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Abstract

The expense of quantum chemistry calculations significantly hinders the search for

novel catalysts. Here, we provide a tutorial for using an easy and highly cost-efficient

calculation scheme, called alchemical perturbation density functional theory (APDFT),

for rapid predictions of binding energies of reaction intermediates and reaction barrier

heights based on the Kohn-Sham density functional theory (DFT) reference data. We

outline standard procedures used in computational catalysis applications, explain how

computational alchemy calculations can be carried out for those applications, and then

present benchmarking studies of binding energy and barrier height predictions. Using

a single OH binding energy on the Pt(111) surface as a reference case, we use compu-

tational alchemy to predict binding energies of 32 variations of this system with a

mean unsigned error of less than 0.05 eV relative to single-point DFT calculations.

Using a single nudged elastic band calculation for CH4 dehydrogenation on Pt(111) as

a reference case, we generate 32 new pathways with barrier heights having mean

unsigned errors of less than 0.3 eV relative to single-point DFT calculations. Notably,

this easy APDFT scheme brings no appreciable computational cost once reference cal-

culations are performed, and this shows that simple applications of computational

alchemy can significantly impact DFT-driven explorations for catalysts. To accelerate

computational catalysis discovery and ensure computational reproducibility, we also

include Python modules that allow users to perform their own computational alchemy

calculations.
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1 | INTRODUCTION

Advances in computational chemistry open new possibilities for impressively large-scale computational screening of hypothetical catalysts across

materials space.[1–3] However, productively leveraging high-throughput screening has been challenging. For useful and insightful predictions,

computational screening studies must be reproducible while also (a) determining important active sites that are stable under specified environ-

mental conditions on large numbers of material compositions and (b) elucidating important elementary reaction steps with barrier heights that are
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needed for kinetic modeling. To date, most computational catalysis studies can address one of these points at a time, but new advances are

needed to make it possible to address both points at the same time.

Reliably accurate quantum chemistry (QC) methods, for example, Kohn-Sham density functional theory (DFT), continue to play a central role

for computational catalysis studies. Even though the computational cost of QC calculations continues to decrease to allow even more calculations

to be possible in the future, one should not expect that the two points above can be addressed at the same time using QC calculations without

invoking severe approximations. For example, the cost of most DFT calculations limits their utility in screening studies to O(103-104) kinds of

active sites. If one considers just binary pairs of 20 different metals, there are 190 possible binary alloys. Each alloy in turn has an enormous con-

figuration space, for example, for a 55-atom nanoparticle, there are close to 255 possible configurations that potentially need to be considered.

Thus, we need a computationally inexpensive but sufficiently accurate approach to estimate which alloy configurations are important enough to

warrant further study with QC calculations.

A similar challenge exists with calculating reaction barriers. These computations are much more expensive than stability or adsorption energy

calculations. Only the most relevant barriers ideally would be studied with costly QC methods, but determining whether a barrier is relevant

requires iterative kinetic analyses that themselves require numerous barrier height predictions to be useful. The key point is these studies would

be significantly accelerated if barriers could be estimated quickly and accurately enough to determine if more QC calculations were needed.

The present tutorial shows how to apply an approximate method that has promise to accelerate computational catalysis screening studies.

The method has previously been called “computational alchemy”[4–7] but more recently termed “alchemical perturbation density functional the-

ory”[8] to better distinguish it from other forms of “computational alchemy.”[9] The tutorial begins with an overview of how computational catalysis

is normally performed; we then provide an introduction to the theory of computational alchemy, and then, we benchmark a set of adsorbate bind-

ing energies (BE) and activation energies (Ea). Large amounts of computational alchemy data can be obtained from a single set of DFT calculations

by using updatable and reproducible procedures embedded within Jupyter notebooks (https://github.com/chaszg/phystone). This is expected to

make it useful for accelerating computational catalysis screening predictions of adsorption energies and reaction barriers.

2 | CONVENTIONAL COMPUTATIONAL CATALYSIS

Catalytic reaction mechanisms depend on the interplay of reaction thermodynamics and kinetics. The present work assumes that these can often

be modeled quite well with standard DFT calculations, but bringing this level of accuracy already brings substantial computational cost. More

complicated systems will be expected to require higher-level QC calculations that bring even greater costs.

The thermodynamics of elementary reaction steps can be assessed by computing reaction intermediate BEs. Each BE determination normally

requires three separate QC electronic energy calculations, each preferably modeled using geometrically relaxed structures and suitably accurate

levels of theory. Appropriate zero-point energy, thermal, and entropy corrections can be included as well, but these are neglected here for simplic-

ity. The required calculations include the model of the catalyst surface without the adsorbate (site), a model of the adsorbate not interacting with

the catalyst (ads), and a model for the catalyst surface with the adsorbate bound (ads-site). A BE is then calculated with the following equation:

BE= Esite + Eads−Eads−site ð1Þ

In this convention, positive BEs indicate thermodynamically favorable adsorptions. This equation clearly highlights a problem with high-

throughput screening studies that rely on QC calculations. Any BE calculation for a single adsorbate on any hypothetical surface site usually

requires two separate QC calculations (for Eads−site and Esite), and those might take anywhere from minutes to weeks to complete on modern

super computers. Predictive BEs may also require more considerations of multiple adsorbate configurations, as well as adsorbate-induced surface

reconstruction and segregation.

Relatively efficient DFT calculations for N electron systems typically scale as N3 or greater, making these calculations quite expensive. This

unfavorable scaling is especially significant when calculating Ea. The nudged elastic band (NEB) algorithm,[10] which is now a standard approach

for predicting Ea, works by computing a series of constrained geometric “images” that are eventually optimized to a minimum energy pathway

along a potential energy surface. As standard NEB calculations generally require the optimization of 10-20 images per pathway, they bring signifi-

cant computational costs that limit applications in high-throughput screening. A conventional approach to address this is with linear scaling

relations,[11–13] but an open question is whether alternative approaches might be more accurate and useful.

3 | ALCHEMICAL PERTURBATION DENSITY FUNCTIONAL THEORY

The poor scaling of QC calculations in computational catalysis applications motivate the need for developing faster methods to estimate BEs and

Eas. Brute-force computations driven exclusively by DFT calculations are not expected to be aproductive for large-scale explorations for

2 of 10 GRIEGO ET AL.

https://github.com/chaszg/phystone


hypothetical catalysts. Machine learning models for catalysis prediction are becoming a more common alternative,[3,14,15] but a downside of most

of these approaches is that they need much data for training, they can unreliably extrapolate to new systems, and they are often harder to intui-

tively or physically interpret. An alternative and general approach being championed by von Lilienfeld and co-workers[4,5,16] is to use gradient-

supported methods that consider how a change to a material results in a change in a specific property without the explicit QC calculation of the

property itself. These approaches are essentially a special class of quantitative structure property relationship (QSPR) methods,[17] but while most

QSPR models are empirically fit, the end goal here is to make computationally efficient predictions based on first principles-derived entities, such

as a wavefunction, an electron density, or an electrostatic potential.

We now provide a tutorial on how a simple form of alchemical perturbation density functional theory (APDFT) can be used for computational

catalysis applications.[7,18–20] To begin, we consider the BE calculation for an OH molecule on Pt(111). This system will be referred to as our refer-

ence state and subsequently labeled with λ = 0. As zero-point, thermal, and entropy corrections will be neglected out of simplicity, its BE will be

labeled as ΔE0|λ=0. We now will consider a new system where the Pt(111) surface has been doped with a new element that results in a new bind-

ing site. This new state will be labeled as λ = 1, and its BE will be labeled as ΔE0|λ=1. APDFT can be used to predict ΔE0|λ=1 by relating it to ΔE0|λ=0
using a thermodynamic cycle shown in Figure 1.

According to the cycle, we have Equation (2):

ΔE0 λ=0 +ΔEaλ!1 =ΔE
0

�� ��
λ=1 +ΔE

s
λ!1 ð2Þ

where ΔE0|λ=0 will be obtained using Equation (1), ΔEsλ!1 is the energy change of the bare catalyst surface (s = site) when doped with a new

element, and ΔEaλ!1 is the same type of change for the system of the catalyst site with a bound adsorbate (a = ads-site). Upon rearrangement of

Equation (2), the change in BE due to the transition from the λ = 0 to the λ = 1 states is the difference of these two unknown terms:

ΔBE=ΔE0 λ=1−ΔE0
�� ��

λ=0
=ΔEaλ!1−ΔEsλ!1 ð3Þ

We now will demonstrate how to calculate the right side of Equation (3) using APDFT to obtain ΔBE. APDFT relates ΔE0|λ = 1 to ΔE0|λ=0 with

perturbation theory, specifically by approximating the exact result as a Taylor series expansion with the thermodynamic state function (ΔE0),

Equation (4).[19]

ΔE0 λ=1 =ΔE0
�� ��

λ=0 + ∂λΔE
0Δλ+

1
2
∂2λΔE

0Δλ2 +… ð4Þ

Here, the predicted BE (ΔE0|λ=1) is approximated as the reference BE (ΔE0|λ=0) plus additional corrections from the Taylor series based on

so-called “alchemical derivatives,” which are other terms resulting from the transformation from the λ = 0 state to the λ = 1 state. The nth alchemi-

cal derivative with respect to λ is denoted by ∂nλΔE
0. For the easiest applications of APDFT, one can simply truncate the expansion in Equation (4)

to first order and assign Δλ = 1, but higher-order corrections for nonperiodic computational schemes have been developed by von Lilienfeld and

co-workers.[21] The first-order approximation for APDFT is shown in Equation (5).

F IGURE 1 Thermodynamic
cycle depicting the binding
energies (BEs) of an adsorbate on
a surface (horizontal legs) and
atomic transmutations (vertical
legs). ΔE0|λ=0 and ΔE0|λ=1 denote
the BEs for the top and bottom
horizontal legs, respectively.
ΔEsλ!1 and ΔEaλ!1 denote the
energy change associated with
the atomic transmutation for the
left (s = surface) and right
(a = ads-site) vertical legs,
respectively
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∂λΔE0 =
X
I

ΔμnI∂λNI−
X
I

ΔFI∂λRI +Δμe∂λNe ð5Þ

Here, the first term accounts for the nuclear chemical potential gradient (ΔμnI) due to variation in nuclear charge (NI) from the λ = 0 to the

λ = 1 state. The second term accounts for energy gradients due to the forces on atoms (ΔFI) resulting from changes in atomic positions (RI)

from the λ = 0 to the λ = 1 state. The third term accounts for the electronic chemical potential gradient (Δμe) due to variation in total number of

electrons (Ne) from the λ = 0 to the λ = 1 state.

Two additional approximations are typically used with simple applications of first-order APDFT used for computational catalysis studies

of extended surfaces. The first approximation is to assume that nuclear positions for the λ = 0 state and the λ = 1 state are the same. While chang-

ing a material's composition will certainly impact interatomic forces and result in relaxations to achieve a minimum energy state, it will be assumed

for simplicity that the relaxation energy contributions due to the doping atom in the λ = 1 states for the “ads-site” and “site” calculations are

similar and thus largely cancel in the thermodynamic cycle represented in Figure 1. Mathematically, the result is that δλRI in the second term of

Equation (5) becomes zero, and thus, the second term can be neglected. The second approximation is to ensure that the λ = 0 state and the λ = 1

state have the same number of electrons so that δλNe becomes zero, thus leading to the third term becoming zero. (Note that this is not a general

requirement for APDFT, but it is a practical way to ensure that a total surface change density under periodic boundary conditions remains reason-

ably physical in these specific applications.) To apply this constraint, one must use “isoelectronic transmutations” so that the λ = 1 system has the

same number of electrons as the λ = 0 system. For example, in a Pt(111) slab, if one Pt atom is transmuted into an Au atom (ΔZ = +1), a second Pt

atom must be transmuted into an Ir atom (ΔZ = −1). This results in a zero net change in atomic number for the new slab (
Pno: of atoms

n=1 ΔZ = 0). While

the second transmutation is a departure from the system of interest, it can be made to occur far from the site of interest so that it has no signifi-

cant effect on the BE of that site.

To summarize, the simplest application of first-order APDFT for predicting a BE for a hypothetical catalyst surface will consider only fixed

atomic coordinates and only net isoelectronic transmutations, and this simplifies Equation (5) into Equation (6).

∂λΔE0 =
X
I

ΔμnI∂λNI ð6Þ

The nuclear chemical potential, ΔμnI (also called the alchemical potential), is defined as the change in atomic electrostatic potential between

the “site” and the “ads-site” reference states. This is represented as an array of differences in electrostatic potentials, and so, the elements of this

array have units of energy/charge. Note that this procedure accounts for changes in electrostatic potentials of atoms on the catalyst surface after

relaxations due to molecular adsorption have taken place. This term mathematically refers to the difference shown by Equation (7).

ΔμnI = μads−site
n Rads−site

I

� �
−μsiten Rsite

I

� �
ð7Þ

These atom-centered electrostatic potentials for the “ads-site” and “site” reference states can be obtained with the Vienna Ab initio Simula-

tion Package (VASP),[22] a widely used DFT code. Figure 2A depicts how alchemical potentials are constructed as an array of differences in elec-

trostatic potentials for atoms from both the “site” and “ads-site” states. The nuclear charge variation quantity, ∂λNI, in Equation (6) should now be

accounted for. When one transmutes atoms from a λ = 0 state to form a hypothetical λ = 1 state, one notes changes in nuclear charges. Specifi-

cally, one uses an array of differences in nuclear charges due to the formation of the λ = 1 state, and so, the elements in this array have units of

charge. Figure 2B depicts how nuclear charge variations are constructed as an array of differences in atomic numbers of the atoms in the λ = 0

state and the λ = 1 state. Note that this array will be the same whether it is constructed for a “site” or “ads-site” state as both will correspond to

the same λ = 1 state. The overall calculation of the alchemical derivative used to obtain ΔBE between the λ = 0 state and the λ = 1 state is simply

a dot product of the two arrays given above, and this gives a scalar that has units of energy (Figure 2C).

For additional clarity, we can return to the two unknown terms (ΔEaλ!1 and ΔEsλ!1 ) in Equation (3) that compute ΔBE according to the cycle

in Figure 1. We now show the direct relation to the results of Equations (6) and (7) and the steps in Figure 2. The left leg of Figure 1 and the

expression in Figure 2B both illustrate a reference Pt(111) surface “site” undergoing an alchemical transmutation of one Pt atom into an Au atom.

Using Equation (6), a first-order approximation of the energy change is:

ΔEsλ!1 =
X
I

μsitenI Rsite
I

� �
∂λN

site
I ð8Þ

Note that the illustrations in Figure 1 and Figure 2B do not show an isoelectronic change to provide a simple visual representation, but the

arrays used in Equation (8) should account for them. The energy change for the same alchemical transmutation performed the “ads-site” species is:
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ΔEaλ!1 =
X
I

μads−site
nI Rads−site

I

� �
∂λN

ads−site
I ð9Þ

For the cycle in Figure 1 to be true, the transmutations performed on the “slab” and “ads-site” states must be exact, and this results in

∂λN
site
I = ∂λN

ads−site
I = ∂λNI. Returning to Equation (3), and using Equations (6) through (9):

ΔEaλ!1−ΔEsλ!1 =
X
I

μads−site
nI Rads−site

I

� �
−μsitenI Rsite

I

� �h i
∂λNI =

X
I

ΔμnI∂λNI ð10Þ

Finally, we combine Equations (3) and (10) to rewrite our simple approximation, illustrated in Figure 2C, for the predicted BE change using

computational alchemy:

ΔBEalc =
X
I

ΔμnI∂λNI ð11Þ

It is interesting that BEs from first-order APDFT appear to be valid for cases that are and are not primarily arising from d-orbital contributions.

In contrast, the well-established “d-band model” for predicting adsorbate BEs on transition metals has known shortcomings when d-orbital contri-

butions to binding are less significant.[23] One known limitation for BE predictions from first-order APDFT predictions is that they are less accu-

rate when alchemical derivatives become large (eg, when a system undergoes multiple and/or large transmutations where ΔZ is larger than 1).[7]

Another limitation is that these simple APDFT treatments appear not to be valid for materials that have a bandgap.[20] While more is being learned

about the promise and limitations, we see APDFT as a potentially transformative model for applied computational chemistry communities and

especially for computational catalysis. We will now show benchmarking calculations to validate the use of computational alchemy for predictions

of BE and Ea in two different examples.

F IGURE 2 Illustrations of
steps to compute corrections to
binding energies (BEs) based on
alchemical perturbation density
functional theory. A, Constructing
the alchemical potential array
with differences between μai and
μsi , the electrostatic potentials for
the ith atom in the ads-site (a) and

site (s) systems, respectively. The
adsorbate atoms in the ads-site
state are conventionally not
included in the array because
they are not subject to
transmutations. B, Constructing
the nuclear charge variation array
with differences in atomic
number for each atom in the
system before and after the
transmutation. C, Illustrations of
Equations (6) and (11) (see below)
as a dot product of the two arrays
constructed in A and B (note that
the illustrations in A and B do not
show an isoelectronic change and
the result of the equality shown
in C is provided to show a simple
visual representation)
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4 | RESULTS AND DISCUSSION

4.1 | Benchmarking adsorbate BEs

We first benchmark BEs for OH adsorption on a four-layer, 2 × 2 Pt(111) surface model that contains four Pt atoms in each layer. For the binding con-

figuration of OH on the surface, the fourth layer has two unique atoms that are transmutable. Thus, we created hypothetical materials by transmuting

one of the eight atoms in the top two layers by ΔZ = ±1 to convert a Pt near a binding site into Au or Ir and one of the two atoms in the fourth layer

by ΔZ = �1. This generated 32 unique cases that computational alchemy can be used for predictions based on a single DFT BE calculation.

Figure 3 shows a benchmarking comparison of first-order APDFT calculations compared to corresponding single-point DFT energy calcula-

tions. Note that these data were previously reported elsewhere,[7] but the data shown now depict the relative location of transmuted atoms

in the slab model to the OH adsorbate. Larger data points depict cases where transmuted atoms are further from the adsorbate, while smaller

data points depict cases where they are closer. These predictions have a mean absolute error of 0.045 eV. The first-order APDFT is notably less

accurate for transmutations made directly at the binding site, where the alchemical derivatives are the greatest.[7]

In summary, Figure 3 reiterates that first-order APDFT can quite accurately predict how BEs change on hypothetical alloys with simple

algebraic computations based on a single set of QC calculations and corresponding electrostatic potentials. This provides a computational lever

to increase the utility of a single BE calculation by enabling the estimation of (in this case) about 30 additional BEs. Even more BEs can be

predicted by using more and/or larger (eg, ΔZ = ±2) transmutations, but we have found that these will result in larger errors that would need

to be remedied for accuracy. Not only does this tool give users BE predictions, it also gives users physical insight into which nearby sites

are the most important for adsorbate binding. In principle, this screening allows us to eliminate cases that result in an insignificant change in ΔBE,

and thus allow more careful attention to be paid to cases that result in more significant changes in BEs using more refined QC methods and/or

experimental studies.

4.2 | Benchmarking reaction barriers

To benchmark first-order APDFT predictions of reaction barriers, we use CH4* dehydrogenation on Pt(111) as a reference system (Equation (12)),

where each species bound to a surface site is denoted by *:

CH4
� + � !CH3

� +H� ð12Þ

F IGURE 3 ΔBE predictions for OH adsorption on
32 hypothetical alloys of Pt made by ΔZ = ±1
transmutations to the reference slab. Energy differences
are relative to the reference calculation and reported in
eV. The size of the data points corresponds to the
distance of the transmutation site from the adsorbate
(large points are transmutations far from the adsorption
site). DFT, density functional theory
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Figure 4 shows snapshots of the NEB reaction pathway for this process. The reactant state and first image in the NEB (a) contains CH4*

geometrically relaxed to a distance of 3.7 from an on-top site. The reaction proceeds as one C H bond breaks and a hydrogen is adsorbed to an

adjacent on-top site. In the transition state, the detaching hydrogen is drawn toward a bridge site. The product state contains both a CH3* and an

H* bound at 2.1 and 1.5 at on-top sites, respectively. Another work reports that H* also binds favorably to an fcc site in the product state.[24]

However, our system is among many reasonable choices of reference points to predict changing trends of various possible reaction pathways on

many hypothetical catalysts.

To compute barrier heights using first-order APDFT, we apply the BE procedure from above on each of the images from the NEB calculation.

From this, we can generate a variety of different pathways for up to 32 different hypothetical alloy configurations as shown in Figure 5.

Figure 5A shows predicted reaction energy profiles following Equation (12). The reference energy profile calculated using DFT is denoted by red

asterisks, while the solid blue line denotes the most affected Au alloys, and the solid green line denotes the most affected Ir alloys. The other lines

pertain to all other cases where the alloy systems result in a negligible change relative to the reference system (due to very small alchemical deriv-

atives present in these cases). Note that energy profiles for similar systems overlap and may not be distinguishable. Figure 5B shows a parity plot

for ΔEa values relative to the reference calculation. There is generally an increase in barrier when the transmuted site becomes Au and a decrease

when the site becomes Ir. Notably, the largest errors in barrier heights are 0.3 eV relative to DFT benchmarks (for alloys that exhibited the highest

alchemical derivatives), but the vast majority of other data are more accurate. Even though first-order APDFT can exhibit errors as large as 0.3 eV

in barrier heights for reference systems doped with just a single atom, it is promising that such simple approximations can be useful to calculate a

computationally expensive descriptor that guides screening studies. Furthermore, as the source for errors in different APDFT approximations

become better understood, it becomes reasonable to imagine that more accurate approaches might be developed based on APDFT that would

have a predictive power comparable (or even indistinguishable) to standard DFT.

5 | USABILITY AND REPRODUCIBILITY WITH COMPUTATIONAL ALCHEMY

Python scripts that enable a workflow with first-order APDFT suitable for use with VASP are open source and continuously improving (https://

github.com/chaszg/phystone). In addition, we offer hands-on outlines for calculations via Jupyter notebooks so that readers can reproduce our

analyses presented above. Interactive forms of Figures 3 and 5 appear in the following two notebooks:

1. Binding Energy Predictions (https://mybinder.org/v2/gh/chaszg/phystone/master?filepath=%2Fexample-notebooks%2Fbinding_energy%2FOH-

Pt%2Fcomp_alchemy_binding_energies_oh_pt.ipynb)

2. Transition State Barrier Height Predictions (https://mybinder.org/v2/gh/chaszg/phystone/master?filepath=%2Fexample-notebooks%2Fbarrier_

height%2Fcomp_alchemy_barrier_heights.ipynb)

Readers may then easily use first-order APDFT with their own VASP reference calculations by installing our Python modules and following

the procedures written in these notebooks. These modules rely on an installation of the Atomic Simulation Environment (ASE) package[25] for

F IGURE 4 Snapshots of the A, reactant; B, transition; and C, product states of the dehydrogenation of CH4 adsorbed at 1/4 coverage of
ontop sites on Pt
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reading, writing, and visualizing atomic structures, and pristine copies of the POSCAR, CONTCAR, OSZICAR, and OUTCAR files from all VASP

calculations are required. Users of these modules will be able to do the following:

1. Calculate atom-centered alchemical potentials

2. Visualize a heatmap of the alchemical derivatives within their surface model

3. Create a custom set of hypothetical materials using isoelectronic transmutations

4. Calculate alchemical derivatives for the hypothetical systems and, depending on the type of reference calculation set, compute BE, Ea, or other

thermodynamic descriptors

6 | OUTLOOK/KNOWN LIMITATIONS

APDFT is a promising gradient-supported method for leveraging QC calculations in large-scale screening. This method relies on alchemical deriva-

tives that are straightforward to compute and that can be used for accurate predictions of BE and activation energies on electronically conductive

systems relevant for computational catalysis. There are still notable limitations that need to be considered before the widespread use of computa-

tional alchemy is possible.

A significant challenge with APDFT is that the simplest first-order approximations appear to have some material dependencies, and predic-

tions appear to fail when used on systems having bandgaps. A possible remedy we found is to add metal dopants into the semiconducting or insu-

lating system. This allows bandgaps to collapse, and computational alchemy appears to be valid.[20] Future work will address the physical

F IGURE 5 A, Energy profiles for the CH4

dehydrogenation mechanism on hypothetical alloys of
Pt. The reference pathway occurs on pure Pt and is
denoted with red asterisks. The most significant effect
from a transmutation with ΔZ = +1 is shown in blue, the
most significant effect from a transmutation with ΔZ = −1
is shown in green, and other reaction pathways computed
with alchemy are shown in light blue/green. B, First-order
alchemical perturbation density functional theory

benchmarking of the change in ΔEa for CH4

dehydrogenation on 32 hypothetical alloys of Pt made by
ΔZ = ±1 relative to the reference barrier (energies in eV).
The size of the data points correspond to the distance of
the transmutation site from the adsorbate in the reactant
state
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descriptions of these systems and their relation to existing models such as the d-band model. We[7] and other groups[6] have also noted that

predictions from first-order APDFT become less accurate with the magnitude of the alchemical derivatives that are in play. There are possible

options to address this, ranging from using higher-order corrections and/or training machine learning algorithms to correct errors for problematic

systems.[26]

7 | CONCLUSIONS

We have presented a tutorial for how first-order APDFT can be used as a tool to dramatically accelerate predictions of computational catalysis

descriptors. This is a means to predict the impact of a material change on a calculated energy with essentially no computational cost once refer-

ence calculations have been obtained. Here, we demonstrated how to calculate BEs and activation energies and provided open-source scripts for

doing so. Using these scripts should enable rapid determinations of which atoms within a catalyst should be changed to impact catalysis. Further

improvements to these existing schemes are expected with the use of second-order corrections for improved physical descriptions and coupling

to machine learning models for improved accuracy.
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