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Abstract— Optimal control of discrete-time systems with a
less common performance measure is investigated, in which
the cost function to be minimized is the maximum, instead
of the sum, of a cost per stage over the control time.
Three control scenarios are studied under a fnite-horizon,
a discounted inf nite-horizon, and an undiscounted inf nite-
horizon performance measure. For each case, the Bellman
equation is derived by direct use of dynamic programming, and
the necessary and suff cient conditions for an optimal control
are established around this equation. A motivating example on
optimal control of dc-dc buck power converters is presented.

I. INTRODUCTION

The most common performance measure in the theory of
optimal control is the sum of a cost per stage (or running
cost) over the control horizon. This paper investigates a class
of optimal control problems with an alternative performance
measure def ned as the maximum, rather than the sum, of the
cost per stage over the control horizon. Similar to other optimal
control problems, the control horizon can be fnite or inf nite,
the cost function can be discounted or undiscounted, and the
system model can be continuous or discrete in time. The focus
of this paper is on discrete-time systems.

Optimal control with the maximum cost per stage optimality
criteria has been extensively studied for the continuous-time
systems [1]-[9]. Prior work on this topic includes application
of both Pontryagin’s maximum principle [1]-[3] and dynamic
programming [4]-[6] to f nite-horizon problems, and the use of
dynamic programming for discounted [7] and undiscounted [8]
inf nite-horizon problems. In particular, application of dynamic
programming has led to development of the Hamilton-Jacobi-
Bellman (HJB) equations for all these scenarios, and the value
function has been constructed as the viscosity solution to these
partial differential equations. In [9], an approximate solution
to the HJB equation for a discounted, inf nite-horizon problem
was proposed, and this solution was interpreted as the value
function for an associated discrete-time problem.

With the exception of [9] which establishes a link between
continuous- and discrete-time domains, very few results have
been reported on optimal control of discrete-time systems with
maximum cost performance measure (one of those few [10] is
discussed later in Remark 3). Therefore, this paper aims to fill
this gap by contributing a formal analysis of the problem using
dynamic programming and its related familiar techniques. An
optimal control problem involving a discrete-time system and
a maximum cost performance measure is addressed for fnite
and inf nite control horizons, and discounted and undiscounted
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cost functions. For each case, the Bellman functional equation
is developed and both necessary and suff cient conditions for an
optimal control policy are established in terms of this equation.

The main analysis of this paper begins with the study of the
inf nite-horizon discounted problem, and then continues with
the undiscounted problem as the limit of the discounted case. It
is shown that the Bellman equation for the discounted problem
admits a unique solution, while the solution is not unique for
the undiscounted case. This non-uniqueness of solution is also
observed in continuous-time problems [7], and is an obstacle
to establish suff cient conditions of optimality. Yet, the analysis
of this paper shows that the value function for the undiscounted
problem is that specif ¢ solution to the Bellman equation which
is the continuation of the solution to the discounted problem.

To demonstrate the practical signif cance of these results, an
example on optimal control of dc-dc buck power converters is
presented. The main emphasis of this example is to formulate
a practical feedback design problem within the framework of
this paper, rather than detailed solution of the problem, which
is beyond the scope of this short paper.

II. PROBLEM STATEMENT

Suppose D is a domain in R™ and U/ is any subset of R™.
Let f (-) : D x U — D be a continuous function and consider
the state-space equation

It+1:f('rt7ut)a t2071727"' (1)

with a known initial state xq. Here, z; € D is the state vector
and wu; is a control vector in the control set /. This system is
controlled under the state feedback

ut:Mt('rt)a t2071727"' (2)

utilizing the feedback law p; (+) : D — U, t =0,1,2,.... The
control performance is measured by a maximum cost criterion
defned in terms of the cost per stage ¢(-) : D x U — R and
the terminal cost ¢f () : D — R.

For the discrete-time state-space equation (1), the following
optimal control problems are considered in this paper:

P;. Let T be a fxed integer and def ne the cost function

J = max {cf (zr), c (zt, Ut)} 3

t=0,1,...,T—1

for the state and control of the state-space equation (1).
Determine an optimal control policy

g ()} @)

to minimize this cost function subject to the dynamical
system (1) under the state feedback (2).

mp = {po (), 11 (),



Ps. Let 0 < o < 1 be a constant discount rate and def ne the
discounted cost function

J = sup a'e(xg,u) . %)
t>0
Determine an optimal control policy 7% to minimize this
cost function subject to the dynamical system (1) under
the state feedback (2).
P3. Determine an optimal control policy 7% to minimize the
undiscounted cost function

J = sup ¢ (¢, ur) 6)
>0

subject to (1) under the state feedback (2).

Among the three problems above, P3 is the most diff cult to
address, and indeed, the primary motivation for this work. The
reason for emphasis on this specif ¢ problem is its potential to
tackle a class of problems not possible to formulate in terms of
an inf nite-horizon cost function of the standard form

J:ZC(fﬂt,Ut)- (7
t=0

For many applications, the inf nite sum in this cost function is
not convergent, since the cost per stage ¢ (z, u;) does not tend
to 0 as t — oo. For the same cost per stage, however, the cost
function (6) can still exist and be well-def ned. An example of
such applications is presented in Section IV.

III. BELLMAN EQUATION AND OPTIMAL CONTROL

Problems P; through Ps are addressed in this section with
the same order they are stated in Section II. The solution to Py
is a straightforward application of dynamic programming, and
is brief'y discussed in Section III-A as a point of departure. In
Section III-B, problem P is considered, its Bellman equation
is derived, and a recursive construction of the solution to this
equation is presented. Problem Pj is treated as a limiting case
of Py (i.e., & 1T 1) in Section III-C.

A. Finite-Horizon Cost Function

The solution to problem Py is derived simply by application
of dynamic programming, as stated in Proposition 1 below.

Proposition 1: Let the cost per stage ¢ (-) and the terminal
cost ¢y (+) in the cost function (3) be continuous and consider
the sequence of value functions J; () : D — R generated by

Ji (2) = inf max{c(@,u), Jip (f (zw)} (@)

recursively for ¥ = T — 1,7 — 2,...,0 with J;(-) =
¢y (+). For any control sequence ug, w1, . . . up—1 applied to the
dynamical system (1) with the initial state z, def ne the cost
function J according to (3). Then, J§ (o) is a lower bound of
J, which is attained by an optimal control policy of the form (4)
with the feedback law pf (+),t =0,1,...,7 — 1 defned as

IUJ: (.CC) € argglei}/{lmax{c(xvu)a‘]:ﬂ—l (f ('rvu))}a (9)
provided that the minimum on the right-hand side exists.

Proof: Taking J} (-) as the optimal cost-to-go, the proof
is a straightforward application of dynamic programming. M

Remark 1: In Proposition 1 (and in the remainder of this
paper), the optimal feedback law is not necessarily unique. In
fact, any member in the set of minimizers of the right-hand side
of (9) can be a valid optimal feedback law.

B. Discounted Inf nite-Horizon Cost Function

The solution to problem P; is derived in three steps from the
principle of optimality. First, the Bellman equation associated
to this problem is introduced in Proposition 2, and it is shown
that the value function of the problem must necessarily solve
this equation. Next, Proposition 3 verif es the uniqueness of the
solution to this equation and proposes a recursive construction
of this solution based on the concept of contraction mapping.
Finally, Theorem 1 presents the optimal control policy for P
and shows this policy is stationary.

Proposition 2: In the cost function (5), let 0 < o < 1 and
assume that the cost per stage ¢ (-) is nonnegative and bounded
above by ¢ < 00, that is

0<c(z,u) <é<oo, (x,u)eDxU. (10)

Let ug, u1, ug, ... € U be any control sequence applied to the
dynamical system (1) with the initial state zo = x € D, and
def ne the value function V' (-) : D — [0,¢] as

Viz)= inf

3y
UQ, UL ,U2,...€

sup o‘c (x4, uy), x €D,
20

Then, V' (-) exists and is the uniform limit of the sequence of
functions Vj, (+) : D — [0, ¢] generated recursively by

Vier1 (x) = 5161{{ max {c(x,u),aV; (f (x,u))} (12)

for k =0,1,2,... with the initial value V;, (-) = 0. Moreover,
this limit necessarily solves the Bellman equation
V(x) = in{{max{c (x,u),aV (f (z,u))}, =zeD.
ue
(13)
Proof: Forevery k =1,2,3,..., the inequality

sup  a'c(my, uy) < sup ale(zy, w)
0<t<k—1 >0

(14a)

trivially holds. Also, the boundedness assumption (10) implies

sup  ale(xg,uy), Eak}

sup a'c(wy,us) < max
0<t<k—1

t>0

< sup  ale(my,ug) +cak,
0<t<h—1

(14b)

where the second inequality is concluded from the fact that
max {a1,a2} < a1 + a2, ai,az = 0.
The pair of inequalities (14) bound the value function V' (-) as
Vi (2) <V (z) < Vi (z) +ca”, zeD, (15)
where Vi, (1), k = 1,2,3, ... is explicitly given by

Vie () = inf sup

t
a’c(xy,ug) .
u0,UL,- k-1 €U 0gt<h—1

By a method similar to the proof of Lemma 1 in Appendix, it is
show that Vi (+), k = 1,2, 3, ... can be recursively generated
by (12) starting with V; (-) = 0. Setting & — oo in (15) implies



that V' (-) exists and is the uniform limit of the sequence of
functions V}; (-). As the value function (11) exists and is well-
def ned, it must necessarily solve the Bellman equation (13) by
the principle of optimality, as shown in Lemma 1 of Appendix.

|

The next proposition proves that the Bellman equation (13)
admits a unique solution, and generalizes the recursive scheme
of Proposition 2 for construction of this solution.

Proposition 3: Under the assumptions of Proposition 2, the
Bellman equation (13) admits a unique solution V' (+) for each
fxed 0 < a < 1, and this solution is the uniform limit of the
sequence of scalar functions Vj, (), k = 1,2,3, ... recursively
generated by (12) starting with an arbitrary V4 (-) : D — [0, ¢].

Proof: LetV be the set of all functions V' (-) : D — [0, ¢]
and measure the distance between two members of this set by

AV (),V'() =suwp |V () =V'(z)].  (16)
Defne the mapping T'[-] : V — V as
TV ()] () = inf max (e e,u) oV (f ()} (17)

It is shown in Lemma 2 of Appendix that T'[-] is a contraction
map on the complete metric space V. Hence, the Banach f xed-
point theorem [11, pp. 2-3] implies that 7" [-] has a unique f xed
point satisfying V' (-) = T [V (-)]. Moreover, this fxed point
is the uniform limit of the sequence of functions generated by
the recursive equation Vi1 () = T [V, (+)] with any arbitrary
initial function Vp (+) € V. [

Theorem 1 below presents the solution of Py by introducing
an optimal control policy that minimizes the cost function (5)
subject to the dynamical system (1).

Theorem 1: Assume that the cost per stage ¢ () in the cost
function (5) is nonnegative and bounded above by ¢ < oo, and
that 0 < v < 1. Then, the unique solution V' (+) to the Bellman
equation (13) establishes a lower bound J > V (xg) on the
cost function (5) for each initial state g € D. Moreover, if the
feedback law

w(z) e arggleizrllmax {c(z,u),aV (f (z,u))}  (18)

exists for every z € D, this lower bound is achievable by the
stationary optimal control policy

Moo =" ()™ C)op ()50}
when applied to the dynamical system (1) according to (2).
Proof: The frst statement of theorem is simply concluded
from Propositions 2 and 3. To prove the second statement, let
Ju (z) = lim sup o'c(zf, p* (z7))
T— 00 o<t<T

denote the cost of feedback law (18), in which x} is generated
recursively from

i = f(zf,p" (x7)), t=0,1,2,...

with the initial state z{; = x. By Proposition 2, J,, (-) is lower
bounded by the value function V' (+), and it is shown next that it
is also upper bounded by V' (-), implying that J,,- (-) = V (-).

In order to show J,,- (-) < V (-), consider the inequality

sup ‘e (xf, p* (7))
0<t<T

< maX{ sup_afe(ay, p* (27)), a1V (CCZH)}
0<t<T
(19)

and take the limit of left-hand side as T' — oo. The equality
in (19) can be verifed by 7' times application of (13) and (18)
via the recursive procedure

=V(x)

max { sup olc(xf, u* (z7)), a1V (a:,t+1)}

0<t<k

=max{ sup ale (@), 1t (@),
0<t<h—1

o max {e (ah, 1 (25)) aV (f (b, i <xz>>>}}

—max{ sup afe(x:,u*ur)),akvmm} (20)
o<t<k—1

fork =T,T—1,...,1,and one time direct application of (13)
and (18) for k = 0. [ |

The following proposition presents suff cient conditions for
existence of the feedback law (18).

Proposition 4: Let the assumptions of Theorem 1 hold, and
in addition, assume c () is continuous and U/ is compact. Then,
the value function V' (-) is continuous and the optimal feedback
law (18) exists.

Proof: Tt is shown by induction that the functions V (-)
generated by (12) are continuous for all £ = 0,1,2,.. .. First
at k = 0, continuity of V5 (-) = 0 is trivial. Assume that V, ()
is continuous. Then, since ¢ (-) and f () are continuous, the
function under the inf operator on the right-hand side of (12) is
continuous in u, and therefore, the inf mum over the compact
set U is replaced by minimum. Then, by Berge’s maximum
theorem [12, p. 570], Vi41 (+) is continuous.

By Proposition 2, the sequence of functions Vj, () uniformly
converges to V (+), and since Vj, (+) is continuous for every k,
the uniform limit theorem [12, p. 54] implies that V' (-) is also
continuous. Then, the minimum on the right-hand side of (18)
exists over the compact set U and is attained by some p* (z).

|

C. Undiscounted Inf nite-Horizon Cost Function

The undiscounted problem Pj is treated in this section as the
limiting case of its discounted counterpart P, when o 1 1. It is
shown that the key results of Section III-B for the discounted
problem P, can be extended to the undiscounted case P3, albeit
under more restrictive assumptions. First, Proposition 5 shows
that the solution to the discounted Bellman equation (13) has a
limit as o 1 1, and proposes a recursive construction for this
limit. Next, Proposition 6 presents a set of assumptions under
which this limit resolves the Bellman equation associated with
problem P3. Under these assumptions, Proposition 7 provides
a solution for the undiscounted problem P3. The disadvantage
of this proposition is that its conditions are not straightforward



to verify. Hence, Theorem 2 slightly narrows down the scope
of this proposition to restate it with easily verif able conditions,
namely, continuity of ¢ (-) and compactness of I{.

Proposition 5: Assume that the cost per stage ¢ (-) satisf es
the boundedness condition (10), and denote the unique solution
to the Bellman equation (13) by V, () for each 0 < o < 1.
Then, for each fxed x € D, the limit

W (x) éli;rrllVa (x), z€D (21)
exists. Moreover, the function W (+) denoting this limit can be
equivalently expressed as the limit of the sequence of functions
Wi () : D —[0,¢], k =1,2,3,... generated recursively by

Wit (z) = inf max{c(z,u), Wi (f (z,0))}  (22)

starting from the initial value Wy (-) = 0.

Proof: For each fxed z € D, V,, (z) is increasing in « as
indicated by (11) and ¢ () > 0. Moreover, V,, (z) is bounded
above by ¢ over « € (0, 1], which implies the limit (21) exists
in the pointwise sense.

To prove the second statement, consider the sequence of
functions in Proposition 2 generated recursively by (12) with
the initial value V; (-) = 0. To emphasize the dependence of
these functions on «, they are denoted by V,, j (+) in this proof.
Then, by Proposition 2, the limit (21) can be expressed as

W (z) = 2%1 kll)ngo Va,k ().

However, Vg i (z) is bounded above by ¢ < oo and
increasing in both « and k, so that the order of lim-
its can be interchanged [both double limits are equal to
SUD—123,. ., ac(0,1] Va,k (¥)]. The proof is completed noting

W (z) = lim limV, j () = lim Wy (x).
k—o0 atl k—o00
|
The next proposition establishes suff cient conditions under
which W (-) in (21) is the value function for problem P3, and
as a consequence, solves its associated Bellman equation.
Proposition 6: Let the assumptions of Proposition 5 hold
and construct the sequence of functions Wy, (), k = 1,2,3,. ..
by recursion of (22) starting with W () = 0. Assume that the
minimizer
i (2) € argminmax {e (z,u), We (f (z,0)}  (23)
exists for every k = 0,1,2,... and every « € D. Then, W (-)
defned by the limit (21) is the value function
W (z) = inf

UQ,UL,U2,-.. €

sup ¢(zy,ur), x €D (24)
>0

for the undiscounted cost function (6) and necessarily resolves
the Bellman equation

W (z) = inzgmax {c(z,u) , W (f (z,u))}, xz€D, (25)
ue
but is not its unique solution.
Proof: Denote the value function on the right-hand side
of (24) by W’ (-). The defnition of V,, (-) in (11) implies that
for each fxed © € D, the value of V,, (z) and its pointwise

limit W (z) = lima41 Vi (2) cannot exceed the value W' (z),
thatis W (z) < W' (z).
Using a recursive procedure similar to (20) and 7" + 1 times
application of (22) and (23), it can be shown that
Wryi(z) = sup c(Zy, fir—e (Z4)),
0<t<

., 7 are generated by the dynamical system

t=0,1...,T—1

where Zg, Z1, . .

Top1 = f (T, fir—t (Tt))
To = .

Taking the limit of both sides as T" — oo results in

lim sup c(Z¢, pr—t (2¢)) = W (z) .
T— o0 0<t<T

However, the limit on the left-hand side is the value of the cost
function (6) under some control policy not necessary optimal,
so it upper bounds the value function, i.e., W’ () < W (x).

Since W' (+) is both upper and lower bounded by W (), it is
concluded that W’ (-) = W (-). Moreover, as W (-) is a value
function, it necessarily solves the Bellman equation (25) by the
principle of optimality shown in Lemma 1 of Appendix. Yet,
this solution is not unique, as the constant function W () = ¢
also solve this Bellman equation. [ ]

The next proposition combines the results of Propositions 5
and 6 into a solution for the undiscounted problem Ps.

Proposition 7: Suppose the cost per stage ¢ (-) in the cost
function (6) is nonnegative and bounded above by ¢. Let V, (+)
be the unique solution to the Bellman equation (13) and def ne
the scalar function W (+) by its limit (21) as « 1 1. Then, W (+)
establishes a lower bound J > W () on the cost function (6)
for each initial state zo € D. Moreover, if the feedback law

p*(z) € argmeig{lmax {c(@,u), W (f(2,u))} (26)
u
exists for x € D and W (-) solves the Bellman equation (25),
for instance under the assumptions of Proposition 6, this lower
bound is attained by the stationary optimal control policy
oo ={ ()t () n ()}
when applied to the dynamical system (1) according to (2).
Proof: For any zy € D, the value function on the right-
hand side of (24) is a lower bound of the cost function (6).
In addition, the def nition of V,, (+) in (11) implies that V, (x)
and its limit W (o) = limap1 Vi (20) cannot exceed the value
function of (6). Hence, it is concluded that J > W (x¢). The
rest of this proof closely parallels the proof of Theorem 1. MW
Proposition 7 characterizes the optimal control policy on the
condition that TV (-) solves the Bellman equation (25). In the
rare case that TV (-) is available in explicit form, this condition
can be directly examined. In the absence of such explicit form,
the existence of (23) in Proposition 6 can be examined, which
is yet not straightforward. By introducing the new assumption
that U/ is a compact set, the existence of (23) can be concluded.
With this new assumption, the following theorem presents the
solution to problem P3 as the main result of this paper.
Theorem 2: Let U be a compact set and assume the cost per
stage ¢ (+) in the cost function (6) is continuous, nonnegative,
and bounded above by ¢. Let V,, () be the unique solution to

27)



the Bellman equation (13) and def ne the value function W (-)
by its limit (21) as v T 1. Then, this value function establishes
a lower bound J > W (z() on the cost function (6) for each
initial state x¢y € D. Moreover, if the feedback law (26) exists
for every x € D, this lower bound is attained by the stationary
optimal control policy (27) when applied to the dynamical
system (1) via the state feedback (2).

Proof: Similar to the proof of Proposition 4, it is shown
by induction that the scalar functions W, (-) generated by (22)
are continuous. Therefore, the minimum on the right-hand side
of (23) exist over the compact set I/, which is achieved by the
minimizer fi, (). Then, Proposition 7 completes the proof. W

Corollary 1: Let D and U be compact sets and assume that
the cost per stage ¢ (+) in the cost function (6) is continuous and
nonnegative. Then, the results of Theorem 2 hold identically.

Proof: As c¢(-) is continuous, it has a maximum over the
compact set D x U, which is taken as its upper bound ¢. |

Remark 2: In the second statement of Theorem 2, attaining
the minimum cost is conditioned on the existence of minimum
over U in (26). At frst glance, this may seem an unnecessary
condition for a compact I/. However, this condition is indeed
required, since continuity of ¥ (+) is not proven in this paper.
Even though W (-) is the limit of the sequence of continuous
functions Wy, (+), it does not necessarily inherit their continuity
under the pointwise convergence proven in this paper.

Remark 3: An existence theorem in [10] states that under a
set of assumptions implied by those in Corollary 1, some open-
loop control exists (without explicit construction) to minimize
the cost function (6). The assumptions of this theorem slightly
differ from those of Proposition 4 by exchanging boundedness
of ¢ (-) with closeness of D, compactness of the set of initial
states, and existence of some control to keep (5) bounded.

IV. OPTIMAL CONTROL OF BUCK POWER CONVERTERS

Consider the dc-dc power converter in Fig. 1(a) consisting
of a linear RLC circuit and an electronic switch S to connect
or disconnect a voltage supply Vj to the circuit. The switching
objective is to keep the output voltage V- as close as possible
to a fxed setpoint 0 < r < Vf. The RLC circuit acts as a
low-pass flter that attenuates the high frequencies caused by
switching, and generates an output voltage V> consisting of an
average voltage Vi and small ripples around this average, as
shown in Fig. 1(b). For a high performance power converter, an
optimal feedback control is needed to minimize the amplitude
of the ripples and maintain the average voltage V- as close as
possible to the setpoint r, despite the disturbances caused by
variations in the load resistor I or the supply voltage V.

To establish a feedback loop, the capacitor voltage Vi and
the inductor current I, (i.e., the state of the RLC circuit) are
uniformly sampled with a period T to send them to a feedback
controller. This controller decides the state of switch .S at the
beginning of each sampling period and maintains it unchanged
during that period of time. The sampled-data description of the
power converter is given by the linear state-space equations

Ti41 — ACCt + But
Yt = C:Etu

| =
NN

lye — 7l

mﬁww |

time

A P Tﬂmhm ! h?m fﬂmﬁm ﬂmh

Fig. 1. Buck dc-dc power converter: (a) circuit diagram; (b) illustrative
example of the output voltage Vo versus time (solid line), the setpoint r
(dashed line), and the average voltage Vo (dotted line). The markers on the
top of (b) illustrate the sampled output y; and those on the bottom represent
the error |y — r|.

where z; € R? is the state vector consisting of the samples of
the capacitor voltage and the inductor current, u; € U = {0,1}
is the control input representing the binary state of the switch,
and the matrices A and B are expressed as

1 1 T, 0
A, = Rlc “l, A=eAT; B= / ee” v | dT-
— 4 0 Vo
L 0 L

The eigenvalues of A are inside the unit circle since the RLC
circuit is stable. The scalar output y, represents the samples of
the output (capacitor) voltage, and therefore, C' = [1  0].

The goal is to design an optimal feedback law p* (-) to map
the state vector x; into the binary control variable u; such that
the output y; stays as close as possible to the setpoint 7 over an
inf nite horizon. This is mathematically stated as minimization
of the error |y; — r| overt = 0, 1,2, ..., formally represented
by an inf nite-horizon optimal control problem with the cost per
stage ¢ (z,u) = |Cx —r|.

Except for the trivial cases of » = 0 and » = V[, which are
achieved by keeping the switch S only off (u; = 0) or only
on (u; = 1), for any other value of r and under any control,
the output y, either contains ripples or is a constant not equal
to r, so that the error |y; — r| cannot settle at 0. Since the cost
per stage ¢ (x4, u;) does not vanish as ¢ — 0o, the inf nite sum
performance measure (7) will diverge. On the other hand, the
maximum cost (6) is convergent over an inf nite horizon, and
formulates an optimal control problem meaningfully aimed at
minimizing the maximum error. The resulting optimal control
policy decides at each time ¢ which of the controls p* (z;) = 0
or p1* (x¢) = 1 minimizes the cost-to-go sup,~; |ys — 7|

Since A is a stable matrix and U/ is compact,/it can be shown
with some efforts that an arbitrarily large compact set D exists
such that (z,u) € D x U implies Az + Bu € D. For such
compact D and a compact U/ = {0, 1}, Corollary 1 is applied
to construct an optimal feedback law in three steps. First, the
discounted Bellman equation

Vo (x) = n%nl} max {|Cz —r|,aV, (Ax + Bu)} (28)
ueq0,
is solved for V,, (+) for each fxed 0 < o < 1. Next, the value

function W (-) is obtained as the limit W (z) = limy1 Vi, ().
Finally, the optimal feedback law p* (-) is determined as

u*(z) € arg Ir{l%)nl} max {|Cz —r|, W (Ax + Bu)}.
ueq 0,
(29)



The solution to the Bellman equation (28) is beyond the scope
of this short paper and typically relies on approximate methods
and numerical techniques such as those in [13] and references
therein.

The optimal feedback law (29) can be expressed as

0, go(z) <g(x)
0L, go(z) =g1(z)
17 go (.I) > g1 (I)v
where g; (x) = max {|Cz — r|,W (Az + Bi)},i =0, 1. For
any x satisfying go (x) = g1 (), the optimal control can take
either values of 0 or 1, leading to multiple optimal feedback
laws with the same cost values. In practice, only one of these
multiple laws is chosen based on a specif ¢ rule, for instance

0, W(Az+B)— W (Az) >0
1, W(Azx+ B)—-W (Az) < 0.

u* (z) € (30)

W (@) = (D
It is straightforward to verify that (31) is a legitimate instance
of (30) by noting that W (Ax + B) — W (Az) >,<,= 0
imply the inequalities go (z) <, >, = g1 (), respectively.

V. CONCLUSION

Optimal control of discrete-time systems under a maximum
cost performance measure was studied based on the concept of
dynamic programming. The performance measure was def ned
as the maximum of a discounted or undiscounted cost per stage
over a f'nite or inf nite control horizon. For each of these cases,
necessary and suff cient conditions for an optimal control were
presented by developing their associated Bellman equation. A
practical example on optimal control of power converters was
brief'y discussed to demonstrate the results of this paper.

APPENDIX

Lemma 1 (principle of optimality): Fix 0 < o < 1 and for
the cost per stage ¢ (-) def ne the value function V' (-) by (11)
as stated in Proposition 2. Then, if this function exists and is
well-def ned, it necessarily solves the Bellman equation (13).

Proof: The proof is given by the sequence of operations

V(z) = inf sup a'c (xs, uy)
uo,u1,uz,... €U 0

= inf max { ¢ (g, ug) ,sup a'e(x¢, uy)
uo,u1,u2,...€EU t>1
— inf inf t
Jnf maxqec (o, u0) i i;}f a’c (g, up)
= inf max{c(zo,up),aV (z1)}
ug €U
= inf max {c (2o, u0),aV (f (z0,u0))}
ug €U
= inf max {c(z,u),aV (f (z,u))}.
ueU

|

Lemma 2: The set V of functions V (-) : D — [0, &] paired

with the uniform metric (16) is a complete metric space over
which, T'[] in (17) is a contraction map satisfying

d(TVEOLTV () <ed(V (), V()
forevery V (), V' () € V.

(32)

Proof: Compactness of V is proven in [14, p. 42]. The
proof of (32) relies on the sequence of operations

TV (x)=TV' ()+V()=V'()] ()
STV )+ V)=V () (2)
— irelzf/lmax{c(:c,u) LoV (f (w,u))

+alV(f (z,u) = V' (f (z,u))l}

< 11161{{ max{c (z,u),aV’ (f (z,u))

+ad(V(),V ()}
STV ()] (@) +ad(V(),V' (),

where the last inequality is concluded from

max {a1,az + a3} < max{ai,as} +as, asz=>0.

This result is then rewritten as the inequality
TV (Ol ) =TV () (z) <ad(V (), V().

Since V (+) and V" (+) can be interchanged in this inequality, it
is concluded that

TV ON) =TV ()] (@) <ad(V (), V().

By taking the supremum of the left-hand side of this inequality
over x € D, condition (32) of contraction mapping is verif ed.
|
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