1	Climatic pacing of landscape responses to late-Cenozoic Yukon River capture
2	
3 4	Authors: Adrian M. Bender ^{1*} , Richard O. Lease ¹ , Lee B. Corbett ² , Paul Bierman ² , Marc W. Caffee ³ , and Tammy Rittenour ⁴
5 6	Affiliations: ¹ U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508, USA
7 8	² University of Vermont Department of Geology, 180 Colchester Avenue, Burlington, Vermont 05405, USA
9 10 11	³ Purdue University Department of Physics and Astronomy and Department of Earth, Atmospheric, and Planetary Sciences, 525 Northwestern Avenue, West Lafayette, Indiana 47907, USA
12 13	⁴ Utah State University Department of Geology, 4505 Old Main Hill, Logan, Utah 84322-4505, USA
14	*Correspondence to: abender@usgs.gov
15	Unreferenced introductory paragraph
16	Late-Cenozoic climate changes are hypothesized to exert fundamental controls on erosion.
17	Geomorphic constraints on the concurrent response of bedrock rivers, which set erosion rates and
18	patterns in most of Earth's landscapes, remain elusive. Here, we use new cosmogenic isotope
19	and luminescence ages of prominent bedrock terraces along the Fortymile River (Yukon River
20	basin) to reconstruct a ~5-million-year (Ma) history of fluvial adjustment to late-Cenozoic
21	climate and capture-triggered base-level lowering. Cordilleran Ice Sheet (CIS)-induced Yukon
22	River capture imposed Fortymile River base-level lowering at 2.6 Ma, but ensuing bedrock
23	incision occurred in pulses from 2.4–1.8 Ma and at \sim 1 Ma. These pulses of incision disrupted
24	longer intervals of alluviation under near-consistent climate forcing from 4.8–2.4 and 1.8–1
25	Ma. The Fortymile River ultimately exports sediment to the Bering Sea, where provenance and
26	accumulation rate changes since 4.3 Ma match variations in Fortymile River incision. Our results
27	link alluviation and incision to steadiness and change, respectively, in the amplitude-frequency

of climatic forcing under externally imposed base-level lowering, and uniquely constrain

29 hypothesized relationships between late-Cenozoic climate, river response, and landscape erosion.

30	Main	Text
30	Iviaiii	гел

31	Bedrock river incision sets the pace and pattern of landscape evolution over most of
32	Earth's surface, and is thought to tend toward a steady state of rate equilibrium with rock uplift
33	over long (~ 10^6 -yr) timescales ^{1,2} . Strath terraces cut into bedrock preserve river channel
34	remnants above the active channel and permit measurement of long-timescale histories of
35	bedrock incision and concomitant uplift ^{3–5} . Terraces also record the fundamental unsteadiness of
36	river erosion over time as they respond to externally imposed base-level lowering (e.g., by
37	tectonic uplift ^{3,4} or drainage reorganization ^{6,7}), because strath terrace formation requires intervals
38	of valley-widening and alluviation that temporarily inhibit vertical incision into bedrock ^{5, 8-10} .
39	Although incision hiatuses may be stochastically triggered (e.g., by mass wasting events) ⁹ ,
40	forcing by late-Cenozoic climate change is believed to exert the primary control on the incision
41	of bedrock channels, the timing of terrace formation ^{4,8,10} , and thus related erosion in the drainage
42	network ¹¹⁻¹⁴ .

Whether and how climatic change may affect the related processes of erosion, bedrock 43 incision and terrace formation remain contentious^{12–16}. Changes in late-Cenozoic climate include 44 evolution of orbitally paced glacial-interglacial cycles and increases in the dominant period and 45 amplitude of these cycles at ~2.6 and ~1 Ma^{17,18}. These late-Cenozoic climate cycles forced 46 periodic fluctuations in continental precipitation¹⁹ such that concomitant variations in discharge 47 link climatic forcing to erosional landscape response^{20–21}. Climate-forced variations in the ratio 48 of discharge to fluvial sediment flux are thought to drive alternation between intervals of terrace-49 forming alluviation and bedrock incision across either individual climate cycles^{4,8} or increases in 50

51	the period and amplitude of forcing ^{12,13,20} . Experimental data imply that bedrock incision may
52	self-suppress by auto-generating sediment flux in excess of fluvial transport capacity, triggering
53	alluvial intervals under constant discharge conditions analogous to steady climatic forcing ^{Finnegan}
54	et al., 2007; sklar and dietrich, 2001. Conversely, increases in the forcing spectrum acutely amplify sediment
55	output from steadily uplifting and uniformly erodible model landscapes ²⁰ , consistent with
56	hypotheses of climate-enhanced erosion since \sim 2–4 Ma inferred from worldwide basin records of
57	terrigenous sedimentation ^{12,13} . However, observational constraints capable of directly testing
58	whether and how real fluvial landscapes responded to changes in the frequency of late-Cenozoic
59	climate forcing are rare.
60	The Fortymile River drains the Yukon-Tanana Upland region of eastern Alaska to the
61	Yukon River in Canada, and provides a landscape uniquely suited to test hypotheses of river
62	response to late-Cenozoic climate (Fig. 1A-B). Sediment eroded from the Yukon-Tanana Upland
63	is ultimately deposited in the Bering Sea, where core U1341B (Fig. 1A) records 4.3 Myr of
64	sedimentation rate increases and pulses of Yukon-Tanana-derived sediment ²² concurrent with
65	key changes in climate cyclicity at \sim 2.6 and \sim 1 Ma. Temporal variations in efflux related to
66	Yukon-Tanana Upland erosion also reflect base-level lowering of Yukon River tributaries
67	imposed by reorganization and near-doubling of the Yukon drainage area ²³⁻²⁶ induced by the
68	~2.6 Ma CIS maximum extent ²⁷ . Downstream of the breached Pliocene divide, Yukon River
69	capture initiated the abandonment and deep (≥260 m) incision of a continuous alluvium-mantled
70	strath terrace (here termed T1) along the lower ~ 200 km of the Fortymile River ²⁶ . The T1
71	elevation profile grades to the modern West Fork headwaters and reflects equilibrium conditions
72	in the Pliocene Fortymile River ^{26,28} . Volcanic rocks that re-surfaced part of the Fortymile River
73	headwater landscape at 70 Ma remain well-preserved and thus reflect exceptional geomorphic

74	stability in the basin prior to CIS-related incision ²⁹ . Nearly ice-free conditions during later
75	glaciations ²⁵ allowed preservation of the subsequent fluvial landscape in two lower strath terrace
76	levels that record subsequent hiatal intervals in the capture-triggered incision. Post-35 Ma
77	tectonic quiescence ³⁰ and homogeneous landscape erodibility, implied by predominantly
78	Paleozoic–Mesozoic-aged crystalline bedrock ³¹ , indicate that the Fortymile River terraces
79	directly record the fluvial response to late-Cenozoic climate change and river capture.
80	We assess Fortymile River response to late-Cenozoic capture and climate change by
81	pairing cosmogenic isotope and luminescence dating techniques with digital topography analysis
82	(Fig. 1B). We delineate the river network, extract channel elevations, and compute normalized
83	channel steepness (k_{sn} , a geomorphic metric proportional to incision rate ^{32,33}) on a combination
84	of 5 and 50 m/pixel digital topography that spans the Alaska-Yukon international border. We
85	also map and extract elevations for the three terrace levels along the lower 200 km of the
86	Fortymile River from this digital dataset. Cosmogenic isotope techniques quantify landscape
87	erosion rates and sediment deposition timing. To date gravel deposition in the former river
88	channel, we sampled four high terrace sites (T1; three on the West Fork, one on the North Fork)
89	and three middle terrace sites (T2) for cosmogenic ²⁶ Al/ ¹⁰ Be isochron burial dating ^{34,35} . We
90	sampled alluvium at three floodplain terrace sites within ~ 5 m of the modern channel elevation
91	for infrared-stimulated luminescence (IRSL) dating of the current river profile ³⁶ , which provides
92	a lower vertical and younger temporal datum for unbiased computation of river incision ¹⁰
93	inferred from the higher elevation cosmogenic ²⁶ Al/ ¹⁰ Be-dated terrace deposits and strath height
94	measured in the field via laser range-finder. Finally, concentrations of cosmogenic ¹⁰ Be in quartz
95	from modern sand quantify basin-averaged rates of denudation ^{37,38} in three North Fork tributaries
96	that ascertain 10 ³ –10 ⁴ yr landscape response to incision (integration time reflects measured

97	erosion rates). We also re-analyze previously published Fortymile River cosmogenic data,
98	including eight tributary erosion rates and a single ²⁶ Al/ ¹⁰ Be isochron burial age ²⁶ .
99	The Fortymile River strath terraces record fluvial aggradation and bedrock incision since
100	~5 Ma. Cosmogenic isochron burial ages of the base (4.8 \pm 0.7 Ma) and top (2.4 \pm 0.2 Ma) of a ~30
101	m-thick gravel deposit on the deeply incised (≤ 260 m) T1 date the onset of terrace formation and
102	abandonment, respectively, near the Fortymile-Yukon River confluence (Fig. 1B-C, 2A). These
103	dates mark a change from net Pliocene gravel deposition to early Pleistocene bedrock incision
104	forced by CIS-induced Yukon River capture ²³⁻²⁷ . The equilibrium river profile geometry of the
105	T1 tread ²⁶ implies a balance between fluvial sediment transport and climatic forcing ^{28,39} during
106	the depositional interval bound by the T1 outlet ages (Fig. 2A), consistent with hypothesized
107	landscape stability under equable Pliocene climate ^{12,13} .
108	Cosmogenic isochron burial ages of the T1 gravel decrease monotonically upstream of
109	the Fortymile-Yukon River confluence and mark the latest timing of gravel deposition on the
110	high terrace at 2.4±0.2 Ma near the Fortymile outlet, 2.1±0.2 Ma near the river midpoint at the
111	North and West Fork confluence, and 1.8±0.1 and 1.8±0.2 Ma in the North and West Fork
112	headwaters, respectively (Fig. 1B-F, 2A). Viewed as maximum constraints on channel
113	abandonment, the upstream-decreasing T1 ages imply headward propagation of bedrock incision
114	at an average horizontal pace of \sim 270 km/Myr throughout the basin from 2.4 to 1.8 Ma. The
115	implied kinematic wave pattern of T1 incision matches model-based expectations of detachment-
116	limited incision ³⁹ . In contrast, isochron burial ages of the near-uniformly incised (~30-40 m
117	above the floodplain) T2 near the outlet (0.8±0.1 Ma), midpoint (1.1±0.2 Ma), and West Fork
118	headwaters (1.0±0.1 Ma) all cluster around 1 Ma. Although we date T2 only in the West Fork,
119	this terrace also flanks the North Fork. In both cases, T2 grades to the 1.8 Ma upstream extent of

120	T1 (Fig. 2A), bracketing an interval of aggradation that stalled incision from 1.8–1 Ma.
121	Alluviation recorded by T2 implies that sediment flux from the adjacent eroding landscape
122	exceeded Fortymile River transport capacity under consistent 40-kyr climatic forcing, consistent
123	with independent experimental results ^{Finnegan et al., 2007; Sklar and Dietrich, 2001} . Abandonment of T2 at 1
124	Ma coincides with the globally recognized mid-Pleistocene climatic transition from 40 kyr cycles
125	to high-amplitude 100 kyr glacial-interglacial cycles and implies concomitant increases in
126	precipitation and runoff ^{19,20} sufficient to convert T2 alluvium from channel armor to erosive
127	tools Finnegan et al., 2007; Sklar and Dietrich, 2001. Unlike T1, the pattern of T2 incision implies spatially near-
128	uniform channel lowering consistent with expectations of transport-limited incision ³⁹ . IRSL ages
129	of sand on the minimally incised (<5 m) floodplain terrace (2.4 ± 0.2 , 4.8 ± 0.9 , and 5.0 ± 0.3 ka)
130	demonstrate the mid-late-Holocene age of the modern channel profile.
131	Headwater–knickzone partitioning of tributary erosion rates and k_{sn} on both Forks
132	indicates that the Fortymile River landscape continues to adjust to the pulse of mid-Pleistocene
133	incision implied by the T2 ages (Fig. 2A-B). Basin-averaged tributary erosion rates integrate
134	¹⁰ Be production over 20-40 kyr and increase by a factor of 2.5 from the low-relief, low- k_{sn}
135	headwaters (10 mm/kyr) to the deeply-incised, high- k_{sn} knickzone (25 mm/kyr). Tributary k_{sn}
136	and erosion rates are generally higher above the confluence along the North Fork than the West
137	Fork, and a rounded knickpoint divides the West Fork headwaters from its knickzone, whereas
138	no knickpoint occurs on the North Fork (Fig. 2A). These profile patterns imply that headward
139	migration of West Fork incision stalled at 1.8 Ma below the low-relief, low- k_{sn} , slowly eroding
140	headwaters, where T1 grades to the modern landscape. In contrast, the modern North Fork
141	channel cuts \sim 50 m into the 1.8 Ma upstream extent of T1 and T2 in the comparatively higher-
142	relief, higher- k_{sn} , more rapidly eroding headwaters, indicating that incision lowered this part of

143	the system after the ~ 1 Ma abandonment of T2. We suggest that <i>in-situ</i> basin topography
144	preconditioned different stream power responses to enhanced climatic forcing at 1 Ma; unlike the
145	high-relief North Fork headwater landscape, the low-relief West Fork headwaters may simply
146	not have been steep enough to incise ^{e.g.,Montgomery and Brandon, 2002} .
147	Pliocene-Pleistocene proxy records show contemporaneous changes in Fortymile River
148	incision, efflux, and late-Cenozoic climate in four phases (Fig. 3A-D). Initially, under equable
149	Pliocene climate ¹²⁻¹⁴ , alluvial Fortymile River conditions covered T1 in \sim 22 m of gravel near the
150	headwaters of the Pliocene Yukon River (Fig. 1A) while locally derived sediment accumulated
151	slowly and steadily in the Bering Sea ²² . Subsequently, intensified Northern Hemisphere
152	glaciation across the \sim 2.6 Ma Pliocene-Pleistocene transition ^{17,18} led to CIS-maximum-induced
153	Yukon River capture ²³⁻²⁷ , which abruptly triggered rapid and deep (308±3 mm/kyr) Fortymile
154	River incision into Yukon-Tanana Upland bedrock from 2.4–1.8 Ma, concurrent with a tripling
155	of Bering Sea sedimentation and provenance shift toward a Yukon-Tanana source ²⁰ . Fortymile
156	River incision then stalled from 1.8 to \sim 1 Ma; T2 aggraded during this non-incising interval,
157	implying sediment flux in exceedance of the river's transport capacity under consistent ~ 40 kyr
158	early-Pleistocene climate cycles ^{15,16,18} . Accordingly, during the 1.8–1 Ma incision hiatus marked
159	by T2 aggradation, Bering Sea sedimentation slowed ~fourfold with equivalent local and Yukon-
160	Tanana Upland source provenance ²⁰ . Finally, T2 abandonment occurred following the globally
161	recognized ~ 1 Ma mid-Pleistocene transition to high-amplitude 100 kyr climate cycles ^{15,16} , likely
162	in response to concomitant discharge enhancement ¹⁸ . Subsequent 29±7 mm/kyr Fortymile River
163	incision (~30-40 m) to within ~5 m of the current channel paced a transient threefold increase in
164	Bering Sea sediment accumulation, and a sharp increase in Yukon-Tanana Upland provenance ²⁰ .
165	Together, these records document shifts between (1) non-incising, low-efflux intervals of

Fortymile River alluviation under steady climatic oscillations, and (2) high-efflux intervals of
 bedrock incision timed with increases in the amplitude and period of climatic oscillation under
 Yukon River capture-driven base-level lowering.

Using sensitive cosmogenic and luminescence chronometers, we have directly quantified 169 the tempo and style of fluvial processes since ~5 Ma in the well-preserved, tectonically inactive 170 and consistently erodible Fortymile River landscape; an ideal environment for isolating river 171 response to changing climate and base level. Our data show profound synchronous shifts in 172 fluvial process (i.e., alluviation to incision), rate, and sediment export²² that occur across key 173 frequency changes in late-Cenozoic climate (Fig. 3). Following cumulative aggradation and 174 equilibrium profile development²⁶ across the climatically equable Pliocene, Fortymile River 175 176 incision initiated at 2.4 Ma in response to Yukon River capture (Fig. 1A) and progressed rapidly as a kinematic wave for ~0.6 Myr (Fig. 2A) during the onset of 40-kyr-period climate 177 forcing^{15,16,18} (Fig. 3). Sediment flux from concomitant erosion of the adjacent landscape 178 179 initiated a non-incising interval of alluviation from 1.8 to ~1 Ma under consistent 40-kyr climate forcing. The mid-Pleistocene climatic transition to high-amplitude 100-kyr-period forcing 180 triggered incision at ~1 Ma that rejuvenated landscape response to Yukon river capture. Far 181 182 outlasting the mid-Pleistocene incision pulse, 10⁴-yr basin-averaged erosion of the deeply incised 183 landscape occurs twofold faster than in the minimally incised headwater landscape at ≤ 25 and 10 mm/kyr, respectively (Fig. 2B). Consistent with globally measured sedimentation^{12,13}, 184 experimental^{Finnegan et al., 2007; Sklar and Dietrich, 2001}, and modeling results^{8,20}, our Fortymile River field 185 data show tight coupling between terrace formation, fluvial incision, sediment dynamics, and 186 late-Cenozoic climate change. Our dataset provides the first empirical demonstration of 187 increased river incision across the mid-Pleistocene climatic transition, and generally supports 188

hypotheses of erosional landscape evolution dependence on the frequency of climatic
 forcing^{8,12,13,20,28}.

191 Methods

192 The isochron method^{34,35} requires sampling quartz-bearing sedimentary material archiving a range of pre-burial 193 isotope concentrations at a single depth horizon (indicative of a common burial history) buried by several m of 194 sediment (enough to suppress post-burial production and permit isotope decay). We sampled four shallow pits 195 (sample horizons 2-5 m depth), one deep (~25 m) quarry in the high Fortymile River terrace gravels, and three 196 shallow pits in the middle Fortymile River terrace gravel (Data S1, Figs. S1-7). We prepared samples at the University of Vermont and measured ²⁶Al/²⁷Al and ¹⁰Be/⁹Be ratios at the Purdue Rare Isotope Measurement 197 198 Laboratory (Data S2-3). We correct each isotope measurement for background isotope levels by subtracting the 199 average of all blank measurements from each measurement (Data S4-5), and formally propagate the standard 200 deviation of the blank measurements into concentration uncertainties (Data S2-3). Resulting concentrations are 201 equivalent within 1.5% to concentrations based on batch-specific blank corrections (Fig. S9). The isochron method 202 involves fitting a line to measured nuclide concentrations and analytical uncertainties, with ¹⁰Be and ²⁶Al on the xand y-axes, respectively^{34,35}. Samples with a common pre-burial history contain ¹⁰Be and ²⁶Al concentrations that 203 reflect post-burial decay away from the surface production ²⁶Al/¹⁰Be ratio; a line thusly fit to these concentrations 204 205 can be used to both (a) quantify the duration of post-burial decay and (b) identify and omit samples with dissimilar 206 pre-burial history (i.e., outliers). We use a MATLAB implementation of the isochron approach³⁵ that applies a linearization factor to correct post-burial production among the ¹⁰Be concentrations; the y-intercept reflects post-207 burial isotope production, but the linearization of ¹⁰Be preserves the slope associated with decay of the inherited pre-208 209 burial concentrations. We identify two of 47 total isotope concentration pairs as outliers $\geq 2\sigma$ below the regression and omit these from the final linear fits to sample suites 17ALR306 and 16ALR233 (Fig. 1D and I). We quantified 210 basin-averaged erosion rates using ¹⁰Be concentrations measured in quartz from modern river sand (250-850 µm) at 211 ten tributary outlets on the Fortymile River (Data S1).¹⁰Be accumulates in quartz at Earth's surface to depths 212 213 commensurate with cosmic ray e-folding length (~0.6 m in rock), at rates determined largely by latitude and altitude 214 and inversely proportional to erosion rate (21). Dividing the ¹⁰Be production depth by a given measured erosion rate 215 thus estimates the duration of erosion at the measured rate. Given similar rock type and durability throughout the

Confidential manuscript revised and re-submitted to Nature Geoscience

216	Fortymile River basin and minimal lithologic variation within the sampled tributary catchments ³¹ , we assume that
217	quartz sampled at the 250-850 μ m grain size range is well-mixed and represents erosion throughout the tributary
218	catchment upstream. We use a MATLAB likelihood estimation routine to compute the most likely elevation and
219	latitude from pixel values within each sample catchment and use the CRONUS online calculator
220	(https://hess.ess.washington.edu/) to assess erosion rates based on ¹⁰ Be concentrations measured in quartz sand from
221	each outlet (Data S6-7). Topographic shielding minimally impacts Fortymile River ¹⁰ Be production rates because
222	topography is relatively open in the basins we sample ³⁸ , with average hillslopes of 5° to 20°. Similarly, the mean
223	winter snow depth of <50 cm measured at Fortymile Basin SNOTEL sites 1275 and 1189
224	(https://wcc.sc.egov.usda.gov/nwcc/) confers shielding effects equivalent to a 1-3% reduction in ¹⁰ Be production ⁴⁰ .
225	Consequently, we assume minimal snow and topographic shielding effects on ¹⁰ Be production rate, and report
226	uncertainties computed by CRONUS that reflect these assumptions (i.e., shielding factor = 1; Data S6-7). We
227	collected luminescence dating samples from the modern floodplain at three locations (Data S1) on the West Fork
228	Fortymile River within 5 m elevation of the active channel (Figs. S10-12). We used opaque metal pipes to sample
229	silt and sand from shovel-excavated cutbank exposures; mineralogy of the samples proved suitable for feldspar
230	infrared stimulated luminescence (IRSL) dating. IRSL sample processing and analysis was conducted at the Utah
231	State University Luminescence Lab following standard procedures ³⁶ . We used Topographic Analysis Kit ³² and
232	Topotoolbox ³³ MATLAB codes to compute k_{sn} averaged on 1-km river distance bins for the Fortymile River
233	network in a mosaic of 5 m/pixel digital elevation models (DEMs) in Alaska and a 50 m/pixel DEM in Yukon. For
234	this computation we resampled the entire DEM mosaic to 50 m/pixel to absorb potential biases in k_{sn} that might
235	result from discrepant DEM resolutions across the international border. Figure 2B plots km-averaged ksn sampled
236	from the channel network (trunk and tributaries) within a 20 km-wide river-parallel swath ³² shown on Figure 1B.

237

239

240

241 242

238 **References**

- Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. *Ann. Rev. Earth Planet. Sci.* 32, 151–185 (2004).
- 2. Perron, J.T. Climate and the pace of erosional landscape evolution. *Annu. Rev. Earth Planet. Sci.* **45**, 561-591 (2017).
- Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R. & Duncan, C.
 Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. *Nature* 6565, 505 (1996).
- Pan, B., et al. A 900 ky record of strath terrace formation during glacial-interglacial transitions in northwest China. *Geology* 11, 957-960 (2003).

5. Pazzaglia, F.J. Fluvial Terraces. In *Treatise on geomorphology*, 379-412 (2013).

- 6. Yang, R., Willett, S.D. & Goren, L. In situ low-relief landscape formation as a result of river network disruption. *Nature* **7548**, 526 (2015).
 - 7. Whipple, K.X., DiBiase, R.A., Ouimet, W.B. & Forte, A.M. Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms. *Geology* **1**, 91-94 (2017).
- 8. Hancock, G.S. & Anderson, R.S. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. *Geol. Soc. Am. Bul.* **9**, 1131-1142 (2002).
 - 9. Finnegan, N.J., Schumer, R., & Finnegan, S. A signature of transience in bedrock river incision rates over timescales of 10⁴–10⁷ years. *Nature* **505**, 391-394 (2014).
- 10. Gallen, S.F., Pazzaglia, F.J., Wegmann, K.W., Pederson, J.L., & Gardner T.W. The dynamic reference frame of rivers and apparent transience in incision rates. *Geology* **43**, 623-626 (2015).
- 11. Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? *Nature* **346**, 29-32 (1990).
- 12. Peizhen, Z., Molnar, P. & Downs, W.R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. *Nature* **410**, 891–897 (2001).
 - 13. Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? *Annu. Rev. Earth Planet. Sci.* **32**, 67–89 (2004).
 - 14. Herman, F., Seward, D., Carter, A., Kohn, B., Willet, S. D. & Ehlers, T. A. Worldwide acceleration of mountain erosion under a cooling climate. *Nature* **504**, 423–426 (2013).
 - 15. Willenbring, J.K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. *Nature* **465**, 211-214 (2010).
- 16. Willenbring, J.K. & Jerolmack, D.J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. *Terra Nova* **28**, 11-18 (2016).
- 17. Lisiecki, L.E. & Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ^{18} O records. *Paleoceanography* **20**, PA1003 (2005).
- 18. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. *Science* **292**, 686-693 (2001).
- 19. Wang, Y., H. et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, *Nature* **7182**, 1090–1093 (2008).
- 20. Godard, V., Tucker, G.E., Fisher, G.B., Burbank, D.W. and Bookhagen, B. Frequency-dependent landscape response to climatic forcing. *Geophys. Res. Lett.* **40**, 859-863 (2013).
- 21. Ferrier, K. L., Huppert, K. L., & Perron, J. T. Climatic control of bedrock river incision. *Nature* **496**, 206–209 (2013).
- 22. Horikawa, K. et al. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. *Nat. Comm.* **6**, 7587 (2015).
- Tempelman-Kluit, D. Evolution of physiography and drainage in southern Yukon. *Can. J. Earth Sci.* 9, 1189-1203 (1980).
- 286 24. Duk-Rodkin, A., Barendregt, R.W., White, J.M., & Singhroy, V.H. Geologic evolution of the Yukon
 287 River: implications for placer gold. *Quat. Internat.* 82, 5-31 (2001).
 - 25. Duk-Rodkin, A., et al. Timing and extent of Plio-Pleistocene glaciations in north-western Canada and east-central Alaska. In *Dev. in Quat. Sci.* **2**, 313-345 (2004).
 - 26. Bender, A.M., Lease, R.O., Corbett, L.B., Bierman, P., & Caffee, M.W. Ongoing bedrock incision of the Fortymile River driven by Pliocene–Pleistocene Yukon River capture, eastern Alaska, USA, and Yukon, Canada. *Geology* 46, 635-638 (2019).
- 27. Hidy, A.J., Gosse, J.C., Froese, D.G., Bond, J.D., & Rood, D.H. A latest Pliocene age for the earliest
 and most extensive Cordilleran Ice Sheet in northwestern Canada. *Quat. Sci. Rev.* 61, 77-84 (2013).
- 295
 28. Whipple, K.X., 2001. Fluvial landscape response time: how plausible is steady-state
 296 denudation? *Amer. J. Sci.* 4-5, 313-325 (2001).

- 297 29. Bacon, C.R., Dusel-Bacon, C., Aleinikoff, J.N., & Slack, J.F. The Late Cretaceous Middle Fork
 298 caldera, its resurgent intrusion, and enduring landscape stability in east-central Alaska. *Geosphere* 10, 1432-1455 (2014).
 - 30. Dusel-Bacon, C. & Murphy, J.M. Apatite fission-track evidence of widespread Eocene heating and exhumation in the Yukon-Tanana Upland, interior Alaska. *Can. J. Earth Sci.* **8**, 1191-1204 (2001).
 - 31. Foster, H.L., Weber, F.R., Forbes, R.B. & Brabb, E.E. Regional Geology of Yukon-Tanana Upland, Alaska, *Arctic Geology: Am. Assoc. Pet. Geol. Mem.* **19**, 388–395 (1973).
- 304 32. Forte, A.M., & Whipple, K.X. The Topographic Analysis Kit (TAK) for TopoToolbox. *Earth Surf.* 305 *Dyn.* 7, 87-95 (2019).
 - 33. Schwanghart, W. & Scherler, D. TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. *Earth Surf. Dyn.* **2**, 1-7 (2014).
 - 34. Balco, G., & Rovey, C.W. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. *Amer. J. Sci.* **308**, 1083-1114 (2008).
 - 35. Erlanger, E.D., Granger, D.E., & Gibbon, R.J. Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. *Geology* **40**, 1019-1022 (2012).
 - 36. Rittenour, T.M. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. *Boreas*, **37**, 613-635 (2008).
- 314 37. G. Balco, J.O. Stone, N.A. Lifton, T.J. Dunai, A complete and easily accessible means of calculating
 315 surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements. *Quat. Geochron.* 3, 174-195
 316 (2008).
 - 38. P. Bierman, E.J. Steig, E.J., Estimating rates of denudation using cosmogenic isotope abundances in sediment. *Earth Surf. Proc. and Landf.* **21**, 125-139 (1996).
 - 39. K.X. Whipple, G.E. Tucker, Implications of sediment-flux-dependent river incision models for landscape evolution. *J. Geophys. Res.* **107**, ETG (2002).
 - 40. Gosse, J.C. & Phillips, F.M. Terrestrial in situ cosmogenic nuclides: theory and application. *Quat. Sci. Rev.* 14, 1475-1560 (2001).
- 323

301 302

303

306 307

308

309 310

311

312

313

317318

319

320

321

- 324 Acknowledgments: We thank W.H. Craddock and C. Bacon for reviews.
- Funding: USGS Mineral Resources Program and NSF EAR-1735676 to PB, NSF EAR 0919759 to MWC.
- Author contributions: AB and RL conceptualized the research and conducted field investigation; AB, LBC, PB, MC, and TR conducted laboratory investigations; AB, LBC, and TR curated and formally analyzed the data; RL and PB acquired funding and resources; AB wrote original drafts, all authors contributed to review and editing.
- 331 **Competing interests:** Authors declare no competing interests.
- **Data and materials availability:** Cosmogenic and luminescence data generated in this study are available in the supplementary materials and online at doi.org/10.5066/P9XVMTAK. We modified a MATLAB code developed by D. Granger to compute cosmogenic isochron burial ages. IfSAR-based Alaska DEMs are available by searching earthexplorer.usgs.gov/. Yukon DEMs are available by searching viewer.nationalmap.gov/advanced-viewer/.
- 337 Supplementary Materials:
- 338 Figures S1-S12
- External Databases S1-S8 as a single Excel file.
- 340

341

Fig. 1. Fortymile River setting and cosmogenic results. (A) Oblique northwest view of Fortymile
 River basin (white polygon), Yukon River basin and captured Pliocene divide²³⁻²⁵, and adjacent
 ocean basins. (B) Fortymile River geomorphic map, sample locations, and cosmogenic ¹⁰Be based erosion rates. IRSL ages of floodplain sand range from 2-5 ka. (C-I) Cosmogenic ²⁶Al/¹⁰Be
 isochron burial age plots. Dashed grey line is ²⁶Al/¹⁰Be surface production ratio and ~zero age.
 Regression uncertainties are 1σ.

349 Fig. 2. Fortymile River profiles. (A) Fortymile River channel elevations (cyan line) and 350 polynomial fits, terrace pixel elevations, sample locations, and polynomial fits to highlight 351 terrace form and continuity. Grey dots are pixel elevations within terrace surfaces mapped on 352 Fig. 1; dotted line fit high terrace T1; dashed line fit middle terrace T2; envelopes represent root 353 mean square error of polynomial fit. Age sample locations symbolized and lettered as in Figure 354 1, cosmogenic ²⁶Al/¹⁰Be isochron burial ages listed. (B) ¹⁰Be-derived tributary erosion rates 355 (large boxes) and km-averaged normalized channel steepness (k_{sn} , small dots; blue = North Fork, 356 red = West Fork) sampled within the 10 km-wide swath profile depicted in Figure 1B. Erosion 357 rate uncertainties are <10%; boxes obscure error bars. 358

360 Fig. 3. Late-Cenozoic variations in climate, Bering Sea sedimentation, and Fortymile River 361 incision. (A) The LR04 stack¹⁷ of global benthic δ^{18} O, black line depicts 10⁵ year moving 362 average. (B) Detrital ENd values from Integrated Ocean Drilling Program (IODP) Site U1341B in 363 the Bering Sea; more negative values reflect increased Yukon-Tanana Upland (YT) sedimentary 364 provenance²². (C) Age-depth model for IODP Site U1341B²² from biostratigraphy, 365 magnetostratigraphy, and astronomically-tuned chemostratigraphy; detrital sediment fraction is 366 ~40 weight %. (D) Cosmogenic ²⁶Al/¹⁰Be isochron burial ages and infrared-stimulated 367 luminescence (IRSL) ages plotted against height above the mid-late Holocene aged floodplain 368 (FP)¹⁰. Cordilleran Ice Sheet (CIS) maximum extent²⁷ coincides with the onset of widespread 369 Northern Hemispheric Glaciation (NHG) and marks the timing of Yukon River capture²³⁻²⁶; mid-370 Pleistocene climate transition (MPT) from ~40 to ~100 ka glacial-interglacial cycles. 371