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Abstract—Optimal control of discrete-time systems with a
less common performance measure is investigated, in which
the cost function to be minimized is the maximum, instead
of the sum, of a cost per stage over the control time.
Three control scenarios are studied under a f nite-horizon,
a discounted inf nite-horizon, and an undiscounted inf nite-
horizon performance measure. For each case, the Bellman
equation is derived by direct use of dynamic programming, and
the necessary and suff cient conditions for an optimal control
are established around this equation. A motivating example on
optimal control of dc-dc buck power converters is presented.

I. INTRODUCTION
The most common performance measure in the theory of

optimal control is the sum of a cost per stage (or running
cost) over the control horizon. This paper investigates a class
of optimal control problems with an alternative performance
measure def ned as the maximum, rather than the sum, of the
cost per stage over the control horizon. Similar to other optimal
control problems, the control horizon can be f nite or inf nite,
the cost function can be discounted or undiscounted, and the
system model can be continuous or discrete in time. The focus
of this paper is on discrete-time systems.
Optimal control with the maximum cost per stage optimality

criteria has been extensively studied for the continuous-time
systems [1]–[9]. Prior work on this topic includes application
of both Pontryagin’s maximum principle [1]–[3] and dynamic
programming [4]–[6] to f nite-horizon problems, and the use of
dynamic programming for discounted [7] and undiscounted [8]
inf nite-horizon problems. In particular, application of dynamic
programming has led to development of the Hamilton-Jacobi-
Bellman (HJB) equations for all these scenarios, and the value
function has been constructed as the viscosity solution to these
partial differential equations. In [9], an approximate solution
to the HJB equation for a discounted, inf nite-horizon problem
was proposed, and this solution was interpreted as the value
function for an associated discrete-time problem.
With the exception of [9] which establishes a link between

continuous- and discrete-time domains, very few results have
been reported on optimal control of discrete-time systems with
maximum cost performance measure (one of those few [10] is
discussed later in Remark 3). Therefore, this paper aims to fill
this gap by contributing a formal analysis of the problem using
dynamic programming and its related familiar techniques. An
optimal control problem involving a discrete-time system and
a maximum cost performance measure is addressed for f nite
and inf nite control horizons, and discounted and undiscounted
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cost functions. For each case, the Bellman functional equation
is developed and both necessary and suff cient conditions for an
optimal control policy are established in terms of this equation.
The main analysis of this paper begins with the study of the

inf nite-horizon discounted problem, and then continues with
the undiscounted problem as the limit of the discounted case. It
is shown that the Bellman equation for the discounted problem
admits a unique solution, while the solution is not unique for
the undiscounted case. This non-uniqueness of solution is also
observed in continuous-time problems [7], and is an obstacle
to establish suff cient conditions of optimality. Yet, the analysis
of this paper shows that the value function for the undiscounted
problem is that specif c solution to the Bellman equation which
is the continuation of the solution to the discounted problem.
To demonstrate the practical signif cance of these results, an

example on optimal control of dc-dc buck power converters is
presented. The main emphasis of this example is to formulate
a practical feedback design problem within the framework of
this paper, rather than detailed solution of the problem, which
is beyond the scope of this short paper.

II. PROBLEM STATEMENT

Suppose D is a domain in R
n and U is any subset of Rm.

Let f (·) : D × U → D be a continuous function and consider
the state-space equation

xt+1 = f (xt, ut) , t = 0, 1, 2, . . . (1)

with a known initial state x0. Here, xt ∈ D is the state vector
and ut is a control vector in the control set U . This system is
controlled under the state feedback

ut = µt (xt) , t = 0, 1, 2, . . . (2)

utilizing the feedback law µt (·) : D → U , t = 0, 1, 2, . . .. The
control performance is measured by a maximum cost criterion
def ned in terms of the cost per stage c (·) : D × U → R and
the terminal cost cf (·) : D → R.
For the discrete-time state-space equation (1), the following

optimal control problems are considered in this paper:
P1. Let T be a f xed integer and def ne the cost function

J = max

{

cf (xT ) , max
t=0,1,...,T−1

c (xt, ut)

}

(3)

for the state and control of the state-space equation (1).
Determine an optimal control policy

π∗
T =

{

µ∗
0 (·) , µ

∗
1 (·) , . . . , µ

∗
T−1 (·)

}

(4)

to minimize this cost function subject to the dynamical
system (1) under the state feedback (2).



P2. Let 0 < α < 1 be a constant discount rate and def ne the
discounted cost function

J = sup
t>0

αtc (xt, ut) . (5)

Determine an optimal control policy π∗
∞ to minimize this

cost function subject to the dynamical system (1) under
the state feedback (2).

P3. Determine an optimal control policy π∗
∞ to minimize the

undiscounted cost function

J = sup
t>0

c (xt, ut) (6)

subject to (1) under the state feedback (2).
Among the three problems above, P3 is the most diff cult to

address, and indeed, the primary motivation for this work. The
reason for emphasis on this specif c problem is its potential to
tackle a class of problems not possible to formulate in terms of
an inf nite-horizon cost function of the standard form

J =
∞
∑

t=0

c (xt, ut) . (7)

For many applications, the inf nite sum in this cost function is
not convergent, since the cost per stage c (xt, ut) does not tend
to 0 as t → ∞. For the same cost per stage, however, the cost
function (6) can still exist and be well-def ned. An example of
such applications is presented in Section IV.

III. BELLMAN EQUATION AND OPTIMAL CONTROL

Problems P1 through P3 are addressed in this section with
the same order they are stated in Section II. The solution to P1
is a straightforward application of dynamic programming, and
is brief y discussed in Section III-A as a point of departure. In
Section III-B, problem P2 is considered, its Bellman equation
is derived, and a recursive construction of the solution to this
equation is presented. Problem P3 is treated as a limiting case
of P2 (i.e., α ↑ 1) in Section III-C.

A. Finite-Horizon Cost Function
The solution to problem P1 is derived simply by application

of dynamic programming, as stated in Proposition 1 below.
Proposition 1: Let the cost per stage c (·) and the terminal

cost cf (·) in the cost function (3) be continuous and consider
the sequence of value functions J∗

k (·) : D → R generated by

J∗
k (x) = inf

u∈U
max

{

c (x, u) , J∗
k+1 (f (x, u))

}

(8)

recursively for k = T − 1, T − 2, . . . , 0 with J∗
T (·) =

cf (·). For any control sequence u0, u1, . . . uT−1 applied to the
dynamical system (1) with the initial state x0, def ne the cost
function J according to (3). Then, J∗

0 (x0) is a lower bound of
J , which is attained by an optimal control policy of the form (4)
with the feedback law µ∗

t (·), t = 0, 1, . . . , T − 1 def ned as

µ∗
t (x) ∈ argmin

u∈U
max

{

c (x, u) , J∗
t+1 (f (x, u))

}

, (9)

provided that the minimum on the right-hand side exists.
Proof: Taking J∗

k (·) as the optimal cost-to-go, the proof
is a straightforward application of dynamic programming.

Remark 1: In Proposition 1 (and in the remainder of this
paper), the optimal feedback law is not necessarily unique. In
fact, any member in the set of minimizers of the right-hand side
of (9) can be a valid optimal feedback law.

B. Discounted Inf nite-Horizon Cost Function
The solution to problem P2 is derived in three steps from the

principle of optimality. First, the Bellman equation associated
to this problem is introduced in Proposition 2, and it is shown
that the value function of the problem must necessarily solve
this equation. Next, Proposition 3 verif es the uniqueness of the
solution to this equation and proposes a recursive construction
of this solution based on the concept of contraction mapping.
Finally, Theorem 1 presents the optimal control policy for P2
and shows this policy is stationary.
Proposition 2: In the cost function (5), let 0 < α < 1 and

assume that the cost per stage c (·) is nonnegative and bounded
above by c̄ < ∞, that is

0 6 c (x, u) 6 c̄ < ∞, (x, u) ∈ D × U . (10)

Let u0, u1, u2, . . . ∈ U be any control sequence applied to the
dynamical system (1) with the initial state x0 = x ∈ D, and
def ne the value function V (·) : D → [0, c̄ ] as

V (x) = inf
u0,u1,u2,...∈U

sup
t>0

αtc (xt, ut) , x ∈ D. (11)

Then, V (·) exists and is the uniform limit of the sequence of
functions Vk (·) : D → [0, c̄ ] generated recursively by

Vk+1 (x) = inf
u∈U

max {c (x, u) , αVk (f (x, u))} (12)

for k = 0, 1, 2, . . . with the initial value V0 (·) = 0. Moreover,
this limit necessarily solves the Bellman equation

V (x) = inf
u∈U

max {c (x, u) , αV (f (x, u))} , x ∈ D.

(13)
Proof: For every k = 1, 2, 3, . . ., the inequality

sup
06t6k−1

αtc (xt, ut) 6 sup
t>0

αtc (xt, ut) (14a)

trivially holds. Also, the boundedness assumption (10) implies

sup
t>0

αtc (xt, ut) 6 max

{

sup
06t6k−1

αtc (xt, ut) , c̄α
k

}

6 sup
06t6k−1

αtc (xt, ut) + c̄αk, (14b)

where the second inequality is concluded from the fact that

max {a1, a2} 6 a1 + a2, a1, a2 > 0.

The pair of inequalities (14) bound the value function V (·) as

Vk (x) 6 V (x) 6 Vk (x) + c̄αk, x ∈ D, (15)

where Vk (·), k = 1, 2, 3, . . . is explicitly given by

Vk (x) = inf
u0,u1,...,uk−1∈U

sup
06t6k−1

αtc (xt, ut) .

By a method similar to the proof of Lemma 1 in Appendix, it is
show that Vk (·), k = 1, 2, 3, . . . can be recursively generated
by (12) starting with V0 (·) = 0. Setting k → ∞ in (15) implies



that V (·) exists and is the uniform limit of the sequence of
functions Vk (·). As the value function (11) exists and is well-
def ned, it must necessarily solve the Bellman equation (13) by
the principle of optimality, as shown in Lemma 1 of Appendix.

The next proposition proves that the Bellman equation (13)
admits a unique solution, and generalizes the recursive scheme
of Proposition 2 for construction of this solution.
Proposition 3: Under the assumptions of Proposition 2, the

Bellman equation (13) admits a unique solution V (·) for each
f xed 0 < α < 1, and this solution is the uniform limit of the
sequence of scalar functions Vk (·), k = 1, 2, 3, . . . recursively
generated by (12) starting with an arbitrary V0 (·) : D → [0, c̄ ].

Proof: Let V be the set of all functions V (·) : D → [0, c̄ ]
and measure the distance between two members of this set by

d (V (·) , V ′ (·)) = sup
x∈D

|V (x)− V ′ (x)| . (16)

Def ne the mapping T [·] : V → V as

T [V (·)] (x) = inf
u∈U

max {c (x, u) , αV (f (x, u))} . (17)

It is shown in Lemma 2 of Appendix that T [·] is a contraction
map on the complete metric space V . Hence, the Banach f xed-
point theorem [11, pp. 2-3] implies that T [·] has a unique f xed
point satisfying V (·) = T [V (·)]. Moreover, this f xed point
is the uniform limit of the sequence of functions generated by
the recursive equation Vk+1 (·) = T [Vk (·)] with any arbitrary
initial function V0 (·) ∈ V .
Theorem 1 below presents the solution of P2 by introducing

an optimal control policy that minimizes the cost function (5)
subject to the dynamical system (1).
Theorem 1: Assume that the cost per stage c (·) in the cost

function (5) is nonnegative and bounded above by c̄ < ∞, and
that 0 < α < 1. Then, the unique solution V (·) to the Bellman
equation (13) establishes a lower bound J > V (x0) on the
cost function (5) for each initial state x0 ∈ D. Moreover, if the
feedback law

µ∗ (x) ∈ argmin
u∈U

max {c (x, u) , αV (f (x, u))} (18)

exists for every x ∈ D, this lower bound is achievable by the
stationary optimal control policy

π∗
∞ = {µ∗ (·) , µ∗ (·) , µ∗ (·) , . . .}

when applied to the dynamical system (1) according to (2).
Proof: The f rst statement of theorem is simply concluded

from Propositions 2 and 3. To prove the second statement, let

Jµ∗ (x) = lim
T→∞

sup
06t6T

αtc (x∗
t , µ

∗ (x∗
t ))

denote the cost of feedback law (18), in which x∗
t is generated

recursively from

x∗
t+1 = f (x∗

t , µ
∗ (x∗

t )) , t = 0, 1, 2, . . .

with the initial state x∗
0 = x. By Proposition 2, Jµ∗ (·) is lower

bounded by the value function V (·), and it is shown next that it
is also upper bounded by V (·), implying that Jµ∗ (·) = V (·).

In order to show Jµ∗ (·) 6 V (·), consider the inequality

sup
06t6T

αtc (x∗
t , µ

∗ (x∗
t ))

6 max

{

sup
06t6T

αtc (x∗
t , µ

∗ (x∗
t )) , α

T+1V
(

x∗
k+1

)

}

= V (x) (19)

and take the limit of left-hand side as T → ∞. The equality
in (19) can be verif ed by T times application of (13) and (18)
via the recursive procedure

max

{

sup
06t6k

αtc (x∗
t , µ

∗ (x∗
t )) , α

k+1V
(

x∗
k+1

)

}

= max

{

sup
06t6k−1

αtc (x∗
t , µ

∗ (x∗
t )) ,

αk max {c (x∗
k, µ

∗ (x∗
k)) , αV (f (x∗

k, µ
∗ (x∗

k)))}

}

= max

{

sup
06t6k−1

αtc (x∗
t , µ

∗ (x∗
t )) , α

kV (x∗
k)

}

(20)

for k = T, T−1, . . . , 1, and one time direct application of (13)
and (18) for k = 0.
The following proposition presents suff cient conditions for

existence of the feedback law (18).
Proposition 4: Let the assumptions of Theorem 1 hold, and

in addition, assume c (·) is continuous and U is compact. Then,
the value function V (·) is continuous and the optimal feedback
law (18) exists.

Proof: It is shown by induction that the functions Vk (·)
generated by (12) are continuous for all k = 0, 1, 2, . . .. First
at k = 0, continuity of V0 (·) = 0 is trivial. Assume that Vk (·)
is continuous. Then, since c (·) and f (·) are continuous, the
function under the inf operator on the right-hand side of (12) is
continuous in u, and therefore, the inf mum over the compact
set U is replaced by minimum. Then, by Berge’s maximum
theorem [12, p. 570], Vk+1 (·) is continuous.
By Proposition 2, the sequence of functions Vk (·) uniformly

converges to V (·), and since Vk (·) is continuous for every k,
the uniform limit theorem [12, p. 54] implies that V (·) is also
continuous. Then, the minimum on the right-hand side of (18)
exists over the compact set U and is attained by some µ∗ (x).

C. Undiscounted Inf nite-Horizon Cost Function
The undiscounted problem P3 is treated in this section as the

limiting case of its discounted counterpart P2 when α ↑ 1. It is
shown that the key results of Section III-B for the discounted
problem P2 can be extended to the undiscounted case P3, albeit
under more restrictive assumptions. First, Proposition 5 shows
that the solution to the discounted Bellman equation (13) has a
limit as α ↑ 1, and proposes a recursive construction for this
limit. Next, Proposition 6 presents a set of assumptions under
which this limit resolves the Bellman equation associated with
problem P3. Under these assumptions, Proposition 7 provides
a solution for the undiscounted problem P3. The disadvantage
of this proposition is that its conditions are not straightforward



to verify. Hence, Theorem 2 slightly narrows down the scope
of this proposition to restate it with easily verif able conditions,
namely, continuity of c (·) and compactness of U .
Proposition 5: Assume that the cost per stage c (·) satisf es

the boundedness condition (10), and denote the unique solution
to the Bellman equation (13) by Vα (·) for each 0 < α < 1.
Then, for each f xed x ∈ D, the limit

W (x) , lim
α↑1

Vα (x) , x ∈ D (21)

exists. Moreover, the functionW (·) denoting this limit can be
equivalently expressed as the limit of the sequence of functions
Wk (·) : D → [0, c̄ ], k = 1, 2, 3, . . . generated recursively by

Wk+1 (x) = inf
u∈U

max {c (x, u) ,Wk (f (x, u))} (22)

starting from the initial valueW0 (·) = 0.
Proof: For each f xed x ∈ D, Vα (x) is increasing in α as

indicated by (11) and c (·) > 0. Moreover, Vα (x) is bounded
above by c̄ over α ∈ (0, 1], which implies the limit (21) exists
in the pointwise sense.
To prove the second statement, consider the sequence of

functions in Proposition 2 generated recursively by (12) with
the initial value V0 (·) = 0. To emphasize the dependence of
these functions on α, they are denoted by Vα,k (·) in this proof.
Then, by Proposition 2, the limit (21) can be expressed as

W (x) = lim
α↑1

lim
k→∞

Vα,k (x) .

However, Vα,k (x) is bounded above by c̄ < ∞ and
increasing in both α and k, so that the order of lim-
its can be interchanged [both double limits are equal to
supk=1,2,3,..., α∈(0,1] Vα,k (x)]. The proof is completed noting
that

W (x) = lim
k→∞

lim
α↑1

Vα,k (x) = lim
k→∞

Wk (x) .

The next proposition establishes suff cient conditions under
which W (·) in (21) is the value function for problem P3, and
as a consequence, solves its associated Bellman equation.
Proposition 6: Let the assumptions of Proposition 5 hold

and construct the sequence of functionsWk (·), k = 1, 2, 3, . . .
by recursion of (22) starting withW0 (·) = 0. Assume that the
minimizer

µ̄k (x) ∈ argmin
u∈U

max {c (x, u) ,Wk (f (x, u))} (23)

exists for every k = 0, 1, 2, . . . and every x ∈ D. Then,W (·)
def ned by the limit (21) is the value function

W (x) = inf
u0,u1,u2,...∈U

sup
t>0

c (xt, ut) , x ∈ D (24)

for the undiscounted cost function (6) and necessarily resolves
the Bellman equation

W (x) = inf
u∈U

max {c (x, u) ,W (f (x, u))} , x ∈ D, (25)

but is not its unique solution.
Proof: Denote the value function on the right-hand side

of (24) by W ′ (·). The def nition of Vα (·) in (11) implies that
for each f xed x ∈ D, the value of Vα (x) and its pointwise

limitW (x) = limα↑1 Vα (x) cannot exceed the valueW ′ (x),
that isW (x) 6 W ′ (x).
Using a recursive procedure similar to (20) and T + 1 times

application of (22) and (23), it can be shown that

WT+1 (x) = sup
06t6T

c (x̄t, µ̄T−t (x̄t)) ,

where x̄0, x̄1, . . . , x̄T are generated by the dynamical system

x̄t+1 = f (x̄t, µ̄T−t (x̄t)) , t = 0, 1 . . . , T − 1

x̄0 = x.

Taking the limit of both sides as T → ∞ results in

lim
T→∞

sup
06t6T

c (x̄t, µ̄T−t (x̄t)) = W (x) .

However, the limit on the left-hand side is the value of the cost
function (6) under some control policy not necessary optimal,
so it upper bounds the value function, i.e.,W ′ (x) 6 W (x).
SinceW ′ (·) is both upper and lower bounded byW (·), it is

concluded thatW ′ (·) = W (·). Moreover, as W (·) is a value
function, it necessarily solves the Bellman equation (25) by the
principle of optimality shown in Lemma 1 of Appendix. Yet,
this solution is not unique, as the constant functionW (·) = c̄

also solve this Bellman equation.
The next proposition combines the results of Propositions 5

and 6 into a solution for the undiscounted problem P3.
Proposition 7: Suppose the cost per stage c (·) in the cost

function (6) is nonnegative and bounded above by c̄. Let Vα (·)
be the unique solution to the Bellman equation (13) and def ne
the scalar functionW (·) by its limit (21) as α ↑ 1. Then,W (·)
establishes a lower bound J > W (x0) on the cost function (6)
for each initial state x0 ∈ D. Moreover, if the feedback law

µ∗ (x) ∈ argmin
u∈U

max {c (x, u) ,W (f (x, u))} (26)

exists for x ∈ D and W (·) solves the Bellman equation (25),
for instance under the assumptions of Proposition 6, this lower
bound is attained by the stationary optimal control policy

π∗
∞ = {µ∗ (·) , µ∗ (·) , µ∗ (·) , . . .} (27)

when applied to the dynamical system (1) according to (2).
Proof: For any x0 ∈ D, the value function on the right-

hand side of (24) is a lower bound of the cost function (6).
In addition, the def nition of Vα (·) in (11) implies that Vα (x0)
and its limitW (x0) = limα↑1 Vα (x0) cannot exceed the value
function of (6). Hence, it is concluded that J > W (x0). The
rest of this proof closely parallels the proof of Theorem 1.
Proposition 7 characterizes the optimal control policy on the

condition that W (·) solves the Bellman equation (25). In the
rare case thatW (·) is available in explicit form, this condition
can be directly examined. In the absence of such explicit form,
the existence of (23) in Proposition 6 can be examined, which
is yet not straightforward. By introducing the new assumption
that U is a compact set, the existence of (23) can be concluded.
With this new assumption, the following theorem presents the
solution to problem P3 as the main result of this paper.
Theorem 2: Let U be a compact set and assume the cost per

stage c (·) in the cost function (6) is continuous, nonnegative,
and bounded above by c̄. Let Vα (·) be the unique solution to



W (·)
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J � W (x0)
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U
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A
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μ∗ (·)
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ut = 1 r
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c (xt, ut) t → ∞

t μ∗ (xt) = 0
μ∗ (xt) = 1 sups�t |ys − r|

A U
D

(x, u) ∈ D × U Ax + Bu ∈ D
D U = {0, 1}

Vα (x) = min
u∈{0,1}

max {|Cx − r| , αVα (Ax +Bu)}

Vα (·) 0 < α < 1
W (·) W (x) = limα↑1 Vα (x)

μ∗ (·)

μ∗ (x) ∈ arg min
u∈{0,1}

max {|Cx− r| ,W (Ax+Bu)} .



The solution to the Bellman equation (28) is beyond the scope
of this short paper and typically relies on approximate methods
and numerical techniques such as those in [13] and references
therein.
The optimal feedback law (29) can be expressed as

µ∗ (x) ∈







0, g0 (x) < g1 (x)
0|1, g0 (x) = g1 (x)
1, g0 (x) > g1 (x) ,

(30)

where gi (x) = max {|Cx− r| ,W (Ax +Bi)}, i = 0, 1. For
any x satisfying g0 (x) = g1 (x), the optimal control can take
either values of 0 or 1, leading to multiple optimal feedback
laws with the same cost values. In practice, only one of these
multiple laws is chosen based on a specif c rule, for instance

µ∗ (x) =

{

0, W (Ax+B)−W (Ax) > 0

1, W (Ax+B)−W (Ax) < 0.
(31)

It is straightforward to verify that (31) is a legitimate instance
of (30) by noting that W (Ax+B) − W (Ax) >,<,= 0
imply the inequalities g0 (x) 6,>,= g1 (x), respectively.

V. CONCLUSION

Optimal control of discrete-time systems under a maximum
cost performance measure was studied based on the concept of
dynamic programming. The performance measure was def ned
as the maximum of a discounted or undiscounted cost per stage
over a f nite or inf nite control horizon. For each of these cases,
necessary and suff cient conditions for an optimal control were
presented by developing their associated Bellman equation. A
practical example on optimal control of power converters was
brief y discussed to demonstrate the results of this paper.

APPENDIX

Lemma 1 (principle of optimality): Fix 0 < α 6 1 and for
the cost per stage c (·) def ne the value function V (·) by (11)
as stated in Proposition 2. Then, if this function exists and is
well-def ned, it necessarily solves the Bellman equation (13).

Proof: The proof is given by the sequence of operations

V (x) = inf
u0,u1,u2,...∈U

sup
t>0

αtc (xt, ut)

= inf
u0,u1,u2,...∈U

max

{

c (x0, u0) , sup
t>1

αtc (xt, ut)

}

= inf
u0∈U

max

{

c (x0, u0) , inf
u1,u2,...∈U

sup
t>1

αtc (xt, ut)

}

= inf
u0∈U

max {c (x0, u0) , αV (x1)}

= inf
u0∈U

max {c (x0, u0) , αV (f (x0, u0))}

= inf
u∈U

max {c (x, u) , αV (f (x, u))} .

Lemma 2: The set V of functions V (·) : D → [0, c̄ ] paired
with the uniform metric (16) is a complete metric space over
which, T [·] in (17) is a contraction map satisfying

d (T [V (·)] , T [V ′ (·)]) 6 αd (V (·) , V ′ (·)) (32)

for every V (·) , V ′ (·) ∈ V .

Proof: Compactness of V is proven in [14, p. 42]. The
proof of (32) relies on the sequence of operations

T [V (·)] (x) = T [V ′ (·) + V (·)− V ′ (·)] (x)

6 T [V ′ (·) + |V (·)− V ′ (·)|] (x)

= inf
u∈U

max
{

c (x, u) , αV ′ (f (x, u))

+ α |V (f (x, u))− V ′ (f (x, u))|
}

6 inf
u∈U

max
{

c (x, u) , αV ′ (f (x, u))

+ αd (V (·) , V ′ (·))
}

6 T [V ′ (·)] (x) + αd (V (·) , V ′ (·)) ,

where the last inequality is concluded from

max {a1, a2 + a3} 6 max {a1, a2}+ a3, a3 > 0.

This result is then rewritten as the inequality

T [V (·)] (x)− T [V ′ (·)] (x) 6 αd (V (·) , V ′ (·)) .

Since V (·) and V ′ (·) can be interchanged in this inequality, it
is concluded that

∣

∣T [V (·)] (x)− T [V ′ (·)] (x)
∣

∣ 6 αd (V (·) , V ′ (·)) .

By taking the supremum of the left-hand side of this inequality
over x ∈ D, condition (32) of contraction mapping is verif ed.
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