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Abstract

Biomimetic scale-covered substrates provide geometric tailorability via scale orientation, spacing
and also interfacial properties of contact in various deformation modes. No work has investigated
the effect of friction in twisting deformation of biomimetic scale-covered beams. In this work, we
investigate the frictional effects in the biomimetic scale-covered structure by developing an
analytical model verified by finite element simulations. In this model, we consider dry (Coulomb)
friction between rigid scales surfaces, and the substrate as the linear elastic rectangular beam. The
obtained results show that the friction has a dual contribution on the system by advancing the
locking mechanism due to change of mechanism from purely kinematic to interfacial behavior, and
stiffening the twist response due to sharp increase in the engagement forces. We also discovered, by
increasing the coefficient of friction potentially using engineering scale surfaces to a critical
coefficient, the system could reach to instantaneous post-engagement locking. The developed
model outlines analytical relationships between geometry, deformation, frictional force and strain
energy, to design biomimetic scale-covered metamaterials for a wide range of applications.

1. Introduction

Many biological and biomimetic structures possess
geometrically pronounced features. Such geometric
features include for instance scales and intricate topo-
logical arrangement in their interior. This leads to
nonlinear behavior such as nonlinear strain-stiffening
in bending [ 1-5], nonlinear strain-stiffening in twist-
ing [6], nonlinear stress—strain behavior in nature
inspired cellular architecture [7-12], and nonlin-
ear dispersion relationships in honeycomb structures
leading to acoustic band gaps [13]. These structures
include seashells, hierarchical honeycombs, snail spi-
ral, seahorse tail, fish scales, lobster exoskeleton,
crab exoskeleton, butterfly wings, armadillo exoskele-
ton, sponge skeleton, etc [10, 14-17]. Among these
structures, dermal scales have garnered special atten-
tion recently due to complex mechanical behavior in
bending and twisting [18—24]. Scales in nature are
naturally multifunctional, lightweight [25-34], and
protective of the underlying substrate, which has been
an inspiration of armor designs [23, 24, 35, 36], where
overlapping scales can resist penetration and pro-
vide additional stiffness [23, 24, 37, 38]. Fabrication

methods such as synthetic mesh sewing and stretch-
and-release have been recently developed to produce
overlapping scale-covered structures in 2D and 1D
configurations [39, 40]. These fabricated structures
show almost ten times more puncture resistance than
soft elastomers.

In addition to these localized loads, global
deformation modes—such as bending and twist-
ing—can be important for a host of applications
that require structural modes of deformation, namely
soft robotics, prosthetics, and morphing structures.
In this context, characterizing bending and twist-
ing plays an important role in ascertaining the ben-
efits of these structures. Prior research has shown
that bending and twisting of a scale-covered sub-
strate show small-strain reversible nonlinear stiffen-
ing and locking behavior, due to the sliding kinemat-
ics of the scales embedded in the substrates [1-6,
41-45]. Such sliding interlocking structures possess
certain unique characteristics, which give biological
structures advantages without sophisticated parent
materials. These include sharp and rapid increase in
stiffness, leading to an almost rigid final shape (i.e.
locking [2, 4-6]). This type of behavior is known to
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assist the entire body of the fish as an external ten-
don [46, 47]. A good biological example here is the
arapaima fish, which lives in the Amazon river, shown
in figure 1(a). Their body’s inner layer can twist
and compress under stress, while their scales reori-
ent themselves to help resist against external force and
increase their strength [36, 48]. These dermal scales
are also known to affect snake motion on surfaces
[49—-51]. Sliding behavior is also exploited in the tail
of seahorses, which helps in its prehensile functional-
ities [52—54]. From an engineering perspective, such
preferential locking behavior is critical for a range
of applications. For example, in soft and collabora-
tive robotics, a robotic appendage must balance flex-
ibility and range of motion with stiffness to preserve
an arm shape [55—57]. Thus, manipulating stiffening
behavior is among the most important goals of such
advanced applications.

Locked states guarantee the intermediate nonlin-
ear behavior. Thus, the universality of such behav-
iors across deformation regimes needs to be ascer-
tained. Several recent publications have probed this
phenomena in depth for bending modes in both
uniform [2] and non-uniform scales distributions
[4, 5], and for both frictionless [2] and fric-
tional cases [42]. However, the literature for the
torsional deformation is somewhat less developed.
Here, only the frictionless case has been probed into,
which showed that locking is possible, but only for
certain oblique angles of scales [6]. Therefore, the role
of friction and its possible universal role has not been
established in literature. In other words, questions
remain about the parallels of properties modification
brought about by friction in bending with twisting.
For instance, Coulomb friction in bending regime
advances the locking envelopes but at the same time,
limits the range of operation [42]. In the dynamic
regime, Coulomb friction can lead to damping behav-
ior, which mimics viscous damping [44]. Clearly, fric-
tion between sliding scales can significantly alter the
nature of nonlinearity. However, in spite of these stud-
ies, the role of friction in influencing the twisting
behavior of a scale-covered structure has never been
investigated before.

In this paper we investigate the role of friction in
affecting the twisting behavior of biomimetic scale-
covered systems under pure torsion for the first time.
We establish an analytical model aided by finite ele-
ment (FE) computational investigations. We assume
rigid scales, linear elastic behavior of the substrate,
and Coulomb model of friction between scales’ sur-
faces. We compare our results with FE model to verify
the proposed analytical model.

2. Materials and methods

2.1. Materials and geometry
We consider a rectangular deformable prismatic bar
with a row of rigid rectangular plates embedded on
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substrate’s top surface. For the sake of illustration, we
fabricate prototypes of 3D-printed scales made from
the polymer Polylactic acid (PLA) (Eppa ~ 3 GPa),
partially embedded into the top surface of a silicone
substrate and adhered with silicone glue (Perma-
tex Corporate) to prefabricated grooves on the
molded slender vinylpolysiloxane (VPS) (Zher-
mack SpA) substrate (Eyps ~ 1.5MPa), as shown in
figure 1(b). The Young’s modulus of these materials
were obtained by tensile tests and the substrate’s
material was found to behave linearly for moderate
torsional deformation [6]. In our lab scale testing,
the silicone based polymeric substrate material did
not exhibit appreciable anisotropy. This is consistent
with previous reports in literature [58, 59]. How-
ever, for the biomimetic scale-covered substrate,
anisotropy between directions of twisting (engaged
vs non-engaged) would obviously arise. This is an
example of emergent behavior, which is typical
in many topologically and geometrically complex
structures including the current system [11, 12]. The
prototype is illustrated under twisted configuration
in figure 1(b). The rigidity assumption for the scales
is valid in the limit of much higher stiffness of the
scales, away from the locking state [24, 46]. Note that
we did not perform physical torsion experiments in
this paper, but used real prototypes only for aiding
visualization.

The pure twisting behavior allows us to assume
periodicity, letting us isolate a fundamental repre-
sentative volume element (RVE) for modeling the
system, figure 2(a). The scales are considered to be
rectangular rigid plates with thickness f;, width 2b,
and length I, and oriented at angles # and a as
shown in figure 2(b) with respect to the rectangu-
lar prismatic substrate. ¢ is the scale inclination angle
defined as the dihedral angle between the substrate’s
top surface and the scale’s bottom surface, and « is
the angle between the substrate’s cross section and
the scale’s width. The length of exposed section of
scales is denoted as I, and the length of embed-
ded section of the scales is L. Therefore, the total
length of the scale is [, = L + I. The spacing between
the scales is constant and denoted by d, which is
a geometrical parameter reciprocal to the density
of scales. We assume that the scale’s thickness #, is
negligible with respect to the length of the scales,
ls (t; < k), and the scale’s embedded length is also
negligible with respect to the substrate’s thickness
(0 < L 2t). This thin-plate idealization for the
biomimetic scales is appropriate for this case and typ-
ically used in literature for analogous systems [2, 4—6,
42-44],

2.2. Kinematics

For global deformation modes such as pure bending
and twisting, the scale periodicity is a good approx-
imation [2, 6]. Periodicity assumption allows us to
consider just three consecutive scales configuration at

the RVE level, we call these scales as ‘zeroth scale’,
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Figure 1. (a) Arapaima fish which can twist their body’s inner layer and their scales reorient themselves to help resisting against
external force and increase their strength. The image has been adapted under CC BY 2.0 license [60]. (b) The fabricated prototype
were made from 3D-printed polylactic acid scales and molded slender VPS substrate in initial and twisted configuration.
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‘Ist scale’, and “2nd scale’, respectively, from left to
right. The corners of these scales are marked like-
wise in figures 1(b) and 2. Without loss of generality,
we consider st scale is fixed locally with respect to
other scales. A twisting deformation with twist rate
&, is applied to the rectangular prismatic substrate
about torsion axis, which passes through the beam
cross section center. Due to this underlying deforma-
tion, the 2nd scale rotates by the local twist angle of
i = ®d, and the zeroth scale rotates in reverse direc-
tion about the torsion axis with —p = —®d, because
1st scale assumed locally fixed. The continual twisting
of the substrate progresses the contact between each
two consecutive scales simultaneously due to period-
icity, by coincidence between lines C1B; and D,G,, as
well as lines D, C, and CyBy.

To find a contact criterion between 1st scale and
2nd scale, the 3D-equations of lines C,B; and D,C,
would be established. We place the coordinates XYZ
on the midpoint of 1st scale’s width as shown in
figure 2. Then we place coordinates xyz on the tor-
sion axis at point O = (0, —#, 0) measured from the
coordinates XYZ. Hereafter, coordinates xyz is our ref-
erence frame. Note that, we do not show coordinates
xyz and scale’s thickness f; in figure 2(b) to avoid
visual complexity. We establish local coordinates on
each scale, denoted as ‘local coordinates of ith scale’,
and coordinates origin is located on the corner of the
scale at point D;. In these local coordinates, the unit
vector of x-axis (nx;) is on the edge D;C;, the unit vec-
tor of y-axis (mny;) is on the edge D;A;, and the unit
vector of z-axis (nz) is out of plane and perpendicular
to ny; and ny;, figure 2(b). On each scale, edges D;C;

and A;B; are parallel and in direction of nx;, and edges
C;B; and D;A; are parallel and in direction of ny;. Point
M; is located in the middle of edge C;B;. Using these
established coordinates, equations of line C, B; of 1st
scale can be obtained on the base of the unit vector ny,
and the location of point M;, which is located in the
middle of the edge C,B,. Line D,C; is located on the
2nd scale, which is rotating with angle ¢ about torsion
axis. To find the equation of this line, first we locate
the corners of 2nd scale as shown in figure 2(a), before
and after rotation using rotation matrix. Thus, we find
the location of point D, and C, after rotation, which
are located at ends of the line D, C;. Then, the rotating
local coordinates on this scale and the unit vector in
direction D,C, (nx,) can be established. Finally, the
equations of line D,G; is delivered by using the unit
vector ny; and point D,.

To find the contact point of these two lines,
we solve their equations together as a system of
equations, which yields a nonlinear relationship
between ¢ and 6. To represent a general form for
this relationship, we define dimensionless geomet-
ric parameters n=1I/d, f=b/d, and A =t/d as
the overlap ratio, dimensionless scale width, and
dimensionless substrate thickness, respectively. The
governing relationship between the substrate local
twist angle ¢ and the scale inclination angle € can be
written as:

(cos — 1) (Bsin 2a sin f + ncos’a sin 26)
+ 2\ cos2acos ) — 2cosacos @sinf
+ 2 sin e sin () + Asin 6)
+ 2cosasinpcos (3 — sina) = 0. (1)
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the scale’s thickness ¢, is not illustrated in this figure.

Figure 2. The schematic of three consecutive scales geometrical configuration: (a) top view of scales configuration. (b) Dimetric
view showing scales orientational angles of # and v, and the embedded part of the each scale. Note that angle £ is exaggerated and

The details of derivation of this relationship can
be found in appendix A. We can use the same proce-
dure to establish the locations of zeroth scale’s corners
and its local coordinates after rotating with angle —¢
about torsion axis. We find the same nonlinear rela-
tionship between ¢ and € as shown in equation (1)
due to the periodicity of the system. Also, the location
of point Py, as the intersection between lines D,C,
and C; By, and the location of point Py as the intersec-
tion between lines D; C; and CyBy, can be calculated as
described in appendix A. These points are illustrated
in figure 3, which shows the twisted state of the RVE.

To express the dimensionless geometric param-
eters qualitatively in a biological scale-covered sys-
tem, it can be mentioned that the overlap ratio
n = 1/d determines how much fish scales are long,
and S = b/d is representing fish scales width. Also,
A = t/d determines the thickness of the effective fish
skin layer.

From the beginning of contact between the scales
(scales engagement), the relationship (1) is estab-
lished between the substrate local twist angle ¢ and
the scales inclination angle . After starting the scales
engagement, scales slide over each other and é startsto
increase from its initial value 6, according to the non-
linear relationship (1). Note that scales engagement
starts at a point with relatively small local twist angle

which we call it engagement point (E,). Therefore, to
find an explicit relationship for the local twist angle
( at this point known as the engagement twist angle
e, we linearize (1) by considering small twist regime
(p < 1, 6 < 1) which leads to ¢, = 6 /(ntan o +
B — sin ).

Using the kinematic relationship (1), we probe
the existence of a singular point where locking can
take place. This would be the envelope defined
by d¢/08 =0, and beyond which no more slid-
ing is possible without significant deformation of
the scales. This point is called the ‘kinematic
locking’ of the system [6]. The locking point
(Lp) happens when the scale-covered structure, even
though it has a deformable substrate, can not
be twisted anymore due to the kinematic contact
between relative-rigid scales (scales engagement) and
the established geometrical arrangement (singular
point). Note that the kinematic locking state can
occur even without friction since it is a result of sin-
gularity in the governing kinematic relationship of the
system. Beyond this point, stiffness increases sharply
as it is determined by the stiffness of the scales.

2.3. Mechanics

To investigate the role of friction in twisting behav-
ior of biomimetic scale-covered substrate, we investi-

gate the free body diagram of the RVE (here 1st scale)

4
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normal force N, and friction force f_ at the contact points.

Figure 3. Twisted state of the RVE and free body diagram of each pair of scales representing their contact points Pig and Py,

during engagement as shown in figure 3. The forces
on the 1st scale are as follows. At contact point
between zeroth scale and 1st scale Py, there are two
reaction forces including friction force f,, acting in
the plane of 1st scale by angle x,, with respect to the
unit vector myx;, and normal force Ny acting perpen-
dicular to this plane in direction —nz, as shown in
figure 3. Also, at contact point between 1st scale and
2nd scale Py,, two reaction forces are acting includ-
ing friction force f |, in the plane of 2nd scale by angle
X12 with respect to the unit vector myx,, and normal
force N, perpendicular to the plane of 2nd scale in
direction nz, as shown in figure 3.

Note that the direction of friction forces are
dependent on the direction of relative motion
between each scale pairs. Due to the periodicity, the
value of friction forces are equal f, = f, = f;,, and
also the value of normal forces are equal N = Ny =
Ni2. According to the described free body diagram,
the balance of moments at the base of 1st scale can be
described in the vectorial format as follows:

K6 — ) = (O1Pro x (—(fi cos x10)mx
— (f& sin x10)my1 — (N)nz1) + O1P,
x ((fi cos x12)tx2 + (fir sin x12)ny2
+(N)nz)) .ny, (2)

where O, Py and O, P, are the position vector of con-
tact points Pyy and P, with respect to the base of

fo L

the 1st scale, respectively, as shown in figure 3.
Ky is the ‘rotational spring constant’ or the ‘rigid
scale—elastic substrate joint stiffness’. As the scales
engage, they tend to push each other and increase
their inclination angle 6, but the elastic substrate
resists against scales rotation. This resistance is
modeled as linear torsional spring [1, 2, 6], and
the absorbed energy due to the rotation of each
scale is Useale = ;—Kg(ﬂ — 6y)?, thus the local reac-
tion moment would be M.y = Ky(6 — 6). Accord-
ing to developed scaling expression in [6], Ky =
3.62Egt> b(L/t,)">°, where Ej is the elastic modulus
of substrate. According to the Coulomb’s law of fric-
tion, scales do not slide while f, < pN, where p and
N are coefficient of friction and normal force, respec-
tively, while sliding regime is marked by the equality.
Note that we use the same value for static coefficient of
friction as well as the kinetic coefficient of friction in
this study, although typically static coefficient of fric-
tion is slightly higher [61, 62]. On the basis of scales
relative motion expressed in appendix B, the angle
between the friction force f;, in the 1st scale plane
and the unit vector ny; is equal to the angle between
friction force fy, in the 2nd scale plane and the unit
vector nyz. This means x,, = X, and can be shown
as x. This finding also conforms the periodicity in the
system. Using these considerations, we can derive the
following expression as the non-dimensionalized fric-
tion force fo, with respect to the free body diagram
shown in figure 3:

(6 — )1

Due to the nature and the geometrical configu-
ration of the system, the magnitude of the friction

Kg (O]Pu X (COS Xtx2 + sin Xty: + ;—Iﬂzz) — O]P]o X (COS xtxy + sin Xty + ﬁﬂzl)) Ny

(3)

force derived in (3), may exhibit singularity at a cer-

tain twist rate. This rise in friction force may lead to a
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‘frictional locking’ mechanism, observed in the bend-
ing case too [42]. If predicted, the frictional locking
should happen at the lower twist rate compared to
kinematic locking, because of the limiting nature of
friction force. We call the twist rate in which lock-
ing happens as ®},q, and the local twist angle and the
scale inclination angle would be as ¢4 = Pioad and
Brock, respectively.

The friction force computed above will lead to dis-
sipative work in the system during sliding. The non-
dissipative component of the deformation is absorbed
as the elastic energy of the biomimetic beam. This
elastic energy is composed of elastic energy of the
beam and the scales rotation. To calculate this elas-
tic energy of the beam, we consider a linear elastic
behavior for the beam with a warping coefficient C,,
for a non-circular beam [6, 63]. Furthermore, due
to the finite embedding of the scales, there will be
an intrinsic stiffening of the structure even before
scales engagement. This stiffening can be accurately
captured by using an inclusion correction factor Cg
[6]. Ct is a function of the volume fraction of the
rigid inclusion into the elastic substrate, and pos-
tulated as Cf = 14 1.33(({3/\), where { = L/d for
an analogous system [6]. With these considerations,
modified torque—twist relationship of the beam is
T = CiC,,Gpl®, and the elastic energy of the beam
can be considered as Uy = %CwaGBI‘I'z. As men-
tioned earlier, the energy absorbed by the scales
can be obtained by assuming the scale’s resis-
tance as linear torsional spring and the absorbed
energy due to the rotation of each scale will be
Uscale = %Kg(ﬁ — 6p)?. Similarly the dissipation can
be given as the product of the sliding friction and
distance traveled by the point of application per
scale. Then we use the work—energy balance to
arrive at:

D
/ T(3)dP = L CC oI D + (ﬂng — )2
A 2 2d
1 L]
+ i ffrdf) H(® - &), (4)
D,

where @, ¢, = ¢, /d, Gg, and I are the current twist
rate, the engagement twist rate, the shear modulus
of elasticity, and the beam cross section’s moment
of inertia. H(® — ®,) is the Heaviside step function
to track scales engagement. Also, C;, C, and Kj
are inclusion correction factor, warping coefficient,
and rotational spring constant of scale—substrate joint
stiffness, respectively. In (4), f;, represents the fric-
tion force between scales, and dr is the relative differ-
ential displacement traveled by the point of friction
application. Derivation of dr has been described in
appendix B.

The torque—twist rate relationship per substrate’s
unit length could be obtained by taking the deriva-
tive of (4) with respect to the twist rate ®, while
considering ¢ = ®d, as follows:

H Ebrahimi et al

T(®) = CGC,Gpl® + (Kg(t? — 60)@ +fﬁﬁ)
dp de
x H(® — d,). (5)

We also compute the maximum possible dissipa-
tion of the system by computing the frictional work
done till locking (W) and compare it with the total
work done (Wys = Uag + W, where Uy is the elas-
tic energy of the system). These energies can be com-
puted per substrate’s unit length as:

1 1
Ug = 3 (CwaGBI(‘i’lock)z + EKQ(thk - 90)2) ,
(6a)

1 Prock
Wg = —/ feedr. (6b)
dJe,

We define the relative energy dissipation (RED)
factoras the ratio of the frictional work per unit length
Wi, to the total work done on the system per unit
length Wey:

Wi

RED = —= .
Weys

(7)

Generally, RED is dependant on the coefficient of
friction p, dimensionless geometric parameters of the
system 7}, /3, and A, scale spacing d, scales initial ori-
entation angles «v and 6, substrate elastic properties
Gg, I, and C,,, and scale—substrate joint parameters
Ky and Cy, but the most important parameters are p,
7, and a.

3. Finite element simulations

We have developed an FE model for verification of the
developed analytical model for the biomimetic scale-
covered system under twisting deformation. The
FE simulations are carried out using commercially
available software ABAQUS/CAE 2017 (Dassault
Systémes). We considered 3D deformable solids for
scale and substrate. However, for the scales, rigid body
constraint was imposed. A sufficient substrate length
is considered for rectangular prismatic substrate to
satisfy the periodicity. Then an assembly of substrate
with a row of 25 scales embedded on its top surface is
created. The scales are oriented at angles of #) and «
as defined in the analytical model. Linear elastic mate-
rial properties including Eg and v are applied to the
substrate part which leads to the shear modulus of
Gp = 2(—&7).

The simulation was considered as a static step
with nonlinear geometry option. The left side of the
beam is fixed and the twisting load was applied on
the other side of the beam. A frictional contact cri-
teria is applied to the scales surfaces with coeffi-
cient of friction p for a twisting simulation. The top
layer of substrate is meshed with tetrahedral quadratic
elements C3D10 due to the geometrical complexity
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Figure 4. Non-dimensionalized friction force vs
non-dimensionalized twist rate (@, is the engagement twist
rate) for various coefficients of friction with the given
valuesofn = 3, fy = 10°, @ = 45°, § = 1.25, and

A = 0.45. This figure shows that the friction forces
approach singularity near a certain twist rate as the
frictional locking configuration for each p.

around scales inclusion. Quadratic hexahedral ele-
ments C3D20 are used for other regions of the model.
A mesh convergence study is carried out to find suffi-
cient mesh density for different regions of the model.
A total of almost 70 000 elements are employed in the
FE model.

4. Results and discussion

To study the frictional force behavior in this sys-
tem, we use (3) to plot non-dimensionalized fric-
tion force f, for different p values at various
non-dimensionalized twist rate ®/®,. In a real bio-
logical scale-covered system like fish scales, the geom-
etry of fish scales, scales’ surface roughness, and
the epidermal mucus, which typically covers the fish
scales, significantly affect the values of coefficient
of friction p [64]. The non-dimensionalized friction
force is shown in figure 4 for scale-covered system
with n =3, 0y =10°, a =45°, 3 =1.25, and A =
0.45. From this figure, it is clear that increasing twist
rate leads to a rapid increase in the friction force for
any coefficient of friction. There is a singular charac-
teristic for this load as shown with dashed lines for
each p in figure 4, which indicates a friction-based
locking mechanism. This is in addition to the purely
kinematic locking mechanism reported earlier in lit-
erature for frictionless counterparts [6]. We call the
twist rate at the locking point (L), as the locking twist
rate @y ..

Next, we investigate the scale rotation in response
to applied twist. This is achieved by plotting the scale
inclination angle 6 versus substrate local twist angle

. Using the nonlinear relationship (1), two plots are

H Ebrahimi et al

established spanned by (6 — 6,) /7 and ¢/ as shown
in figure 5 for different 77 and a, respectively. Note that
in a biological fish scales system, 1 roughly translates
to the extent of scales overlap. Whereas, o describes
the angle between the direction of scales arrangement
and the twist axis.

In figure 5(a), the given geometrical parame-
ters are as follows 6y = 10°, o = 45°, 8 = 1.25, and
A = 0.45. For 1 = 0, which indicates frictionless case,
we obtain purely kinematic locking points for each n
by using 9/ = 0 to obtain rigidity envelope [6].
We juxtapose this with plots of the rough interfaces
(¢ > 0), where the locking limits are found via the
singularity point of friction force described in (3).
Clearly, friction advances the locking configuration.
However, the locking line does not merely translate
downwards as observed in the bending case [42]. This
is an important distinction from the pure bending
of rough biomimetic scale-covered beams reported
earlier [42]. As coefficient of friction increases, the
frictional locking envelope can intersect the hori-
zontal axis. This is the instantaneous locking or the
‘static friction locking’ case. Interestingly, this is a
geometrically-dictated static friction locking in con-
trast to the actual static friction coefficient mediated
locking. This once again highlights the contrast and
interplay of material and geometry in this class of
structures.

In figure 5(b), the effect of scales orientation
with angle « is investigated. This angle serves as an
important geometric tailorability parameter of the
system [6]. In this plot, n = 3, 6, = 10°, 8 = 1.25,
and A = 0.45. For higher angles o, a quicker engage-
ment occurs with steeper nonlinear gains and ear-
lier locking. As shown in figure 5(b), the curves for
lower o (e« = 15° and o = 0°) fail to reach the rigid-
ity envelope for ;2 = 0, because mathematically there
is no singularity point for equation (1) for these cases.
This means, by decreasing o sufficiently, the system
would not reach to the kinematic locking. However,
frictional locking is universal and will determine the
locking behavior. In this aspect, this system again dif-
fers from bending case, since in twisting, friction can
cause locking even when kinematic locking is not pos-
sible. This figure also shows the possibility of static
friction locking by increasing .. However, note that as
« increases, such static friction locking becomes more
difficult to achieve, because it requires much higher
frictional coefficients. Overall, the frictional locking
envelope is a highly nonlinear function admitting no
closed form solution unlike the pure bending case
[42].

In order to understand the effect of friction
force on the mechanics of the system, we use (5)
to plot the non-dimensionalized post-engagement
torque—twist rate plot for various coefficients of fric-
tion, figure 6(a). Dimensionless geometrical param-
eters for this case are n =3, 6 = 10°, a =457,
B =125 A=045 ¢=0.35 and L/t =35. As
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Figure 5. The plot representation of the biomimetic scale-covered beam under twisting differentiated to three distinct regimes of
performance including: linear region (before scales engagement) which is from 0 to engagement point (E;) shown on e.g. curves
7 = 3 and a = 45°% nonlinear region (during scales engagement) which is from engagement point (E,) to locking point for

ft =k (Lpi) shown on e.g. curves 7 = 3 and o = 45°; and rigid region which is after locking point for 1 = k (L;) shown on e.g.
curves 1] = 3 and o = 45°. (a) Plot of the system for different 1 with the given values of f; = 10°, a = 45°, § = 1.25, and

A = 0.45; and (b) plot of the system for different o with the given values of n = 3, 6, = 10°, 5 = 1.25,and A = 0.45.
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shown in figure 6(a), higher coefficient of friction sig-
nificantly increases the torsional stiffness of the struc-
ture. Therefore, the friction force has a dual contri-
bution to the mechanical response of the biomimetic
scale-covered system—while advancing locking state,
thereby limiting range of motion, but also increasing
the torsional stiffness of the system.

To verify the analytical model, we have developed
an FE model as described in section 3. Then we have
performed FE simulations for different  and p val-
ues and extracted torsional response of the structure
T(®)/Ggl, versus twist rate from the beginning of
the simulation as shown in figure 6(b). The follow-
ing dimensionless parameters are used for this model:

b = 10°, a = 45°, B = 0.6, A = 0.32, ¢ = 0.18, and
L/t, = 45. Also the following elastic properties are
considered for substrate: Eg = 25 GPa, v = 0.25, with
a cross section dimension of 32 x 16 mm. In this
figure, the dotted lines represent FE results. The plot
highlights remarkable agreement between analytical
and FE results for two different overlap ratios along
with different coefficients of friction. The small devi-
ation between results could be caused by edge effects
and numerical issues. As it is shown in figure 6(b), we
have performed multiple FE simulations for different
cases. We have presented a contour plot of von Mises
stress with real-scale deformation for one of these
cases in appendix C to give a better perspective about
the FE investigations which have been performed in
this work.

Note that there are differences in visual appear-
ance between these two torque—twist curves
(figures 6(a) and (b)). This is not mutually con-
tradictory. The figure 6(a) captures the twisting

response only after the scale engagement, which visu-
ally amplifies the nonlinearity, whereas figure 6(b)
plots from the reference configuration. Since
figure 6(b) captures only a small portion of the
nonlinearity, it appears visually linear after engage-
ment. Due to extreme convergence issue with FE
software used for model verification, we are limited
to relatively small twisting angles. The excellent
match between FE and model is due in part to model
accuracy, and also the relatively small geometric
nonlinearity affecting the FE simulations. We expect
significantly more deviations from the theory if the
twisting were to proceed to relatively large values
or near locking where scale deformations would be
significant.

As we have mentioned earlier in section 2.3, we
have considered the same value for static and kinetic
coefficient of friction in this study, but in general
the coefficients of static friction p, and kinetic fric-
tion 4y, are always slightly different, with g, > g [61,
62]. From the mechanics point of view, vastly dif-
ferent coefficients of friction can lead to jumps in
torque—twist behavior after initial contact is made.
Thus, the twisting motion will momentarily stop
till the applied torque leads the internal forces to a
sufficient value to overcome static friction. At this
point, the motion will start again and resume on
the path calculated from kinetic friction assumption.
This can lead to a momentary stick-slip motion. Once
sliding begins again, the rest of the plot would be
similar.

Only a fraction of applied work goes into elas-
tic storage, whereas the rest is dissipated or lost.
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Figure 6. Torque—twist rate curve derived from (5) for different cases: (a) non-dimensionalized post-engagement torque—twist
rate curves for various coefficients of friction with the given values of 7 = 3, fp = 10°, @ = 45°, § = 1.25, A = 0.45,{ = 0.35,
and L/t, = 35, showing the perceptible effect of friction in the effective torsional stiffness of the biomimetic scale-covered
structure. Here h is the substrate’s thickness (h = 2t). (b) Verification of analytical model using numerical results through the
plot of T(®) / GsI versus twist rate (@) for various coefficients of friction and two different 77 with the given values of f; = 10°,
o =45 8 =106, A =0.32,{ = 0.18, and L /1, = 45. Black dotted lines represent FE results.
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The proportion of lost energy is a critical quan-
tity of interest in typical inelastic materials such as
polymers and metals [65, 66]. Such losses are typ-
ically material properties, which are dependent on
molecular or crystal structure. Thus, they tend to
vary drastically across material classes. This lost pro-
portion is useful in designing damping structures
or determine possible temperature rise during load-
ing. For biomimetic fish scale structures currently
under study, the fundamental nature of this loss is
geometric in origin. Therefore, we can tailor this
loss from geometric arrangement of scales. Such tai-
lorability can be of great interest in designing struc-
tures that can lie within acceptable range of energy
dissipation.

Interestingly, in our structure, the frictional forces
may not always lead to increase lost work, since fric-
tion can also decrease range of motion. In order to
quantify the dual contribution of friction, we investi-
gate the frictional work during twisting by using the
RED, described in (7). According to the geometric
origins of friction, the scale overlap ratio n and the
oblique angle o come into the play. We set our analy-
sis by fixing all parameters involved in RED, except
i, 7, and . This leads to contour plots shown in
figure 7. In these contour plots, we have considered
6y =10°, B3 =1.25, A =0.45, ( =0.35, L/t, = 35,
and the substrate’s properties as follows Eg = 25 GPa,
v = 0.25, and the cross section dimension of 32 x
16 mm.

In figure 7(a), we consider o = 45° to obtain an
energy dissipation contour plot spanned by 7 and .
This plot indicates that RED increases for higher p,

and also increases very slightly with 7. This contour
plot shows that  does not have as strong effect as
coefficient of friction, on frictional energy dissipation
of the system. Thus, for this oblique configuration,
interscale sliding friction dominates overall dissipa-
tion. In fact, beyond a certain coefficient of friction,
the increment in lost work is minimal. Thus, while
designing the system, it would serve little to aim for
very high frictional coefficients. However, this plot
alone is an incomplete description of the problem
since it may be an artifact of particular oblique con-
figuration. Therefore, in the next figure, figure 7(b),
we fix 7 = 3 varying « and . Here, we find that until
some value of a;, the effect of increase in friction coef-
ficient leads to higher proportion of energy loss at
intermediate . This finding indicates that for very
rough surfaces, locking begins to severely limit the
range of motion and thus overall frictional work in
a cycle. This is consistent with bending analogs [42].
However, as « increases to beyond 40°, this inter-
mediate maxima effect begins to disappear, appear-
ing again at higher (> 60°) angles. This is a sur-
prising result and shows how the obliqueness can be
tuned to get frictional behavior as desired. This plot
also shows that very low frictional coefficients (quasi-
smooth regime) leads to low energy loss no matter
what the oblique angle is. However, the geometrical
effects from the angle dramatically amplify frictional
effects even when frictional coefficients increase mod-
erately. The white region in this contour plot is related
to the instantaneous post-engagement frictional lock-
ing, which happens at lower o and higher p. At this
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Figure 7. Non-dimensional RED factor contour plot with given values of f; = 10°, § = 1.25, A = 0.45, { = 0.35, L/t, = 35,
Ey = 25 GPa, v = 0.25, and the substrate’s cross section of 32 x 16 mm for two different cases: (a) spanned by p and 7 by fixing
a = 45° and (b) spanned by u and « by fixing 7 = 3.
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condition, the system locks statically at the engage-
ment point and the friction force does not work on

the system.

5. Conclusion

We investigate for the first time, the effect of Coulomb
fricion on the twisting response of a biomimetic
beam using a combination of analytical model and
FE simulations. We established the extent and lim-
its of universality of frictional behavior across bend-
ing and twisting regimes. The analytical model would
help in obviating the need for full-scale FE simu-
lations, which are complicated for large number of
scales and for large deflection. We find that sev-
eral aspects of the mechanical behavior show simi-
larity to rough bending case investigated earlier [2].
At the same time, critical differences in response
were observed, most notably the effect of the addi-
tional oblique angle. This work shows the dual
contribution of frictional forces on the biomimetic
scale-covered system, which includes advancing the
locking envelope and at the same time increasing
the torsional stiffness. Interestingly, if the coefficient
of friction is large enough for a given configura-
tion, it can lead to the instantaneous post-engagement
frictional locking known as the static friction lock-
ing. This investigation demonstrates that engineer-
ing of the scale’s surfaces, which produce wide
range of coefficients of friction, can play an impor-
tant role in tailoring the deformation response of
biomimetic scale-covered systems under a variety of
applications.

Our investigation shows the possibility of using
surface roughness to tailor stiffness and dissi-
pation behavior during twisting of biomimetic
scale-covered substrates. Thus, a wide range and
characteristic of friction behavior can arise by spe-
cially engineering surfaces of the scales. Combined
with scale geometry, scale orientation, substrate

combinations and distribution can potentially
provide highly tailorable behavior, unprecedented
for conventional substrates.
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Appendix A. Derivation of nonlinear
kinematic relationship between the
substrate local twist angle ¢ and the scale
inclination angle 6

To find a contact criterion between 1st scale and 2nd
scale, the 3D-equations of lines C, By and D,C, would
be established. We place the coordinates XYZ on the
midpoint of 1st scale’s width as shown in figure 2.
Then we place coordinates xyz on the torsion axis
at point O = (0, —1,0) measured from the coordi-
nates XYZ. Hereafter, coordinates xyz is our refer-
ence frame. Note that we do not show coordinates
xyz and scale’s thickness f; in figure 2(b) to avoid
visual complexity. We establish local coordinates on
each scale, denoted as ‘local coordinates of ith scale’,
and coordinates origin is located on the corner of
the scale at point D;. In these local coordinates, the
unit vector of x-axis (ny;) is on the edge D;C;, the
unit vector of y-axis (my;) is on the edge D;A;, and
the unit vector of z-axis (nz) is out of plane and
perpendicular to ny; and ny;, figure 2(b). On each
scale, edges D;C; and A;B; are parallel and in direc-
tion of ny;, and edges C;B; and D;A; are parallel and
in direction of ny;. Point M; is located in the middle of
edge C;B;. Using these established coordinate systems,
symmetric equations of line C;B; of 1st scale is as
follows [67]:
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x_xMI :y_yMl :Z_ZMI (Al)

x“Yl y nyy Z"Yl

where ny1 = (Xny,> Yny,> Zny, ). By putting (A.1) equal
to p and using geometrical parameters in figure 2, we
will have parametric form ofthe equation of line C, B,
as follows, where p can vary from —b to b:

x(p) = pcosa — Isin a cos b, (A.2)
y(p) =t + Isin6, (A.3)
z(p) = psina + Icosa cosf. (A.4)

Point D; is located at one end of the edge D;C;.
Symmetric equations of line D,C; of 2nd scale is as
follows:

X“X*, _ Y Vb, _ 22D

) Yux, 2y,

; (A.5)

where fixs = (Xuy,» Vnxy> Zng, ). 10 find parametric
equation of the line D,C,, which is on the 2nd scale
rotating with angle ¢ about torsion axis, first we locate
the corners of 2nd scale as shown in figure 2(a), and
then their locations are found after rotation, using
rotation matrix. Therefore, rotated local coordinates
on this scale and the unit vector in direction DG,
(nx2) can be established. By using these geometrical
parametersand putting (A.5) equal to g, we have para-
metric form of the equation of line D,C; as follows,
where g can vary from 0 to [:

x(q) = (tanf tan ¢ — sina)q

+ (tsinp — beosacos ), (A.6)

y(q) = (tan @ + sin o tan )q
+ (tcos@ + b cos asin ), (A.7)

2(q) = (“’m) g+ (d—bsina).  (A8)
Cos

To find a contact point between these two lines,
(2) and (4) must be identical at x, y and z coordinate
simultaneously. By putting (A.2) equal to (A.6) and
also (A.3) equal to (A.7) simultaneously, we arrive at
the following systems of equations:

b Szl =Bl
Yoy “Vnxa] |4 Yo —¥m

Solving (A.9) will lead to equations for p and 4.
It yields an analytical relationship between ¢ and 6,
by substituting the derived equation of p or g into
the (A.4) or (A.8). To represent a general form for
this relationship, we define dimensionless geometric
parameters includingn = 1/d, 5 =b/d, and A = t/d
as the overlap ratio, dimensionless scale width, and
dimensionless substrate thickness, respectively. The
governing nonlinear relationship between the sub-
strate local twist angle ¢ and the scale inclination
angle # can be written as:

H Ebrahimi et al

(cos — 1) (Bsin2assin § + ncos’a sin 26
+ 2\ cos2acos ) — 2 cosacos psin 6
+ 2sin a sin (n + Asin 6)

+ 2cosasinpcosf(8 —sina) =0. (A.10)

By substituting derived equation of p or g into
the (A.2)—(A.4) or (A.6)—(A.8), we will obtain the
location of point Py, as the intersection between lines
D,C; and C;B;. We can use the same procedure to
establish the locations of zeroth scale’s corners and its
local coordinates after rotating with angle —¢ about
torsion axis. We find the same nonlinear relationship
between ¢ and # as shown in (A.10) due to the peri-
odicity of the system, then we can find the location of
point Py as the intersection between lines D, C, and
CoBo, using the same method.

Appendix B. Derivation of parameters of
scales relative motion

To describe the relative motion between zeroth scale
and 1st scale, we would need the relative motion
of contact point Py on the edge D;C; and edge
CoBo. Motion of point Py on the edge D,C; can
be described as the change in the length of vec-
tor PyyC,, which is always in direction of nx;, and
the change in the length of vector PyyCy, which is
always in direction of my,. By using the superposition
principle, the total differential displacement of point
Py can be described in vectorial format as dR;y =
(d|PwC1 |) nx1 + (d|PwCo|) nyy, figure 3. The unit
vector nyg can be described in the local coordinate
established on 1st scale as follows:

nyo = (nyo.nx1)nx: + (nyo.ny)ny: + (nyo.nz)nz.

(B.1)

By projecting ny, on the st scale plane, we can

describe relative motion of zeroth scale with respect

to lst scale as the planar relative displacement, as
follows:

dr = (d|P10C1| + d|PyoCo |(myo.nx: )) nx;
+ (d|P1Co|(nyo.ny1)) nys. (B.2)

The length of (B.2) can be described as the relative
differential displacement value:

dr=|dr| = \/(d|PmC1| + d|PmCo|(leu-fln))2 + (d|PmCo|(flfn-ﬂfl))2-
(B.3)

To find the angle between the friction force f;, act-
ing in the plane of 1st scale and the unit vector ny,, we
can use (B.2) and (B.3) as the relative displacement
vector and its value, then angle x,, is derived as:

1
X10 = arccos (E (d|P10C1| + d|P10Co|(ﬂYo-ﬂX1)))
(B.4)
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MPa in this contour plot.

Figure C1. Contour plot of von Mises stress in a twisted scale-covered beam with deformation scale factor 1. The unit for stress is

H Ebrahimi et al

S, Mises
(Avg: 75%)

If we repeat similar steps for the relative motion
between 1st scale and 2nd scale, it will lead to the
similar relationship for the angle between the fric-
tion force fy, acting in the plane of 2nd scale and
the unit vector ny,. Finally by computing the values
of these relationships, we find that x,, = x},, and
can be shown as x. This finding also conforms the
periodicity in the system.

Appendix C. Stress and deformation
obtained by FE simulation

The FE simulations of twisting of a scale-covered
beam was carried out using commercially available
software ABAQUS/CAE 2017 (Dassault Systémes).
An assembly was made including two different 3D
deformable solids including rectangular prismatic
substrate and the scales. Then we applied rigid body
constraint on the scales obviating any need for mate-
rial properties for scales. In this model, a sufficient
long rectangular linear elastic beam considered to
satisfy periodicity. The twisting load was applied on
the right end of beam cross section and the other
end was fixed as shown in the figure C1. The con-
tact mechanics was modeled using the self-contact
option for the entire structure, with a defined coeffi-
cient of friction between every two neighboring scales
for each simulation. The following figure showsa con-
tour plot of von Mises stress in a twisted scale-covered
beam with deformation scale factor 1. The geometri-
cal parameters of the structure are as follows n = 3,
fo = 10°, @ = 45°, B = 1.25, A = 0.45, ( = 0.35, in
the following figure.
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