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Abstract— Estimating relative camera poses from consecutive
frames is a fundamental problem in visual odometry (VO) and
simultaneous localization and mapping (SLAM), where classic
methods consisting of hand-crafted features and sampling-
based outlier rejection have been a dominant choice for over a
decade. Although multiple works propose to replace these mod-
ules with learning-based counterparts, most have not yet been
as accurate, robust and generalizable as conventional methods.
In this paper, we design an end-to-end trainable framework
consisting of learnable modules for detection, feature extraction,
matching and outlier rejection, while directly optimizing for
the geometric pose objective. We show both quantitatively
and qualitatively that pose estimation performance may be
achieved on par with the classic pipeline. Moreover, we are
able to show by end-to-end training, the key components of
the pipeline could be significantly improved, which leads to
better generalizability to unseen datasets compared to existing
learning-based methods.

I. INTRODUCTION

Camera pose estimation has been the key to Simultaneous
Localization and Mapping (SLAM) systems. To this end,
multiple methods have been designed to estimate camera
poses from input image sequences, or in a simplified setting,
to get the relative camera pose from two consecutive frames.
Traditionally a robust keypoint detector and feature extractor,
e.g. SIFT [1], coupled with an outlier rejection framework,
e.g. RANSAC [2], has dominated the design of camera pose
estimation pipeline for decades.

Recently there have been efforts to bring deep networks to
each step of the pipeline, specifically keypoint detection [3]–
[5], feature extraction [3], [4] and matching [3], [4], [6],
as well as outlier rejection [6]–[8]. The potential benefit is
being able to handle challenges such as textureless regions by
incorporating data-driven priors. However, when combining
such components to replace the classic counterparts, conven-
tional SIFT-based camera pose estimation still significantly
outperforms them by a considerable margin. This could be at-
tributed to three basic challenges for learning-based systems.
First, these learning-based methods have been individually
developed for their own purposes, but never been trained
and optimized end-to-end for the ultimate purpose of getting
better camera poses. Geometric constraints and the final pose
estimation objective are not sufficiently incorporated in the
pipeline. Second, learning-based methods have over-fitting
nature to the domains they are trained on. When the model
is applied to a different dataset, the performance is often
inconsistent across various datasets compared to SIFT and
RANSAC methods. Third, our evaluation shows that existing
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learning-based feature detectors, which serve at the very
beginning of the entire pipeline, are significantly weaker than
the hand-crafted feature detectors (e.g. SIFT detector). This
is because obtaining training samples with accurate keypoints
and correspondences, at the level to surpass or just match the
subpixel accuracy of SIFT, is tremendously difficult.

In face of these issues when naively putting existing
learning-based methods together, we propose the end-to-
end trained framework for relative camera pose estimation
between two consecutive frames (Fig. 1). Our framework in-
tegrates learnable modules for keypoint detection, description
and outlier rejection inspired by the geometry-based classic
pipeline. The whole framework is trained in an end-to-end
fashion with supervision from ground truth camera pose,
which is the ultimate goal for pose estimation. Particularly,
in facing the third challenge of requiring accurate keypoints
for feature detector training, we introduce a Softargmax

detector head in the pipeline, so that the final pose estimation
error could be back-propagated to provide subpixel level
supervision.

Experiments show that the end-to-end learning can dras-
tically improve the performance of existing learning-based
feature detectors, as well as the entire pose estimation sys-
tem. We show that our method outperforms existing learning-
based pipelines by a large margin, and performs on par with
the state-of-the-art SIFT-based methods. We also demonstrate
the significant benefit of generalizability to unseen datasets
compared to learning-based baseline methods. We evaluate
our model on KITTI [9] and ApolloScape [10] datasets and
demonstrate not only quantitatively but also qualitatively.
That is, by training end-to-end, we are able to obtain
relatively balanced keypoint distribution corresponding to
appearance and motion patterns in the image pair.

To summarize, our contributions include:

• We propose the keypoint-based camera pose estima-
tion pipeline, which is end-to-end trainable with better
robustness and generalizability than the learning-based
baselines.

• The pipeline is connected with the novel Softargmax
bridge, and optimized with geometry-based objectives
obtained from correspondences.

• The thorough study on cross-dataset setting is done to
evaluate generalization ability, which is critical but not
much discussed in the existing works.

We describe our pipeline in detail in Sec. III with the
design of the loss functions and training process. We show
the quantitative results of pose estimation and qualitative
results in Sec. IV. Code will be made available at https:
//github.com/eric-yyjau/pytorch-deepFEPE.







forming M ×N pairs of sampled correspondences. The loss
function is the mean contrastive loss as described in [3].

3) Output of Feature Extractor: We obtain correspon-
dences for pose estimation from the sparse keypoints and
their descriptors. To get the keypoints, we apply non-
maximum suppression (NMS) and a threshold on the
heatmap to filter out redundant candidates. The descriptors
are sampled from Hdesc using bi-linear interpolation. With
two sets of keypoints and descriptors, 2-way nearest neighbor
matching is applied to form N correspondences, forming an
N × 4 matrix as input for pose estimation.

C. Pose Estimation (PE)

Pose estimation takes correspondences as input to solve for
the fundamental matrix. Instead of using a fully connected
layer to regress fundamental matrix or pose directly as in
[29], [41], [47], we embed geometric constraints, i.e. sparse
correspondences, into camera pose estimation. To create
a differentiable pipeline in replacement of RANSAC for
pose estimation from noisy correspondences, we build upon
the Deep Fundamental Matrix Estimation (DeepF) [8], and
propose a geometry-based loss to train DeepFEPE.

1) Existing Objective for Learning Fundamental Matrix:

DeepF [8] formulates fundamental matrix estimation as a
weighted least squares problem. The weights on the cor-
respondences indicate the confidence of matching pairs,
and are predicted using a neural network model with the
PointNet-like structure. Then, weights and points are ap-
plied to solve for the fundamental matrix. Residuals of the
prediction, as defined in [8], are obtained from the mean
Sampson distance [52] of the input correspondences. The
correspondences, weights, residuals are fed into the model
recurrently to refine the weights. To be more specific, the
residuals r(pi,F) are calculated as following:

r(pi,F) = |p̂T
i
Fp̂′

i
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where p = (u, v, 1) and p′ = (u′, v′, 1) denote a pair of
correspondences in the homogeneous coordinates.

Following [8], the loss is defined as epipolar distances
from virtual points on a grid, to their corresponding epipolar
lines, which are generated from ground truth fundamental
matrix. It is abbreviated as F-loss in the following sections.

2) Geometry-based Pose Loss: Due to the fact that a good
estimation in epipolar space does not guarantee better pose
estimation, we propose a geometry-based loss function by
enforcing a loss between estimated poses and ground truth
poses. The estimated fundamental matrix is converted into
the essential matrix using the calibration matrix and further
decomposed into 2 sets of rotation and 2 translation matrices.
By picking the one camera pose where all points are in
front of both cameras (which gives lowest error among all
4 possible combinations of poses), we obtain the rotation
in quaternions [53] and translation vectors, and compute L2
loss as our geometry-based loss. Then, loss terms Lrot and
Ltrans are collected from the pose with minimum L2 loss.

Lrot = min(‖q(Rest i)− q(Rgt)‖2), i = [1, 2], (4)

Ltrans = min(‖test i − tgt‖2), i = [1, 2], (5)

where R, t are decomposed from the essential matrix, and
q(.) converts the rotation matrix into a quaternion vector.
The final loss is followed,

Lpose =min(Lrot(Rest,Rgt), cr)+

λrt ∗min(Ltrans(test, tgt), ct),
(6)

where cr and ct are clamping constants for losses to prevent
gradient explosion. The geometry-based loss is abbreviated
as pose-loss in the following sections.

D. Training Process

After initializing both FE and PE modules respectively,
we train the pipeline end-to-end. Our FE module is trained
using a self-supervised method [3]. The keypoint detector is
initialized by synthetic data, which can be used to generate
pseudo ground truth for detectors on any dataset with single
image homography adaptation (HA). Homography warping
pairs are generated on-the-fly for descriptor training [3].
We put a Gaussian filter on the ground truth heatmap to
enable prediction with Softargmax, where σfe = 0.2. For
descriptor sparse loss, we have Hc = H/8, Wc = W/8,
N = 600, and M = 100. NMS window size is set to be
w = 4. The model is trained with 200k iterations on synthetic
datasets, and 50k iterations on real images.

With the correspondences from the pre-trained FE, we
initialize the PE module using F-loss. The network has
RNN structure with iteration D=5. The training converges
at around 20k iterations. For training with the pose-loss, We
set cr = 0.1, ct = 0.5 and λrt = 0.1.

When connecting the entire pipeline, the gradients from
pose-loss flow back through the Pose Estimation(PE) module
to update the prediction of weights, as well as the Feature
Extraction(FE) module to update the locations of keypoints.
The pipeline and supervision is shown in Fig. 1.

IV. EXPERIMENTS

We evaluate DeepFEPE using pose estimation error, and
compare with previous approaches. Acronyms and symbols
for the approaches are defined in Tab. I. Different meth-
ods are evaluated on KITTI dataset [54], and further on
ApolloScape dataset [10] to show the generalization ability
to unseen data. To be noted, we evaluate for relative pose
estimation with existing baselines as in Sec. IV-B, and for
visual odometry as in Sec. IV-C. We demonstrate significant
improvement quantitatively against baseline learning-based
methods after end-to-end training, as shown in Tab. II and
Tab. IV. To give an insight into the improvement of optimiz-
ing SuperPoint from pose-loss, we evaluate the epipolar error
of correspondences quantitatively in Tab. VII and visualize
the change of keypoint distribution during training in Fig. 5.

A. Datasets

We extract all pairs of consecutive frames, i.e. with time
difference 1, for training and testing.
KITTI dataset We train and evaluate our pipeline using
KITTI odometry sequences, with ground truth 6 DoF poses
obtained from IMU/GPS. There are 11 sequences in total,
where sequences 00-08 are used for training (16k samples)
and 09-10 are used for testing (2,710 samples).
ApolloScape dataset The dataset is collected in driving
scenarios, with ground truth 6 DoF poses collected from





are trained jointly using F-loss or pose-loss. The reference
table of the models above are shown in Tab. I, with symbols
representing different training combinations. The models
are trained on KITTI and evaluated on both KITTI and
ApolloScape datasets.

Tab. II compares the learning-based baseline (Sp-base)
with our DeepFEPE model, which shows significant im-
provement w.r.t. rotation and translation error. Looking into
the rotation error, the pre-trained SuperPoint [3] performs
poorly with RANSAC pose estimation (0.217 degrees me-
dian error), whereas the DeepF [8] module improves that to
0.078 degrees. Our DeepFEPE further improves the rotation
median error to 0.041 degrees, with translation median error
from 2.1 (Sp-Ran) to 0.5 degrees.

KITTI Models
KITTI dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Sp-Ran) 0.189 0.641 0.217 0.481 5.798 2.103
Sp-Df-f 0.633 0.100 0.078 0.830 1.476 0.846
Sp-Df-p 0.875 0.130 0.047 0.887 1.719 0.539
Ours(Sp-Df-f-end) 0.915 0.053 0.042 0.905 1.662 0.489

Ours(Sp-Df-p-end) 0.932 0.050 0.041 0.905 1.600 0.503
Ours(Sp-Df-fp-end) 0.910 0.054 0.048 0.917 1.062 0.504

TABLE II: Comparison of pose estimation for learning-

based KITTI models on KITTI dataset. The set of models
are trained on KITTI with learning-based feature extraction
(FE). (Refer to Tab. I for acronyms.)

KITTI Models
KITTI dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Si-Ran) 0.818 0.391 0.056 0.899 1.895 0.639
Si-Df-f 0.938 0.051 0.041 0.914 1.699 0.484

Si-Df-p 0.901 0.059 0.044 0.903 1.472 0.513
Si-Df-fp 0.947 0.111 0.038 0.916 1.741 0.484
Ours(Sp-Df-fp-end) 0.910 0.054 0.048 0.917 1.062 0.504

TABLE III: Comparison of pose estimation for SIFT-

based KITTI models on KITTI dataset. The table com-
pares our DeepFEPE model with Si-base and Si-models for
pose estimation. (Refer to Tab. I for acronyms.)

KITTI Models
Apollo dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Sp-Ran) 0.407 0.205 0.118 0.583 5.645 1.670
Sp-Df-f 0.725 0.126 0.068 0.754 2.074 1.155
Sp-Df-p 0.730 0.124 0.067 0.827 1.905 0.974
Ours(Sp-Df-f-end) 0.841 0.100 0.051 0.910 1.122 0.589

Ours(Sp-Df-p-end) 0.686 0.152 0.071 0.747 2.652 1.068
Ours(Sp-Df-fp-end) 0.864 0.092 0.051 0.924 1.275 0.659

TABLE IV: Comparison of pose estimation for learning-

based KITTI models on Apollo dataset. The table com-
pares the learning-based approaches in a cross-dataset set-
ting.

In terms of other baselines, we compare DeepFEPE with
Si-models and Si-base in Tab. III. DeepFEPE achieves
better mean translation and rotation error compared to Si-
base, and comparable performance with Si-models. The table

KITTI Models
Apollo dataset - error(deg.) inlier ratio↑, mean↓, median↓

Rotation (deg.) Translation (deg.)
0.1↑ Mean.↓ Med.↓ 2.0↑ Mean.↓ Med.↓

Base(Si-Ran) 0.922 0.157 0.037 0.979 0.788 0.388
Si-Df-f 0.845 0.172 0.043 0.895 2.452 0.389
Si-Df-p 0.727 0.333 0.056 0.760 4.918 0.658
Si-Df-fp 0.840 0.148 0.044 0.911 2.103 0.369

Ours(Sp-Df-fp-end) 0.864 0.092 0.051 0.924 1.275 0.659

TABLE V: Comparison of pose estimation for SIFT-

based KITTI models on Apollo dataset. The table com-
pares our DeepFEPE with other baseline methods in a cross-
dataset setting.

demonstrates that the DeepFEPE model sets up the new
state-of-the-art for learning-based relative pose estimation
against DeepF. The qualitative results are shown in Fig. 3
and Fig. 4, comparing Si-base, Si-model and DeepFEPE.
Pose estimation is visualized by comparing the epipolar
lines projected from ground truth and estimated fundamental
matrices. If the estimated one is close to ground truth, the
vanishing point should match that of ground truth. Keypoints
with high weights predicted by Pose Estimation (PE) are also
plotted for reasoning the relation of point distribution and
pose estimation.

Due to the fact that learning-based methods are biased to-
wards the training data, we evaluate the models trained from
KITTI on the ApolloScape dataset. The results demonstrate
that our model retains generalization ability and is less prone
to overfitting. From Tab. IV, we compare DeepFEPE models
with Sp-base models and observe the benefit from end-to-end
training with lower rotation and translation error. Without
end-to-end training, the Sp-base models degrade significantly
(in Tab. II) and are won over by end-to-end models by a
large margin. Compared to other baselines in Tab. V, we
observe that the Si-base demonstrates the highest accuracy,
and DeepFEPE achieves better mean rotation and translation
error over Si-models.

To further examine the benefit of geometry-based loss, we
can look into Tab. II, with 3 models trained on either F-loss,
pose-loss or both. We can observe the model trained using
both losses achieves significantly better mean translation
error. We believe this is because the geometric information
incorporated in pose-loss encourages the keypoint distribu-
tion in FE to be pose-aware. The keypoints are updated to
balance between good localization accuracy and matching
w.r.t. the pose estimation. The change of keypoint distribution
is observed from Fig. 5. This shows the potential of having
a robust and optimized feature extractor with end-to-end
training. As observed from the figure, keypoints close to the
vanishing point are reduced after the end-to-end training. It
is because these points are good for matching but may incur
high triangulation errors when solving for camera pose, due
to their little motion from frame to frame. On the other hand,
points near the border of the image see a noticeable increase.
These points may not be robustly matched with conventional
descriptors because of large motion and in some cases motion
blur. On the contrary, our method is able to reveal these
points which provide a wider baseline for more accurate
camera pose estimation.
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