajectories induced from
{x1:H + δx1:H , u1:H + δu1:H}.

Fig. 3. Key steps in our minimally deviating policy repair algorithm. πθ0 refers to the
initial learnt policy.

The key steps of this iterative approach are shown in Fig.3 and the details
are in Algorithm 2. As indicated by line 2 and 6, Algorithm 1 is used to find
safe policies and generate safe nominal trajectories. This is because safe nominal
trajectories guarantee that the trajectory optimization problem (14) ∼ (21) has
feasible solutions, e.g. δx = 0, δu = 0. We terminate Algorithm 2 if Algorithm
1 fails to output a set of safe trajectories. In each iteration, we solve for the
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trajectory perturbations in line 4 and use them to update the policy as shown in
line 5. The algorithm ends in line 7 if the trajectory optimization step no longer
helps in decreasing the deviation.

Algorithm 2 Policy Repair for Minimal Deviation

1: Given an initial learnt policy πθ0 ; iteration parameters ε ∈ [0, 1], N > 1.
2: Initialization Obtain πθ1 , Γ1 from Naive Policy Repair(πθ0) via Algorithm 1;

if Γ1 is ∅, then return fail
3: for iteration i = 1 to i = N do
4: Solve the optimal {δx0:H , δu0:H} from (14) ∼ (21).
5: Solve δθi via (13) and let θi+1 = θi + δθi.

Alternatively, search for θi+1 = arg min
θ∈Θ

E(x,u)∼Γi [e(x+δx, u+δu;πθ)] by training

πθi with {(x+ δx, u+ δu)|(x, u) ∈ Γi}.
6: Obtain πθi+1 , Γi+1 from Naive Policy Repair(πθi+1) via Algorithm 1;

if Γi+1 is ∅, then return πθi
7: if |JΓi+1(πθi+1)− JΓi(πθi)| ≤ ε, then return πθi+1

8: end for
9: return πθN

Complexity analysis. The main complexity of Algorithm 2 comes from solving
the quadratic programming (QP) in (14) ∼ (21). Since cost (14) is convex as
indicated by (10), if the constraint (21) is also convex, then the QP can be
solved in polynomial time [18]; otherwise, it is NP-hard [21]. The trajectory
optimization in line 4 needs to be solved only once off-line at the beginning of
each iteration based on the safe trajectories collected from the previous iteration.
In our experiments, the trajectory optimization is solved in a receding horizon
manner as an MPC. In this case, the QP will be solved repeatedly over time to
determine an appropriate sequence of control outputs. The nominal trajectories
are obtained at each step by forward simulating the policy for a number of steps.
The total computation time will be the same as that of a standard MPC. Besides
trajectory optimization, the time complexity of policy updates in line 5 is either
the same as that of solving an approximated linear equation (13) or training a
neural network in a standard supervised manner.

6 Experiments

We perform two case studies to evaluate the effectiveness of our proposed ap-
proach. The key metrics of evaluation are (1) safety of the repaired policy and (2)
performance preservation with respect to the original policy. The experiments
were performed on a computer with the following configurations: Intel Core i7-
8700 CPU @ 3.2GHz x 12 Processors, 15.4 GiB Memory, GeForce GTX 1050Ti,
Ubuntu 16.04 LTS OS.
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6.1 Mountaincar

(a) (b)

(c) (d)

Fig. 4. (a) The mountaincar environment. (b) The red patterns represent a set of tra-
jectories produced by executing the initial policy. The y-axis indicates the velocity and
the x-axis indicates the horizontal position of the car. The car reaches the right moun-
tain top in 83.8 steps on average with velocity higher than the safety threshold (0.02).
(c) The interventions by the SC are indicated by the blue dots. A naively repaired
policy takes the 89.3 steps on average to reach the mountaintop. (d) A minimally de-
viating repaired policy accomplishes the same task in 84.9 steps on average without
violating the safety requirement.

Our first case study is Mountaincar7, as shown in Fig.4(a). In this environ-
ment, the goal is to push an under-powered car from the bottom of a valley to
the mountain top on the right with as few steps as possible. The state x = [p, v]
includes the horizontal position p ∈ [−1.2, 0.6] and the velocity v ∈ [−0.07, 0.07]
of the car. The control u ∈ [−1.0, 1.0] is the force to be applied to the car. The
car has a discrete-time dynamics that can be found in the source code the sim-
ulator. For the LC, we train a neural network policy via the Proximal Policy
Optimization (PPO) algorithm [31]. The neural network takes the state vari-
ables as input and generates a distribution over the action space. An additional
layer is added at the end of the network to calculate the expected action. In
Fig.4(b) ∼ (d), the x and y axes indicate the horizontal position and the velocity
respectively. The car starts from a state randomly positioned within [−0.6,−0.4]
as indicated by the black line above ‘init’. The step length for the PPO-trained
policy to reach the mountain top (p ≥ 0.45) is 83.8 averaged over 1000 runs.

7 https://gym.openai.com/envs/MountainCarContinuous-v0/
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Now consider the safety requirement ‘velocity v should not exceed 0.02 when
reaching the mountain top at p ≥ 0.45’. The goal states and unsafe states are
indicated by the green and grey areas in Fig.4(b). It can be observed that the
PPO-trained policy does not satisfy this requirement as all the red trajectories
in Fig.4(b) end up at p = 0.45 with v > 0.02. Then an SC is implemented by
following the Model Predictive Safe Control scheme introduced in Section 4.1.
The function ϕ(x) in (7) evaluates whether the state x is in the grey unsafe
area. The LC and SC pair generates the red trajectories in Fig.4(c). The blue
dots indicate the intervention of the SC. While implementing Algorithm 1 and
Algorithm 2, in each iteration we collect 20 trajectories in the trajectory set Γi.
Algorithm 1 produces a naively repaired policy that can reach the green area
with 89.3 steps on average. When using the minimally deviating policy repair
algorithm (Algorithm 2), the resulting policy produces the red trajectories in
Fig.4(d). It shows that in all the runs the resulting policy satisfies the safety
requirement and in addition the SC does not intervene. In terms of performance,
the policy reaches the green area with only 84.9 steps on average, which is much
closer to the performance of the original policy.

6.2 Traction-Loss Event in Simulated Urban Driving Environment

In this experiment, we show that our approach is effective even with an approxi-
mate dynamical model. The environment is in an open urban driving simulator,
CARLA [11], with a single ego car on an empty road. The state variables in-
clude position, velocity and yaw angle of the car and the control variables include
acceleration and steering angles. We use a simple bicycle model from [7] to ap-
proximate the unknown dynamical model of the car. The model simulates a
discrete-time system where the control actions are supplied to the system at an
interval of 0.03s. For the LC, an initial neural network policy is trained with
data collected from manually driving the car on different empty roads while
maintaining a speed of 8m/s and keeping the car to the middle of the lane.
During testing, we put the vehicle in a roundabout as shown in Fig.5(a) where
the white curves are the lane boundary. The starting and finishing lines are
fixed. The safety requirement can be described informally as ‘once the vehicle
crosses outside a lane boundary, the controller should drive the vehicle back to
the original lane within 5 seconds’.

The initial, learnt policy drives the car well in the roundabout, as shown
in Fig.5(a). We then consider an unforeseen traction-loss event, as shown by
the yellow rectangle in Fig.5(a) where the friction is reduced to 0 (e.g. an icy
surface). As a result, the vehicle skids out of the outer lane boundary. The
initial policy alone does not satisfy the safety requirement, as it keeps driving
the vehicle outside the lane boundary after the traction-loss event, as shown by
the red trajectory in Fig.5(a). An SC is implemented by following the Model
Predictive Safe Control scheme introduced in Section 4.1. The function ϕ(x) in
(7) checks whether the distance between the vehicle and the middle of the lane
is larger than half of the lane width. In Fig.5(b), the blue segment indicates the
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(a) (b) (c)

(d)

(e) (f)

Fig. 5. The green trajectories represent normal trajectories of the car when there is
no traction loss. The occurrence of the traction-loss event is indicated by the yellow
rectangle. (a)Red trajectory: the initial policy fails to correct itself from skidding. (b)
With interventions by the SC (the blue segment), the vehicle manages to return to
the lane. (c) Magenta trajectory: policy repaired via Algorithm 2 corrects itself from
skidding and does so better than using the SC. (d) The Y-axis represents velocity of the
car and the X-axis represents time steps. The red curve indicates that the initial policy
is in control and the blue segments represents the interventions from the SC. The cyan
curve is generated by a policy repaired via Algorithm 1. The magenta curve is generated
by a minimally deviating policy repaired via Algorithm 2. (e) Cyan trajectory: after
the traction-loss area is removed, the naively repaired policy drives the vehicle towards
the center of the roundabout, even going out the inner lane boundary for a short
amount of time. (f) Magenta trajectory: after the traction-loss area is removed, by
using Algorithm 2, the vehicle stays close to the middle of the lane.

interventions of the SC. It shows that due to the coupling of the LC and SC, the
vehicle satisfies the safety requirement as it moves back to the lane.

We next consider repairing the LC using Algorithm 1 and 2. We set ε to
0.001 in our experiments. For every intermediate policy in each iteration, 10
trajectories are collected in its trajectory set Γ . It takes 5 iterations for Algo-
rithm 1 to synthesize a safe policy that does not require the SC to intervene.
Starting with this safe policy, Algorithm 2 runs for 25 iterations before termina-
tion. The magenta trajectory in Fig.5(c) is from the minimally deviating policy
repaired via Algorithm 2. Obviously the policy is able to correct itself without
any intervention from the SC. In Fig.5(d), we compare the velocities of the vehi-
cles controlled by different policies. It can be observed that the velocities of all
policies drop drastically due to traction-loss at around step 220. The minimally
deviating repaired policy performs the best in restoring the velocity back to
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8m/s. It is worth noting that velocity stability is important from the viewpoint
of passenger comfort.

We summarize the results in Table.1. The performances of the algorithms
are evaluated from multiple aspects. We evaluate how well the task is finished
from 1) average speed (the closer to the target speed 8m/s the better); 2) av-
erage distance of the vehicle to the middle of the lane (the smaller the better);
3) total time taken for the driving task in number of simulation steps (the fewer
the better). We evaluate the smoothness of the trajectories based on the vari-
ances/standard deviations of speeds, distances, changes of speed and distance
respectively in consecutive time steps. A smaller variance/standard deviation
indicates a smoother navigation.

Table 1. Avg. Speed: average speed of the vehicle in each run. Lowest Speed: the
lowest speed since the vehicle firstly reaches 8m/s in each run. Aveg. Distance: the
average distance between the vehicle and the middle of the lane at each step. Tot.
Steps: the total number of steps that the vehicle outputs control actions in one run.
Var. Speed: the variance of the speed at each step in each run. Std Dev. Speed Change:
the standard deviation of the speed changes between consecutive steps. Var. Distance:
the variance of the distance between the vehicle and the middle of the lane at each
step. Std Dev. Distance Change: the standard deviation of the distance (from vehicle
to the middle of the lane) changes between consecutive steps. Initial policy is tested
before and after the traction-loss area is placed. The initial policy and SC pair is tested
after the traction-loss event occurs. ‘Algorithm 1’ and ‘Algorithm 2’ respectively refer
to the policies repaired via those two algorithms.

Avg.
Speed(m/s)

Lowest
Speed(m/s)

Avg.
Distance(m)

Tot. Steps
(0.03s/step)

Initial Policy (No
Traction-Loss Event)

8.0 7.1 0.27 396

Initial Policy 8.0 5.2 1.7 420
Initial Policy w/ SC 7.1 1.2 0.81 454
Algorithm 1 7.5 2.4 1.1 440
Algorithm 2 7.9 5.2 0.63 413

Var. Speed
Std Dev.

Speed
Change

Var. Distance
Std Dev.
Distance
Change

Initial Policy (No
Traction-Loss Event)

0.53 0.074 0.10 0.0096

Initial Policy 0.79 0.16 4.4 0.026
Initial Policy w/ SC 2.1 0.17 1.0 0.033
Algorithm 1 2.4 0.17 1.4 0.042
Algorithm 2 0.73 0.15 1.0 0.033

Before the traction-loss area is placed, the initial policy drives the vehicle
at 8m/s on average and keeps the vehicle close to the middle of the lane. After
the traction-loss event occurs, the initial policy still maintains the speed but
the car slides out of the lane as indicated by the average distance. The initial
policy and SC pair has the lowest average and lowest speed. As a result, the task
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time (represented by number of simulation steps) is also the longest. In terms
of policy repair, both Algorithm 1 and 2 are successful in finding safe policies.
The policy repaired via Algorithm 1 behaves similar to the initial policy and
SC pair – the vehicle experiences significant speed changes and takes longer to
finish the driving task. The minimally deviating policy repaired via Algorithm 2
behaves similarly to the initial policy in terms of maintaining the target speed,
staying close to the middle of the lane while producing a smooth trajectory. In
summary, the repaired policy using Algorithm 2 outperforms the initial policy
with SC and the repaired policy using solely Algorithm 1 in almost all metrics.
In terms of runtime overhead savings, the average neural network inference time
on our machine configuration is 0.0003s while the average time for SC to solve
(3) ∼ (8) is 0.39s.

To further measure the impact of policy repair and evaluate the performance
difference between a naive repair (using Algorithm 1) and a minimally deviating
repair (using Algorithm 2), we remove the traction-loss area and execute both
repaired policies in the original environment. It can be observed in Fig.5(e) that
the naively repaired policy cuts inside the lane, since it learns (possibly due to
overfitting) to steer inward in the states where traction loss is supposed to occur.
In contrast, the policy repaired using Algorithm 2 manages to keep the car in
the lane, as it learns to imitate the original policy. This thus further validates
our approach of finding a minimally deviating repair.

7 Conclusion

We consider a Simplex architecture where a learning-based controller is paired
with a backup safety controller for ensuring runtime safety. We show that this
setup, while provides added safety assurance, can produce undesired outputs or
cause significant performance degradation. We propose to address this problem
by fine-tuning the learning-based controller using interventions from the safety
controller, and addressing the issue of performance degradation via imitation
learning. Our experiments indicate that our proposed approach is effective in
achieving both safety and performance even when the dynamical model used by
the safety controller is not exact. In the future, we plan to consider other types
of safety controllers and extend our techniques to end-to-end control settings.
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