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Abstract— Sleeping is an indispensable activity of
human beings. Sleeping postures have a signifi-
cant effect on sleeping quality and health. A real-
time low-cost sleeping posture recognition sys-
tem with high privacy and good user experience
is desired. In this paper, we propose a sleeping
posture recognition system based on a low-cost
pressure sensor array which consists of conduc-
tive fabric and conductive wires. The sensor array
is deployed as a bedsheet with 32 rows and 32
columns resulting in 1024 nodes. An Arduino Nano
performs data collection using a 10-bit Analog to
Digital Converter (ADC). The sampling rate of the
overall sensor array is 0.4 frame/sec. Six health-
related sleeping postures of five participants can
be recognized by a shallow Convolutional Neural
Network (CNN) deployed on a Personal Computer (PC). The system accuracy achieved 84.80% using the standard training-
test method and 91.24% using the transfer learning-based subject-specific method. The real-time processing speed
achieved 434 us/frame.

Index Terms— Artificial Neural Network, Realtime Classification, Sensor Array, Smart Bed, Sleeping Postures ,

I. INTRODUCTION

WEARABLE biosensors [1]–[7] are widely used to mon-
itor human status and postures [8]–[13]. Sleep is one

of the most important postures as a vital activity of human
beings and plays an important role in recovery and survival
[14]. People sleep about 8 hours a day for average which
is one-third of their life [15]. Sleeping postures have been
proven to be related to human health. The bad postures can
cause health issues or worsen the existing diseases, which
may increase the death risk. For example, the supine position
is significantly associated with apneas, which affects up to
4 percent of middle-aged adults [16]. Besides, for the late
pregnancy women, if a supine posture is adopted, the pregnant
uterus may impact the aorta and inferior vena cava [17]. A
greater visual field (VF) loss may be associated with the
lateral decubitus postures [18]. Sleeping with one posture for
a long time may also cause or worsen the pressure ulcer. The
pressure ulcer can be avoided by using different sleep postures
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[19]. Thus, continuously monitoring the sleeping postures is
important for people who have been affected by related health
problems. However, the global nursing shortage is impacting
the health system around the world negatively [20]. Therefore,
automatic systems that have the capability of continuously
monitoring patient sleeping postures are expected.

To recognize and monitor the sleeping postures of human
beings, many works have been proposed. For instance, ac-
celerometers based monitoring systems [21]–[23] were pre-
sented. However, the sensors (accelerometers) must be at-
tached to the user’s body, which brings a bad user experience.
Another type of monitoring systems using vision devices
[24]–[26] includes the method of using visible light cameras,
Infrared cameras, Kinect cameras. Besides, a commercial
product [27] using the short pulse of radio waves has been
designed. However, the performance of these vision-based
monitoring and the short pulse of radio waves systems can be
easily impacted by the background, occlusion, and environ-
mental change, which may also make the user uncomfortable
for privacy issues. More privacy issues come if the systems
transmit the recorded data via the internet for cloud processing,
which may cause information leakage. Thus, building sleep
posture monitoring systems using pressure sensors became a
hot research topic.

Several important works of sleep monitoring systems using
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Fig. 1: Block diagram of the sleeping posture recognition
system.

pressure sensors have been reported in recent years [28]–[44].
These systems usually employ a sensor array to detect the
pressure distribution on the bedsheet. The pressure distribution
map is then processed as images using feature extraction and
learning methods to classify sleeping postures. The popular
processing methods include the k-nearest neighbor algorithm
(KNN), Convolutional Neural Network (CNN), and earth
movers distance (EMD). The main shortcomings of the current
system come from cost, flexibility, and real-time processing
capability. For example, the Force-Sensitive Resistance (FSR)
units can be expensive if a large array is requested. This
limits the flexibility of such systems for home care and travel.
Another challenge is that the data processing procedure is
usually separated from data collection, therefore, real-time
classification can not be achieved. Moreover, current systems
haven’t been reporting subject-specific inference methods.
Since individual patients may have different conditions, i.e.,
body mass indexes, the pressure distribution may vary. A
subject-specific inference system may better fit the person-
alized health system.

To overcome the above-mentioned challenges of current
systems, a low-cost real-time local sleeping posture recog-
nition system with low computational complexity is desired.
In this paper, we presented a sleeping posture recognition
system built using pressure-sensitive conductive sheets and
conductive threads with an amount of 1024 (32x32) nodes.
The sensor array, including the conductive sheets, is shaped
as a bedsheet with a size of 90cm x 180cm. A data collection
module was built on a Printed Circuit Board (PCB) board with
an Arduino Nano as the microcontroller. The 10-bit Analog
to Digital Convertor (ADC) in the Arduino Nano samples the
data and sends the data to a PC using Universal Asynchronous
Receiver/Transmitter (UART) by a Universal Serial Bus (USB)
cable. A CNN model is trained with data from MPII Human
Pose Dataset [45] and data collected from 5 participants (3
male and 2 female). Applied Transfer Learning (TL), the
system achieves the goals of obtaining high performance and
low complexity computation overhead. Transfer learning is
realized using Tensorflow 2.0. The accuracy of subject-specific
method achieves 91.24% ± 7.37% with loss as 0.377 ± 0.245
and the processing speed as 367.8 ± 37.12 µs/sample.

The main contribution of the system includes (1) providing

a low complexity low-cost hardware sensor using conductive
threads and pressure-sensitive conductive sheets. The cost
analysis is further discussed in Section V; (2) introducing the
machine-learning algorithm with transfer learning using the
MPII database for subject-specific classification to compensate
the accuracy loss from the low-cost hardware sensors for real-
time processing; (3) implementing the real-time operation that
achieved more than 2 frames/second. The main contribution of
this paper focuses on system integration with transfer learning.

The rest of this paper is organized as follows. In Section II,
the details of the design of this system and sensors, including
concepts and structures, are introduced. In Section III and
IV, the experimental setup and results are shown. Section
V discusses the advantage and limitations of the proposed
system. Section VI concludes this paper.

II. SYSTEM AND SENSOR DESIGN

A brief diagram of the system is shown in Fig 1. The
sleeping posture recognition system is made of a pressure-
sensitive sensory array, a data collection module, and a CNN
implemented on a PC. The data collection module samples
the voltage of the sensor array which is implemented as the
bedsheet. The data collection module sends the data to the
PC using a USB cable with the UART protocol. The CNN on
the PC processes the collected data using a Python program
to classify the sleeping posture from the subjects. A total of
six health-related sleeping postures were selected which is
shown in Fig 2. The selected sleeping postures are (a) Right
Yearner, (b) Left Yearner, (c) Left Foetus, (d) Right Foetus, (e)
Log, and (f) Supine. The target sleeping postures are selected
as typical postures which are also widely used in previous
literature studying the sleeping posture recognition [31], [41].
Fig 2 also illustrates typical data collected from the sensor
array as images. The overall data come from two sources.
The first source is the images of the human body from the
MPII dataset, while another source is the data collected from
the subjects. We collect shallow data from the subjects and use
transfer learning to meet the target of classification accuracy
and generalization.

A. Sensor Array
The sensor array contains 1024 pressure sensors with 32

rows and 32 columns made by pressure-sensitive sheets and
conductive threads. The structure of the sensor array is shown
in Fig. 3. The pressure-sensitive sheet is made of conductive
material also known as “Velostat” or “Linqstat”. Each sheet
patch is 11”x11” (28cm x 28cm) with a thickness of 4mil
(0.1mm). The sheet has variable resistance between its two
sides when implementing different pressure across the sheet.
Higher pressure results in a lower resistance between the
two sides. When the pressure is removed, the resistance
recovers back to its original value. Therefore, we use stainless
conductive threads to form the sensor, which is the same
method as employed in [46]. The crosses of the row thread
and the column thread on different sides provide pressure
information of the crossing points. We attached 32 conductive
stainless threads to the top surface of the pressure-sensitive
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Fig. 3: Structure of the pressure sensors.

sheet with tapes as rows while another 32 conductive stainless
threads were attached to the bottom surface of the pressure-
sensitive sheet as columns, which is perpendicular to the top
threads. This avoids the extra wire layers in the high-thickness
sandwich structure like [33], [34]. The cross point between
the top thread and the bottom thread forms the sensor nodes.
The overall sheet is connected by 18 (3x6) small sheet whose
size is 31cm by 31cm. The overall sheet is size is 0.9 m by
1.8m. The distance between two neighboring sensor nodes is
2.72cm horizontally and 5.45cm vertically. After assembly, the
measured original resistance between the two sides of a sensor
node is about 20k ohms. To measure the resistance of each
sensor node, each time one top thread and one bottom thread
are selected. The resistance of the cross node between the two
threads is then measured by a voltage divider and sampled by
an Analog to Digital Converter.

We measured the resistance across the conductive sheet with
different scale weights on top of the sheet. The resistance
varies from about 23k Ohm to 3.5k Ohm while the weight
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Fig. 4: Resistance across the conductive sheet with different
weight at four points on the sheet.

on top of the sheet increases from 10g to 150g. The minimum
detectable weight (sensitivity) is 10g. The experiment result is
shown in Fig. 4.

B. Ethical approval and Participant Selection
Ethical approval for this work has been granted by the Office

of Research Compliance of New Mexico State University with
project ID 18962. Each participant has been explained the
key information and has signed the Informed Consent Form.
The selected participants consist of 5 healthy young people
(2 female and 3 male) with the age ranging from 26 to 31,
mean ± standard deviation as 29.2 ± 1.5; weight ranging from
52 to 80 kg, mean ± standard deviation as 64.20 ± 11.5 kg;
height ranging from 162 to 177 cm, mean ± standard deviation
as 168.8 ± 5.8 cm. The participants were asked to lay on the
sleeping monitoring system with 6 specific postures mentioned
above. Each participant stays in one posture for 5 minutes.
The identification of each participant is anonymously coded
and stored in a classified file.

C. Data Collection and Storage
The data collection module is on a custom design PCB that

hosts the components of the Arduino Nano board, 4-to-16 de-
coders, analog single pole double throw switches (SPDT), and
active voltage dividers. The data collection module connects
the threads on the bedsheet. The threads on the top of the
bedsheet are connected to the output pins of SPDT by jumping
wires. The threads on the bottom of the bedsheet are connected
to the input pins of the voltage dividers. The Arduino Nano
board contains both the Microcontroller Unit (MCU) and ADC
to control the scanning of the sensor array and sample the
voltage of the voltage divider each time when a sensor node
is selected for resistance measurement. This is done by the
active voltage divider, which can adjust the sampled voltage
into the range from 2.5V to 5V. This voltage range fits both
the power supply range and the ADC input range. The 10-bit
ADC on the Arduino Nano board converts the output signal
of the voltage divider into digital data.

The sensors are shaped as a 32x32 array on the conductive
sheet. We collected the data by scanning the nodes one by one.
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At the beginning of the scan, a string of “frame start” is sent as
the starting flag. Then a conductive row thread is activated by
switching from the reference voltage to the ground. Because
another end of this sensor has been connected to the input of
an inverting amplifier, which works as a voltage divider, the
change of the resistance of one node can be transferred to the
voltage signal. Next, a conductive column thread is selected to
be read. The output port of each voltage divider is connected
to one input port of the analog switch. By changing the analog
switch to the corresponding column, we can select 32 different
nodes in the row. The scanning repeats 32 times for rows. 32
columns of thread are selected to be read respectively. At the
end of each scanning, a string of ”frame complete” is sent as
the ending flag.

The initialization of the system is operated at the beginning
of the data collection. The initialization contains the scanning
of all the nodes. The data collected during initialization can
be used to check the status of each node. After initialization,
a ready signal is sent from the MCU to the PC. Once data
collection starts, a command is sent to the MCU and the
continuous scanning operates. If a stop command is sent from
the PC to the MCU, the system still collects the data for the
remaining frames. This can guarantee a frame of data to be
collected completely. With the scanning method applied in
this work, only one row of sensors is active, which brings
low power consumption of the sensor even when the whole
system is working during continuous monitoring.

The collected data are sent and stored on a PC using a
mini USB cable. The communication is based on the UART
protocol with a baud rate of 115200. The sampling rate of the
system is 0.4 frame per second which means 2.44ms/node.
The PC processes the incoming data using an Intel i7 CPU
and Python program. Numpy and Tensorflow 2.0 libraries
were used to process the raw data, such as the operation of
normalization, reshape, and dimension transfer.

D. Signal Processing using Machine Learning

Machine learning has been applied to the sleep monitoring
system, such as the K-nearest neighborhood (KNN) method
[32], [37], Artificial Neuron Network (ANN) method [28],
and Deep Neural Network (DNN) method [29], [31]. Machine
learning methods achieve higher accuracy in posture classifica-
tion compared to analytical methods. In this work, we applied
the Convolutional Neuron Network. The CNN sleeping posture
recognition as illustrated in Fig. 5, which shows the dimension
of the input and output of each layer. The input of CNN is
the data from the sensor array with a size of 1024 (32x32).
The output of the CNN is the 6-bit one-hot binary code which
represents the sleeping posture predicted by the model. The
model has 4 layers. The first layer and the second layer are
convolutional layers with max pooling. The filters of these
two layers are 3x3x32 and 1x1x32. Zero padding is applied
to obtain information from all the data, which can correspond
to the convolution operation whose center is the specific data.
By doing so, the output of the convolution operation, which is
the feature map, has the same size as the input data. The last
two layers are the fully connected layers with 32 and 6 nodes,

respectively. The first two layers use the activation function of
the rectified linear unit (ReLU), and the third layer uses the
activation function as Hyperbolic tangent. The first two layers
play the role of feature extractors while the last two layers act
as classifiers.

1) Transfer Learning: Transfer learning is applied in the sys-
tem to improve classification accuracy [47]. Transfer learning
is introduced to alleviate the problem of overfitting during
model training due to shallow data. The data we collected
contains the feature of the body shapes of participants, which
is similar to the feature of the data from the MPII dataset.
Transfer learning can realize knowledge transfer by training a
model to extract a similar feature with the MPII dataset. Then
we can obtain shallow fully connect layers that were trained
just for classification to alleviate the overfitting problem.
Transfer learning is a popular way to train a model with
shallow data. The system applies transfer learning using data
from both the recorded data and the database. The recorded
data were collected from the 5 participants, which contains a
total of 3005 frames and each frame has 1024 nodes. Data
from each node is stored as 32-bit floating numbers. Another
source of transfer learning comes from 7000 images in the
MPII database. We first train the model using images from
the database. To get balanced data, we cut the images from
the MPII database so that 50% of the images contain human
body shapes while the other 50% of the images do not contain
human body shapes. The images with humans are labeled as
the binary number “10”, while the images without a human are
labeled as “01”. A 4-layer CNN was selected as the model and
trained as a classifier. The first two layers are 2 2-Dimension
convolutional layer. Then 2 fully connected layers attached to
the first two layers. The first layer has 32 filters with a shape of
3x3 and a 2-Dimensional Maxpooling operation. The second
layer has 32 filters with shape as 1x1 and a 2-Dimensional
Maxpooling operation as well. The maxpooling operation in
these two layers is with a size of 2x2 and the stride as 2.

The activation function for the first two layers is ReLU.
To utilize all the information, zero padding is applied to
these two layers, so that the size of feature maps of the
convolution operation is the same as the input. After flattening
all the output of the second layer, a fully connected layer is
attached. This layer has 256 nodes with activation function as
Hyperbolic tangent which can utilize the value of both positive
and negative numbers. The last layer in the model for the
MPII dataset is another fully connected layer, which works
as the output of the model. Dropout operation is applied to
all the layers except the last layer to avoid overfitting, and the
parameters are all set at 0.2 for these three layers. The numbers
of filters and nodes are selected as the power of 2. Cross-
validation was used to choose the optimal combination. The
fully connected layers of the model trained with the dataset
were removed after training. The rest of this model then acts
as the feature extractor in the new model for transfer learning.
All 32 filters of the first layers are shown in Fig.6

In the second step of transfer learning, we use the recorded
data to finalize the model parameters. The recorded data is
divided into a training set (70%) and a test set (20%). Two
fully connected layers were attached to the output of the model
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Fig. 5: Structure of the CNN applied transfer learning

Fig. 6: The filters of the first layer of CNN. Each filter has
the size of 3x3. The total amount of filters is 32.

trained with data from the dataset. The first fully connected
layer has 32 nodes with the activation function as Hyperbolic
tangent. The last layer has 6 nodes where the number is the
same as the number of postures to be classified. Dropout
operation is applied to the first fully connected layer with a
parameter as 0.5. The input of the new model is the frame
of pressure image of 1024 (32x32) nodes. The output of the
new model is a 6-bit one-hot binary code that corresponds to
specific sleeping postures.

2) Histogram of Oriented Gradients: Histogram of Oriented
Gradients (HOG) is an attractive and effective way to extract
features for object detection, especially for the edge of objects
in the images or pressure maps. Applying filters in horizontal
and vertical directions, the HOG result can be set as groups
by setting the size of a cell and the number of the cells in one
block. The number of orientation bins is another parameter that
can affect the granularity of the HOG. HOG often combines
with Support Vector Machine (SVM) to perform classification,
which is also applied in this work to compare with CNN
and transfer learning methods. In our systems, the size of
each cell is 8x8, and only 1 cell in a block. The number
of orientation bins is 4, which can be easily realized with
4 different combinations of result signs of the convolution

operation between data and two filters. Thus, the dimension
of feature vectors for each frame is 64 (4x4x4). The feature
vectors are calculated and normalized to the range between -1
and 1. 70% of data is used to train the SVM and another 30%
of data is used to test the model. The typical feature vectors
for 6 selected sleeping postures are shown in Fig.7.

III. EXPERIMENTAL SETUP

During the experiment, each participant laid on the smart
bedsheet of the sensor array. The sensor array, the data
collection module, and a PC were connected with jumping
wires and a USB cable. The data collection module was
powered by two USB cables. One cable was between the PC
and Arduino Nano board, which can be used as both power
supply and data transmission. Another USB cable was between
the PC and power supply pins of the other chips on the data
collection module board. Data from each node was sampled
by the Arduino Nano and transmitted to the PC. Then, the
data were processed by Python programs and stored in the
hard drive. The integrated sleep posture recognition system is
shown in Fig.8.

A. Data Processing
The data for this work consisted of two parts. One part was

the images that include human from the MPII dataset. Another
part was the data collected from the five participants. The
positions of four corners about bounding boxes that include
human bodies were labeled by the MPHB dataset which is
a subset of the MPII dataset. 3500 boxes with human beings
were cut from the original images and reshaped to images with
32x32 resolution, which were labeled as “10”. Other 3500
images without human bodies were cut from other parts of
the images, which were labeled as “01”. These 7000 images
were transferred to grayscale, then normalized to the range
from 0 to 1. All the image data for training the model was
stored as 32-bit float points in the hard disk. When training
the model, the data were loaded by the Python program. After
reshape and extend the dimension of data to fit the methods
of TensorFlow, the data were sent to the input port of the
initialized model.
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Fig. 8: System setup of the sleeping posture recognition
system with realtime data display and inference interface.

We collected 3005 frames of pressure data using our system
for training and testing. The voltage of each node was sampled
and transmitted by the data collection module with the Arduino

Fig. 9: Confusion matrix of the algorithm using HOG and
SVM with data from all the subjects.

Nano and the UART. The Python program on a PC retrieved
the raw data and put the data at the corresponding position in
matrices by analyzing the index of the raw data. All the data
were stored as 16-bit unsigned integers in text files while the
beginning and end flags are stored as strings. Each collected
data sample was normalized into a value between -1 and +1
by using the minimum and the maximum values in the dataset,
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which accelerates the convergence of the model in the training
process.

In order to perform real-time posture classification, in the
inference stage, the data sampled and transmitted by the
data collection module were reshaped and normalized by the
Python program directly and the flags were removed. Then the
processed data were sent to the model. The transient data were
stored permanently in the disk. The variables of the Python
program were used to store data for another cycle.

B. Real-time Display
A real-time display panel was built with the Processing

programming tool. To visualize the input data in the display
panel, 1024 (32x32) nodes are illustrated using grayscale. A
lighter color represents a higher sampled value. All the nodes
were initialed to 0 which means the color is pure dark. The
program uses the UART port of the PC to communicate with
the Arduino Nano in the data collection module. The program
starts to store data when a flag of the frame beginning is
recognized. When the flag of the frame end is detected, the
data are reshaped to a 32x32 data array to the display panel. A
multi-thread technique was applied so that the data retrieving
and display functions can run simultaneously. The refresh rate
of the display was the same as the data collection rate. The
data received by this program will not be stored in the hard
disk. This program facilitates the analysis of the frame region
which contains the pixel information of the subject. It also
checks the status of the sensors. The interface of the real-time
display module is shown in Fig.8.

IV. EXPERIMENT RESULTS

By applying transfer learning, both the feature extractor
and the classifier were trained. All the training, testing, and
inferencing process were run on a PC using TensorFlow 2.0.
Compared with the high accuracy of CNN with transfer learn-
ing, the algorithm of HOG and SVM achieves an accuracy of
83.36% with the data from all the participants without transfer
learning. The confusion matrix is shown in Fig.9.

A. CNN Feature Extractor
The CNN feature extractor in this work is the first two 2-

Dimensional convolutional layers of the model trained with
data from the MPII dataset. The input of the model is a frame
of a grayscale image with a size of 32x32 while the output
is the classification result encoded with a 2-bit binary code.
The batch size is 20 and the initial learning rate is 0.01 with a
decay rate of 0.7 for every 350 iterations. The epoch number
is 1. The optimizer is set as Adam and the cross entropy is
used as loss function, the accuracy reaches 86.94% with loss
decreases to 0.3490. The training speed is 950 us/sample.

B. Classifier
After cutting the fully connected layers, the feature extractor

was attached with two new fully connected layers acting as the
classifier for sleeping posture recognition. The input of the new
model is the same as the feature extractor but the output is the

Fig. 10: Confusion matrix using the CNN model (without
transfer learning) with data from all the subjects.

Fig. 11: Confusion matrix with the transfer learning model
from the subject (1).

6-bit one-hot binary code that represents 6 sleeping postures.
Shallow data were collected. Transfer learning was applied to
improve performance and avoid overfitting. We implemented
two testing methods, the first is normal training-testing and
the second is subject-specific training-testing. We analyzed the
performance of feature extraction and classification using both
testing methods.

In the normal training-test method, 70% of the collected
data were used to train the model while the other 30% was
used to test the model. Data were randomly selected. The batch
size is set as 10 and the initial learning rate is set as 0.03 with
decay rate as 0.75 for every 200 iterations. The number of
epoch is 10. This method achieves the accuracy of 84.80%
with loss decreases to 0.8424 and the training speed of 338
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Fig. 12: Confusion matrix with the transfer learning model
from the subject (2).

us/sample.
In the subject-specific method, 20% of data from the in-

dividual participant is used to training the model and the
other 80% of the data is used to test the model. The data
selection is also random. The batch size is set as 10 and the
learning rate is 0.03 without decay. The number of epoch
is also 10. The accuracy of this method is shown in the
table. The confusion matrices for the testing results of models
trained with participants 1∼5 is shown in Fig.11 ∼ Fig.15
respectively.

Fig. 13: Confusion matrix with the transfer learning model
from the subject (3).

V. DISCUSSION

Compared with other similar sleep posture recognition
systems using pressure sensors, the main advantages of the

Fig. 14: Confusion matrix with the transfer learning model
from the subject (4).

Fig. 15: Confusion matrix with the transfer learning model
from the subject (5).

proposed system are the low-cost bedsheet and thin thick-
ness. The proposed system uses conductive threads and the
pressure-sensitive conductive sheet. The 11-inch by 11-inch
pressure-sensitive conductive sheet costs $5, which equals
to $0.0064/cm2. The Stainless Thin Conductive Thread 2-
ply roll costs $7/23 meters, which equals to $0.304/meter.
This is equivalent to $130 for the whole sensing bedsheet:
$103.7 for the sheet and $26.3 for the threads. Other similar
systems usually use commercial FSR sensor arrays, which
are apparently more expensive, the market price of FSR is
$7. To make a 1024 sensor array for the whole bedsheet it
would cost $7168. Another advantage of the pressure-sensitive
conductive sheet is that it is light weighted and easy to carry.
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TABLE I: Accuracy and Inference Speed of the participants.

Data of
Participant Accuracy Loss Speed

(us)
(1) 97.20% 0.2265 354
(2) 98.60% 0.084 354
(3) 80.20% 0.7373 347
(4) 91.40% 0.3785 350
(5) 88.80% 0.4118 434

summary
(m+s) 91.24% ± 7.37% 0.377 ± 0.245 367.8 ± 37.124

The thickness of the pressure-sensitive conductive sheet in our
system is only 0.1mm while the thickness of commercial FSR
sensors is usually between 0.2-1.2 mm. Therefore patients can
use our proposed system at home or even during travel. This
is also very helpful for keeping the patient at home for remote
monitoring.

The cost of using the pressure-sensitive conductive sheet is
that the resistance between the conductive threads across the
pressure-sensitive conductive sheet brings instability, which
may decrease the recognition accuracy. This brings more
challenges in signal processing. For example, the classification
accuracy is a little bit lower than the FSR based sensing
systems. To alleviate the problem from hardware, we intro-
duced the transfer learning-based subject-specific classification
to compensate for the accuracy loss. This method may require
a few times of calibration and training with the individual
data from a specific subject. To obtain the data, the subject-
specific recognition can be done by a calibration process to
let the subject lay down with certain postures before the real
recognition starts in order to collect subject-specific data for
the transfer learning model. This would take a few extra
minutes once a new patient is using the system for the first
time. We think this is feasible. Another drawback is that by
doing this the system needs the training data from the subject
before it could conduct inference. This means that the system
would not perform inference for a completely new subject.
The idea of applying subject-specific training and transfer
learning is to improve the success rate in order to compensate
for the uncertainty introduced by the low complexity sensing
system. The system is not using a general set of model
parameters. This paper focuses on system integration. The
main contribution is to apply the transfer learning algorithm in
the system but not proposing a new algorithm or modifying the
existing algorithms. In summary, to balance trade-offs between
accuracy, cost, and complexity of data collection procedures,
the choice of using different types of sensors depends on the
specific medical applications and cost considerations.

Another important feature of the system is real-time pro-
cessing. Compared to other similar systems, the data collection
module in our system provides real-time data communication
between sensors and machine learning systems. Real-time
inference results may help patients with serious sleep disorders
such as sleep apnea. By introducing subject-specific transfer
learning and real-time processing, the system also has the
potential to combine the instant recorded data and historical
patient data to perform better analysis to find the abnormality
of the sleeping posture, which may help in early detection of

health problems and introduce early intervention.
In the future, real-time processing can also be achieved

using temporal difference, spatial difference, or address-event
representation (AER) methods in image sensing to further re-
duce processing complexity and system power. Other kinemat-
ics modeling methods such as Simultaneous Localization and
Mapping (SLAM), which is popular in Robotics, could also be
applied in the sleep posture recognition application. It is also
possible to integrate a wireless link into the system to replace
the cable. The current system has known limitations as other
systems, for example serving the patient with an amputation.
However, the subject-specific training may compensate for this
shortcoming. The low complexity sensor-learning architecture
has the potential to be implemented on hardware, such as
an FPGA, to further reduce the system cost and improve
the privacy protections of the patient [13]. We are currently
working on converting the smart bedsheet system into a local
processing block to avoid using a computer.

VI. CONCLUSION

In this work, a real-time low-cost sleeping posture recog-
nition system with high performance and privacy was im-
plemented. The system used transfer learning to obtain high
accuracy with shallow data and avoid overfitting. The model
has a relatively simple structure and been tested using both
normal training-testing and subject-specific testing methods.
The system provides a low complexity solution for real-time
sleeping posture recognition. The computation of the model
includes multiply-accumulation operation with activation func-
tions as ReLU and Hyperbolic tangent. The system has the
potential to be implemented on hardware in the future.
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