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1 | INTRODUCTION

John A. Keith?

Abstract

The expense of quantum chemistry calculations significantly hinders the search for
novel catalysts. Here, we provide a tutorial for using an easy and highly cost-efficient
calculation scheme, called alchemical perturbation density functional theory (APDFT),
for rapid predictions of binding energies of reaction intermediates and reaction barrier
heights based on the Kohn-Sham density functional theory (DFT) reference data. We
outline standard procedures used in computational catalysis applications, explain how
computational alchemy calculations can be carried out for those applications, and then
present benchmarking studies of binding energy and barrier height predictions. Using
a single OH binding energy on the Pt(111) surface as a reference case, we use compu-
tational alchemy to predict binding energies of 32 variations of this system with a
mean unsigned error of less than 0.05 eV relative to single-point DFT calculations.
Using a single nudged elastic band calculation for CH4 dehydrogenation on Pt(111) as
a reference case, we generate 32 new pathways with barrier heights having mean
unsigned errors of less than 0.3 eV relative to single-point DFT calculations. Notably,
this easy APDFT scheme brings no appreciable computational cost once reference cal-
culations are performed, and this shows that simple applications of computational
alchemy can significantly impact DFT-driven explorations for catalysts. To accelerate
computational catalysis discovery and ensure computational reproducibility, we also
include Python modules that allow users to perform their own computational alchemy
calculations.

KEYWORDS
adsorption energies, barrier heights, binding energies, computational catalysis, density

functional theory, nudged elastic band calculations

Advances in computational chemistry open new possibilities for impressively large-scale computational screening of hypothetical catalysts across
materials space.[1'3] However, productively leveraging high-throughput screening has been challenging. For useful and insightful predictions,
computational screening studies must be reproducible while also (a) determining important active sites that are stable under specified environ-
mental conditions on large numbers of material compositions and (b) elucidating important elementary reaction steps with barrier heights that are
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needed for kinetic modeling. To date, most computational catalysis studies can address one of these points at a time, but new advances are
needed to make it possible to address both points at the same time.

Reliably accurate quantum chemistry (QC) methods, for example, Kohn-Sham density functional theory (DFT), continue to play a central role
for computational catalysis studies. Even though the computational cost of QC calculations continues to decrease to allow even more calculations
to be possible in the future, one should not expect that the two points above can be addressed at the same time using QC calculations without
invoking severe approximations. For example, the cost of most DFT calculations limits their utility in screening studies to O(10%-10% kinds of
active sites. If one considers just binary pairs of 20 different metals, there are 190 possible binary alloys. Each alloy in turn has an enormous con-
figuration space, for example, for a 55-atom nanoparticle, there are close to 2°° possible configurations that potentially need to be considered.
Thus, we need a computationally inexpensive but sufficiently accurate approach to estimate which alloy configurations are important enough to
warrant further study with QC calculations.

A similar challenge exists with calculating reaction barriers. These computations are much more expensive than stability or adsorption energy
calculations. Only the most relevant barriers ideally would be studied with costly QC methods, but determining whether a barrier is relevant
requires iterative kinetic analyses that themselves require numerous barrier height predictions to be useful. The key point is these studies would
be significantly accelerated if barriers could be estimated quickly and accurately enough to determine if more QC calculations were needed.

The present tutorial shows how to apply an approximate method that has promise to accelerate computational catalysis screening studies.
The method has previously been called “computational alchemy”~”! but more recently termed “alchemical perturbation density functional the-
ory"® to better distinguish it from other forms of “computational alchemy.”’”! The tutorial begins with an overview of how computational catalysis
is normally performed; we then provide an introduction to the theory of computational alchemy, and then, we benchmark a set of adsorbate bind-
ing energies (BE) and activation energies (E,). Large amounts of computational alchemy data can be obtained from a single set of DFT calculations
by using updatable and reproducible procedures embedded within Jupyter notebooks (https://github.com/chaszg/phystone). This is expected to

make it useful for accelerating computational catalysis screening predictions of adsorption energies and reaction barriers.

2 | CONVENTIONAL COMPUTATIONAL CATALYSIS

Catalytic reaction mechanisms depend on the interplay of reaction thermodynamics and kinetics. The present work assumes that these can often
be modeled quite well with standard DFT calculations, but bringing this level of accuracy already brings substantial computational cost. More
complicated systems will be expected to require higher-level QC calculations that bring even greater costs.

The thermodynamics of elementary reaction steps can be assessed by computing reaction intermediate BEs. Each BE determination normally
requires three separate QC electronic energy calculations, each preferably modeled using geometrically relaxed structures and suitably accurate
levels of theory. Appropriate zero-point energy, thermal, and entropy corrections can be included as well, but these are neglected here for simplic-
ity. The required calculations include the model of the catalyst surface without the adsorbate (site), a model of the adsorbate not interacting with

the catalyst (ads), and a model for the catalyst surface with the adsorbate bound (ads-site). A BE is then calculated with the following equation:

BE = Esite + Eads — Eads—site (1)

In this convention, positive BEs indicate thermodynamically favorable adsorptions. This equation clearly highlights a problem with high-
throughput screening studies that rely on QC calculations. Any BE calculation for a single adsorbate on any hypothetical surface site usually
requires two separate QC calculations (for E,gs_site and Egiie), and those might take anywhere from minutes to weeks to complete on modern
super computers. Predictive BEs may also require more considerations of multiple adsorbate configurations, as well as adsorbate-induced surface
reconstruction and segregation.

Relatively efficient DFT calculations for N electron systems typically scale as N® or greater, making these calculations quite expensive. This

(19 which is now a standard approach

unfavorable scaling is especially significant when calculating E,. The nudged elastic band (NEB) algorithm,
for predicting E,, works by computing a series of constrained geometric “images” that are eventually optimized to a minimum energy pathway
along a potential energy surface. As standard NEB calculations generally require the optimization of 10-20 images per pathway, they bring signifi-
cant computational costs that limit applications in high-throughput screening. A conventional approach to address this is with linear scaling

relations, 2% but an open question is whether alternative approaches might be more accurate and useful.

3 | ALCHEMICAL PERTURBATION DENSITY FUNCTIONAL THEORY

The poor scaling of QC calculations in computational catalysis applications motivate the need for developing faster methods to estimate BEs and

E,s. Brute-force computations driven exclusively by DFT calculations are not expected to be aproductive for large-scale explorations for
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hypothetical catalysts. Machine learning models for catalysis prediction are becoming a more common alternative,®*4*>! but a downside of most
of these approaches is that they need much data for training, they can unreliably extrapolate to new systems, and they are often harder to intui-

(4516l is to use gradient-

tively or physically interpret. An alternative and general approach being championed by von Lilienfeld and co-workers
supported methods that consider how a change to a material results in a change in a specific property without the explicit QC calculation of the
property itself. These approaches are essentially a special class of quantitative structure property relationship (QSPR) methods,!*”! but while most
QSPR models are empirically fit, the end goal here is to make computationally efficient predictions based on first principles-derived entities, such
as a wavefunction, an electron density, or an electrostatic potential.

We now provide a tutorial on how a simple form of alchemical perturbation density functional theory (APDFT) can be used for computational
catalysis applications.[”"*8-2%! To begin, we consider the BE calculation for an OH molecule on Pt(111). This system will be referred to as our refer-
ence state and subsequently labeled with 1 = 0. As zero-point, thermal, and entropy corrections will be neglected out of simplicity, its BE will be
labeled as AE?),—o. We now will consider a new system where the Pt(111) surface has been doped with a new element that results in a new bind-
ing site. This new state will be labeled as 4 = 1, and its BE will be labeled as AE|,_;. APDFT can be used to predict AE°|,_; by relating it to AE%, o
using a thermodynamic cycle shown in Figure 1.

According to the cycle, we have Equation (2):

AE®|,_o+AE] = AE®|,_ +AE_, (2)

li-1
where AE®|;-o will be obtained using Equation (1), AE;_; is the energy change of the bare catalyst surface (s = site) when doped with a new
element, and AES_; is the same type of change for the system of the catalyst site with a bound adsorbate (a = ads-site). Upon rearrangement of

Equation (2), the change in BE due to the transition from the 1 = 0 to the 1 = 1 states is the difference of these two unknown terms:
ABE=AE®|;-1—AE%|,_ =AE] ,—AE_, 3)

We now will demonstrate how to calculate the right side of Equation (3) using APDFT to obtain ABE. APDFT relates AE|, - ; to AE?];-o with
perturbation theory, specifically by approximating the exact result as a Taylor series expansion with the thermodynamic state function (AE®),
Equation (4).1*"!

1
AEO|,1=1=AEO}A=O+&4AEOAA+§&,%AEOAA2+... (4)

Here, the predicted BE (AE°|,-4) is approximated as the reference BE (AE°|,_o) plus additional corrections from the Taylor series based on
so-called “alchemical derivatives,” which are other terms resulting from the transformation from the 1 = O state to the 1 = 1 state. The nth alchemi-
cal derivative with respect to 4 is denoted by QQAEO. For the easiest applications of APDFT, one can simply truncate the expansion in Equation (4)
to first order and assign A4 = 1, but higher-order corrections for nonperiodic computational schemes have been developed by von Lilienfeld and

co-workers.?! The first-order approximation for APDFT is shown in Equation (5).

FIGURE 1 Thermodynamic A =
cycle depicting the binding

energies (BEs) of an adsorbate on

a surface (horizontal legs) and

atomic transmutations (vertical

legs). AE?|,—o and AE°|,-; denote

the BEs for the top and bottom

horizontal legs, respectively.

AE;_, and AE{_, denote the

energy change associated with

the atomic transmutation for the A = 1
left (s = surface) and right

(a = ads-site) vertical legs,

respectively
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O1AE® = " Apnd;Ni= Y AFId;R + AN, (5)
I 1

Here, the first term accounts for the nuclear chemical potential gradient (Au,;) due to variation in nuclear charge (N)) from the 1 = O to the
A = 1 state. The second term accounts for energy gradients due to the forces on atoms (AF)) resulting from changes in atomic positions (R))
from the 4 = O to the 1 = 1 state. The third term accounts for the electronic chemical potential gradient (Ayu,.) due to variation in total number of
electrons (N,) from the A = O to the 1 = 1 state.

Two additional approximations are typically used with simple applications of first-order APDFT used for computational catalysis studies
of extended surfaces. The first approximation is to assume that nuclear positions for the 1 = O state and the 1 = 1 state are the same. While chang-
ing a material's composition will certainly impact interatomic forces and result in relaxations to achieve a minimum energy state, it will be assumed
for simplicity that the relaxation energy contributions due to the doping atom in the 1 = 1 states for the “ads-site” and “site” calculations are
similar and thus largely cancel in the thermodynamic cycle represented in Figure 1. Mathematically, the result is that §,R; in the second term of
Equation (5) becomes zero, and thus, the second term can be neglected. The second approximation is to ensure that the 1 = O state and the 1 = 1
state have the same number of electrons so that 5,N. becomes zero, thus leading to the third term becoming zero. (Note that this is not a general
requirement for APDFT, but it is a practical way to ensure that a total surface change density under periodic boundary conditions remains reason-
ably physical in these specific applications.) To apply this constraint, one must use “isoelectronic transmutations” so that the 4 = 1 system has the
same number of electrons as the 1 = 0 system. For example, in a Pt(111) slab, if one Pt atom is transmuted into an Au atom (AZ = +1), a second Pt
atom must be transmuted into an Ir atom (AZ = —1). This results in a zero net change in atomic number for the new slab (3% °f2*°™ A7 = 0), While
the second transmutation is a departure from the system of interest, it can be made to occur far from the site of interest so that it has no signifi-
cant effect on the BE of that site.

To summarize, the simplest application of first-order APDFT for predicting a BE for a hypothetical catalyst surface will consider only fixed

atomic coordinates and only net isoelectronic transmutations, and this simplifies Equation (5) into Equation (6).
agAEO = ZAﬂn,agN; (6)
[

The nuclear chemical potential, Ay, (also called the alchemical potential), is defined as the change in atomic electrostatic potential between
the “site” and the “ads-site” reference states. This is represented as an array of differences in electrostatic potentials, and so, the elements of this
array have units of energy/charge. Note that this procedure accounts for changes in electrostatic potentials of atoms on the catalyst surface after

relaxations due to molecular adsorption have taken place. This term mathematically refers to the difference shown by Equation (7).

Aptyy = Mya]dsfsite (R’ads—site> _I/lzite (Rlsite> 7)

These atom-centered electrostatic potentials for the “ads-site” and “site” reference states can be obtained with the Vienna Ab initio Simula-
tion Package (VASP),?? a widely used DFT code. Figure 2A depicts how alchemical potentials are constructed as an array of differences in elec-
trostatic potentials for atoms from both the “site” and “ads-site” states. The nuclear charge variation quantity, d,N,, in Equation (6) should now be
accounted for. When one transmutes atoms from a 1 = O state to form a hypothetical 1 = 1 state, one notes changes in nuclear charges. Specifi-
cally, one uses an array of differences in nuclear charges due to the formation of the 1 = 1 state, and so, the elements in this array have units of
charge. Figure 2B depicts how nuclear charge variations are constructed as an array of differences in atomic numbers of the atoms in the 1 = 0
state and the 1 = 1 state. Note that this array will be the same whether it is constructed for a “site” or “ads-site” state as both will correspond to
the same 4 = 1 state. The overall calculation of the alchemical derivative used to obtain ABE between the 4 = O state and the 1 = 1 state is simply
a dot product of the two arrays given above, and this gives a scalar that has units of energy (Figure 2C).

For additional clarity, we can return to the two unknown terms (AES_, and AE;_ ;) in Equation (3) that compute ABE according to the cycle
in Figure 1. We now show the direct relation to the results of Equations (6) and (7) and the steps in Figure 2. The left leg of Figure 1 and the
expression in Figure 2B both illustrate a reference Pt(111) surface “site” undergoing an alchemical transmutation of one Pt atom into an Au atom.
Using Equation (6), a first-order approximation of the energy change is:

AES = Zﬂzi,te (R,site)a/lleite (8)
[

Note that the illustrations in Figure 1 and Figure 2B do not show an isoelectronic change to provide a simple visual representation, but the

arrays used in Equation (8) should account for them. The energy change for the same alchemical transmutation performed the “ads-site” species is:
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FIGURE 2 lllustrations of (A)

steps to compute corrections to

binding energies (BEs) based on —

alchemical perturbation density
functional theory. A, Constructing
the alchemical potential array
with differences between { and
5, the electrostatic potentials for
the ith atom in the ads-site (a) and a s S ST —

site (s) systems, respectively. The [u 1 Hz I’ln] - [u 1 H2 o p—n] - [A H1
adsorbate atoms in the ads-site
state are conventionally not
included in the array because
they are not subject to
transmutations. B, Constructing
the nuclear charge variation array
with differences in atomic
number for each atom in the
system before and after the
transmutation. C, lllustrations of

Equations (6) and (11) (see below) l NAu I

as a dot product of the two arrays
constructed in A and B (note that
the illustrations in A and B do not
show an isoelectronic change and
the result of the equality shown
in C is provided to show a simple
visual representation)

[UN

©) 9,880 = > Ay 3Ny = [aw Mz - Bual- 0] = aBE,,
‘ 0]
AEgH1 - Zﬂi;js—site (Rlads—site>0';lN?ds—site (9)
[

For the cycle in Figure 1 to be true, the transmutations performed on the “slab” and “ads-site” states must be exact, and this results in
9;Nste = 9, Nads=site = ), N Returning to Equation (3), and using Equations (6) through (9):

MBS —AE = > [t (R ) e (RF) [ 9N = DNy (10)
I I

Finally, we combine Equations (3) and (10) to rewrite our simple approximation, illustrated in Figure 2C, for the predicted BE change using

computational alchemy:

ABEgc =Y AuydiNi (11)
I

It is interesting that BEs from first-order APDFT appear to be valid for cases that are and are not primarily arising from d-orbital contributions.
In contrast, the well-established “d-band model” for predicting adsorbate BEs on transition metals has known shortcomings when d-orbital contri-
butions to binding are less significant.[23] One known limitation for BE predictions from first-order APDFT predictions is that they are less accu-
rate when alchemical derivatives become large (eg, when a system undergoes multiple and/or large transmutations where AZ is larger than 1).[7)
Another limitation is that these simple APDFT treatments appear not to be valid for materials that have a bandgap.?® While more is being learned
about the promise and limitations, we see APDFT as a potentially transformative model for applied computational chemistry communities and
especially for computational catalysis. We will now show benchmarking calculations to validate the use of computational alchemy for predictions

of BE and E, in two different examples.
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4 | RESULTS AND DISCUSSION

4.1 | Benchmarking adsorbate BEs

We first benchmark BEs for OH adsorption on a four-layer, 2 x 2 Pt(111) surface model that contains four Pt atoms in each layer. For the binding con-
figuration of OH on the surface, the fourth layer has two unique atoms that are transmutable. Thus, we created hypothetical materials by transmuting
one of the eight atoms in the top two layers by AZ = +1 to convert a Pt near a binding site into Au or Ir and one of the two atoms in the fourth layer
by AZ = F1. This generated 32 unique cases that computational alchemy can be used for predictions based on a single DFT BE calculation.

Figure 3 shows a benchmarking comparison of first-order APDFT calculations compared to corresponding single-point DFT energy calcula-
tions. Note that these data were previously reported elsewhere,””! but the data shown now depict the relative location of transmuted atoms
in the slab model to the OH adsorbate. Larger data points depict cases where transmuted atoms are further from the adsorbate, while smaller
data points depict cases where they are closer. These predictions have a mean absolute error of 0.045 eV. The first-order APDFT is notably less
accurate for transmutations made directly at the binding site, where the alchemical derivatives are the greatest.[”!

In summary, Figure 3 reiterates that first-order APDFT can quite accurately predict how BEs change on hypothetical alloys with simple
algebraic computations based on a single set of QC calculations and corresponding electrostatic potentials. This provides a computational lever
to increase the utility of a single BE calculation by enabling the estimation of (in this case) about 30 additional BEs. Even more BEs can be
predicted by using more and/or larger (eg, AZ = +2) transmutations, but we have found that these will result in larger errors that would need
to be remedied for accuracy. Not only does this tool give users BE predictions, it also gives users physical insight into which nearby sites
are the most important for adsorbate binding. In principle, this screening allows us to eliminate cases that result in an insignificant change in ABE,
and thus allow more careful attention to be paid to cases that result in more significant changes in BEs using more refined QC methods and/or

experimental studies.

4.2 | Benchmarking reaction barriers

To benchmark first-order APDFT predictions of reaction barriers, we use CH,4* dehydrogenation on Pt(111) as a reference system (Equation (12)),

where each species bound to a surface site is denoted by *:

CH4" +* — CHz" +H* (12)
0.6
QAz=+1 (@)
OAaAz=-1 (0]

0.4}| 3% ABEref
0.2
>
£
Q
S
L2 0
<
1]
11]
< 0.2

| FIGURE 3 ABE predictions for OH adsorption on
-0.4
32 hypothetical alloys of Pt made by AZ = +1
@ transmutations to the reference slab. Energy differences
. are relative to the reference calculation and reported in
-0.6 1 eV. The size of the data points corresponds to the
-0.6 -04 -0.2 0 0.2 0.4 0.6 distance of the transmutation site from the adsorbate

(large points are transmutations far from the adsorption
ABE (DFT) site). DFT, density functional theory
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Figure 4 shows snapshots of the NEB reaction pathway for this process. The reactant state and first image in the NEB (a) contains CH,*
geometrically relaxed to a distance of 3.7 from an on-top site. The reaction proceeds as one C—H bond breaks and a hydrogen is adsorbed to an
adjacent on-top site. In the transition state, the detaching hydrogen is drawn toward a bridge site. The product state contains both a CH3* and an
H* bound at 2.1 and 1.5 at on-top sites, respectively. Another work reports that H* also binds favorably to an fcc site in the product state.24!
However, our system is among many reasonable choices of reference points to predict changing trends of various possible reaction pathways on
many hypothetical catalysts.

To compute barrier heights using first-order APDFT, we apply the BE procedure from above on each of the images from the NEB calculation.
From this, we can generate a variety of different pathways for up to 32 different hypothetical alloy configurations as shown in Figure 5.
Figure 5A shows predicted reaction energy profiles following Equation (12). The reference energy profile calculated using DFT is denoted by red
asterisks, while the solid blue line denotes the most affected Au alloys, and the solid green line denotes the most affected Ir alloys. The other lines
pertain to all other cases where the alloy systems result in a negligible change relative to the reference system (due to very small alchemical deriv-
atives present in these cases). Note that energy profiles for similar systems overlap and may not be distinguishable. Figure 5B shows a parity plot
for AE, values relative to the reference calculation. There is generally an increase in barrier when the transmuted site becomes Au and a decrease
when the site becomes Ir. Notably, the largest errors in barrier heights are 0.3 eV relative to DFT benchmarks (for alloys that exhibited the highest
alchemical derivatives), but the vast majority of other data are more accurate. Even though first-order APDFT can exhibit errors as large as 0.3 eV
in barrier heights for reference systems doped with just a single atom, it is promising that such simple approximations can be useful to calculate a
computationally expensive descriptor that guides screening studies. Furthermore, as the source for errors in different APDFT approximations
become better understood, it becomes reasonable to imagine that more accurate approaches might be developed based on APDFT that would
have a predictive power comparable (or even indistinguishable) to standard DFT.

5 | USABILITY AND REPRODUCIBILITY WITH COMPUTATIONAL ALCHEMY

Python scripts that enable a workflow with first-order APDFT suitable for use with VASP are open source and continuously improving (https://
github.com/chaszg/phystone). In addition, we offer hands-on outlines for calculations via Jupyter notebooks so that readers can reproduce our

analyses presented above. Interactive forms of Figures 3 and 5 appear in the following two notebooks:

1. Binding Energy Predictions (https://mybinder.org/v2/gh/chaszg/phystone/master?filepath=%2Fexample-notebooks%2Fbinding_energy%2FOH-
Pt%2Fcomp_alchemy_binding_energies_oh_pt.ipynb)

2. Transition State Barrier Height Predictions (https://mybinder.org/v2/gh/chaszg/phystone/master?filepath=%2Fexample-notebooks%2Fbarrier_
height%2Fcomp_alchemy_barrier_heights.ipynb)

Readers may then easily use first-order APDFT with their own VASP reference calculations by installing our Python modules and following

the procedures written in these notebooks. These modules rely on an installation of the Atomic Simulation Environment (ASE) packagelzs] for

FIGURE 4 Snapshots of the A, reactant; B, transition; and C, product states of the dehydrogenation of CH4 adsorbed at 1/4 coverage of
ontop sites on Pt
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A FIGURE 5 A, Energy profiles for the CH,
(A)
1.5{]|@ az=+1 dehydrogenation mechanism on hypothetical alloys of
O AZ=-1 Pt. The reference pathway occurs on pure Pt and is
> 11 denoted with red asterisks. The most significant effect
L * AEref from a transmutation with AZ = +1 is shown in blue, the
3 most significant effect from a transmutation with AZ = -1
o 0.5 . . ;
o is shown in green, and other reaction pathways computed
|_|=J * with alchemy are shown in light blue/green. B, First-order
0 alchemical perturbation density functional theory
benchmarking of the change in AE, for CH4
. . . . . . . . . . dehydrogenation on 32 hypothetical alloys of Pt made by
1 2 3 4 5 6 7 8 9 10 AZ = +1 relative to the reference barrier (energies in eV).
NEB Image The size of the.data. points correspond to the distance of
the transmutation site from the adsorbate in the reactant
(B) 1 state
OAaz=+1
Oaz=-1
¥ AEref
0.5
>
S
[
-S 0
3 ]
©
w
<
—0.51
-1 . T T
-1 -0.5 0 0.5 1
AEa (DFT)

reading, writing, and visualizing atomic structures, and pristine copies of the POSCAR, CONTCAR, OSZICAR, and OUTCAR files from all VASP

calculations are required. Users of these modules will be able to do the following:

. Calculate atom-centered alchemical potentials

. Visualize a heatmap of the alchemical derivatives within their surface model

. Create a custom set of hypothetical materials using isoelectronic transmutations

. Calculate alchemical derivatives for the hypothetical systems and, depending on the type of reference calculation set, compute BE, E,, or other

A WO N -

thermodynamic descriptors

6 | OUTLOOK/KNOWN LIMITATIONS

APDFT is a promising gradient-supported method for leveraging QC calculations in large-scale screening. This method relies on alchemical deriva-
tives that are straightforward to compute and that can be used for accurate predictions of BE and activation energies on electronically conductive
systems relevant for computational catalysis. There are still notable limitations that need to be considered before the widespread use of computa-
tional alchemy is possible.

A significant challenge with APDFT is that the simplest first-order approximations appear to have some material dependencies, and predic-
tions appear to fail when used on systems having bandgaps. A possible remedy we found is to add metal dopants into the semiconducting or insu-

lating system. This allows bandgaps to collapse, and computational alchemy appears to be valid.2® Future work will address the physical
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descriptions of these systems and their relation to existing models such as the d-band model. Wel”! and other groups!® have also noted that
predictions from first-order APDFT become less accurate with the magnitude of the alchemical derivatives that are in play. There are possible
options to address this, ranging from using higher-order corrections and/or training machine learning algorithms to correct errors for problematic

systems.[2%]

7 | CONCLUSIONS

We have presented a tutorial for how first-order APDFT can be used as a tool to dramatically accelerate predictions of computational catalysis
descriptors. This is a means to predict the impact of a material change on a calculated energy with essentially no computational cost once refer-
ence calculations have been obtained. Here, we demonstrated how to calculate BEs and activation energies and provided open-source scripts for
doing so. Using these scripts should enable rapid determinations of which atoms within a catalyst should be changed to impact catalysis. Further
improvements to these existing schemes are expected with the use of second-order corrections for improved physical descriptions and coupling

to machine learning models for improved accuracy.
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