
Chapter 2
The Lower Bound for Koldobsky’s
Slicing Inequality via Random Rounding

Bo’az Klartag and Galyna V. Livshyts

Abstract We study the lower bound for Koldobsky’s slicing inequality. We show
that there exists a measure μ and a symmetric convex body K ⊆ R

n, such that for
all ξ ∈ S

n−1 and all t ∈ R,

μ+(K ∩ (ξ⊥ + tξ)) ≤ c√
n
μ(K)|K|− 1

n .

Our bound is optimal, up to the value of the universal constant. It improves slightly
upon the results of the first named author and Koldobsky, which included a doubly-
logarithmic error. The proof is based on an efficient way of discretizing the unit
sphere.

2.1 Introduction

We shall work in the Euclidean n-dimensional space R
n. The unit ball shall be

denoted by Bn
2 and the unit sphere by S

n−1. The Lebesgue volume of a measurable
set A ⊂ R

n is denoted by |A|. Throughout the paper, c, C, C′ etc stand for positive
absolute constants whose value may change from line to line.

Given a measure μ with a continuous density f on R
n and a set A ⊆ R

n of
Hausdorff dimension n − 1, we write

μ+(A) =
∫

A

f (x)dx,
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where the integration is with respect to the (n− 1)-dimensional Hausdorff measure.
For a measure μ on R

n with a continuous density and for an origin symmetric
convex body K in R

n (i.e., K = −K), define the quantity

Sμ,K = inf
ξ∈Sn−1

μ(K)

|K| 1
n μ+(K ∩ ξ⊥)

,

where ξ⊥ = {x ∈ R
n , 〈x, ξ〉 = 0} is the hyperplane orthogonal to ξ . We let

Sn = sup
μ

sup
K⊂Rn

Sμ,K,

where the suprema run over measures μ with a continuous density f in R
n and all

origin-symmetric convex bodies K ⊆ R
n

Koldobsky in a series of papers [12–14] investigated the question how large
can Sn be? The discrete version of this question was studied by Alexander, Henk,
Zvavitch [1] and Regev [19]. In [12], where the question has first arisen, Koldobsky
gave upper and lower bounds on S(μ,K), that are independent of the dimension
in the case when K is an intersection body. In [13], he established the general
bound Sn ≤ √

n. In [14], he has shown that Sμ,K is bounded from above by an
absolute constant in the case when K is an unconditional convex body (invariant
under coordinate reflections). Further, Koldobsky and Pajor [15] have shown that
Sμ,K ≤ C

√
p when K is the unit ball of an n-dimensional section of Lp.

In the case when μ is the Lebesgue measure, it was conjectured by Bourgain
[5, 6] that Sμ,K ≤ C, for an arbitrary origin-symmetric convex body K . The best

currently known bound in this case is Sμ,K ≤ Cn
1
4 , established by the first named

author [10], slightly improving upon Bourgain’s estimate from [7]. However, it was

shown by the first named author and Koldobsky [11] that Sn ≥ c
√

n√
log log n

. Moreover,
it was shown there that for every n there exists a measure μ with continuous density
and a symmetric convex body K ⊆ R

n such that for all ξ ∈ S
n−1 and for all t ≥ 0,

μ+(K ∩ (ξ⊥ + tξ)) ≤ C

√
log log n√

n
μ(K)|K|− 1

n , (2.1)

where C > 0 is some absolute constant. Here A + x = {y + x ; y ∈ A} for a set
A ⊆ R

n and a vector x ∈ R
m. In this note we improve the bound (2.1), and obtain:

Theorem 2.1.1 For every n there exists a measure μ and a convex symmetric body
L ⊆ R

n such that for all ξ ∈ S
n−1 and for all t ≥ 0,

μ+(L ∩ (ξ⊥ + tξ)) ≤ C√
n
μ(L)|L|− 1

n , (2.2)

where C > 0 is a universal constant.
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In [4], the first named author, Bobkov and Koldobsky explored the connections
of (2.1) and the maximal “distance” of convex bodies to subspaces of Lp. Write Ln

p

for the collection of origin-symmetric convex bodies in R
n that are linear images of

unit balls of n-dimensional subspaces of the Banach space Lp. The outer volume
ratio of a symmetric convex body K in R

n to the subspaces of Lp is defined as

dovr(K,Ln
p) := inf

D∈Ln
p : K⊂D

( |D|
|K|
) 1

n

.

John’s theorem, and the fact that ln2 embeds in Lp, entails that dovr(K,Ln
p) ≤ √

n,
for any symmetric convex body K . Combined with the consideration from [4],
Theorem 2.1.1 implies a doubly-logarithmic improvement of a result of [4]:

Corollary 2.1.2 There exists an absolute constant c > 0 and an origin-symmetric
convex body L in R

n such that for any p ≥ 1,

dovr(L,Ln
p) ≥ c

√
n√
p

.

The construction of μ and K is randomized, and follows the idea from [11]. The
question boils down to estimating the supremum of a certain random function. The
method of the proof is based on an efficient way of discretizing the unit sphere.
We consider, for every point in S

n−1, a “rounding” to a point in a scaled integer
lattice, chosen at random, see Raghavan and Thompson [17]. This construction was
recently used in [2] for efficiently computing sketches of high-dimensional data. It
is somewhat reminiscent of the method used in discrepancy theory, called jittered
sampling. For instance, using this method, Beck [3] has obtained strong bounds for
the L2-discrepancy.

In Sect. 2.2 we describe the net construction. In Sect. 2.3 we derive the key esti-
mate for our random function. In Sect. 2.4 we conclude the proof of Theorem 2.1.1.
In Sect. 2.5 we briefly outline some further applications, in particular in relation to
random matrices; this discussion in detail shall appear in a separate paper.

We use the notation log(k)(·) for the logarithm iterated k times, and log∗ n for the
smallest positive integer m such that log(m) n ≤ 1. Denote ‖x‖p = (∑i |xi|p

)1/p

for x ∈ R
n, and also ‖x‖∞ = maxi |xi| and |x| = ‖x‖2 = √〈x, x〉. Write Bn

p =
{x ∈ R

n ; ‖x‖p ≤ 1}. We also write A + B = {x + y ; x ∈ A, y ∈ B} for the
Minkowski sum.

2.2 The Random Rounding and the Net Construction

We fix a dimension n and a parameter ρ ∈ (0, 1/2). We define Fρ as the set of all
vectors of Euclidean norm between 1 − 2ρ and 1 + ρ in which every coordinate is
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an integer multiple of ρ/
√

n. That is,

Fρ = ((1 + ρ)Bn
2 \ (1 − 2ρ)Bn

2

) ∩ ρ√
n
Z

n.

Lemma 2.2.1 The set Fρ satisfies #Fρ ≤
(

C
ρ

)n
, where C is a universal constant.

Moreover, let ξ ∈ S
n−1, and suppose that η ∈ (ρ/

√
n)Zn satisfies ‖ξ − η‖∞ ≤

ρ/
√

n. Then η ∈ Fρ .

Proof Any x ∈ Fρ satisfies ‖x‖1 ≤ √
n|x| ≤ 2

√
n. Hence all vectors in the scaled

set (
√

n/ρ) · Fρ have integer coordinates whose absolute values sum to a number
which is at most 2n/ρ. Recall that the number of vectors x ∈ R

n with non-negative,
integer coordinates and ‖x‖1 ≤ R equals

(
R + n

n

)
≤
(

e
R + n

n

)n

where R is a non-negative integer. Consequently,

#Fρ ≤ 2n ·
(

e
2ρ−1n + n

n

)n

≤
(

C

ρ

)n

.

We move on to the “Moreover” part. We have |ξ−η| ≤ √
n‖ξ−η‖∞ ≤ ρ. Therefore

1 − 2ρ < |η| ≤ ρ and consequently η ∈ ((1 + ρ)Bn
2 \ (1 − 2ρ)Bn

2 ) ∩ ρ√
n
Z

n = Fρ .
��

Definition 2.2.2 For ξ ∈ S
n−1 consider a random vector ηξ ∈ (ρ/

√
n)Zn with

independent coordinates such that ‖ξ − ηξ‖∞ ≤ ρ/
√

n with probability one and
Eηξ = ξ . Namely, for i = 1, . . . , n, writing ξi = ρ√

n
(ki + pi) for an integer ki and

pi ∈ [0, 1),

η
ξ
i =
⎧⎨
⎩

ρ√
n
ki, with probability 1 − pi

ρ√
n
(ki + 1), with probability pi.

For any ξ ∈ S
n−1, the random vector ηξ belongs to Fρ with probability one,

according to Lemma 2.2.1. The random vector ηξ − ξ is a centered random vector
with independent coordinates, all belonging to the interval [−ρ/

√
n, ρ/

√
n]. We

shall make use of Hoeffding’s inequality for bounded random variables (see, e.g.,
Theorem 2.2.6 and Theorem 2.6.2 in Vershynin [20]).
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Lemma 2.2.3 (Hoeffding’s Inequality) Let X1, . . . , Xn be independent random
variables taking values in [mi,Mi ], i = 1, . . . , n. Then for any β > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi − EXi

∣∣∣∣∣ ≥ β

)
≤ 2e

− cβ2∑n
i=1(Mi−mi )

2
,

where c > 0 is an absolute constant.

The next Lemma follows immediately from Hoeffding’s inequality with Xi =
(η

ξ
i − ξi)θi and [mi,Mi ] = [− ρ√

n
θi,

ρ√
n
θi]:

Lemma 2.2.4 For any ξ ∈ S
n−1, β > 0 and θ ∈ R

n,

P (|〈ηξ − ξ, θ〉| ≥ β) ≤ 2 exp

(
− cnβ2

|θ |2ρ2

)
.

Here c > 0 is an absolute constant.

2.3 The Key Estimate

Let N be a positive integer, and consider independent random vectors θ1, . . . , θN

uniformly distributed on the unit sphere S
n−1. Unless specified otherwise, the

expectation and the probability shall be considered with respect to their distribution.
For r > 0, abbreviate

ϕ(r) = e− r2
2 .

The main result of this section is the following Proposition.

Proposition 2.3.1 There exist absolute constants C1, . . . , C5 > 0 with the follow-
ing property. Let n ≥ 5, consider r ∈ [C2

√
n, n] and suppose that N ≥ n satisfies

N ∈ [C1n log Nr
n
√

n
, n10]. Then with probability at least 1 − e−5n, for all ξ ∈ S

n−1,

and for all t ∈ R,

1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) ≤ C3

√
n log Nr

n
√

n

N
+
(

1 + C4
√

n

r

) √
n

r
ϕ

(
q
√

n

r
t

)
,

where q ≥ 1 − C5
√

n
r

.

We shall require a few Lemmas, before we proceed with the proof of Proposi-
tion 2.3.1.
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2.3.1 Asymptotic Estimates

For a fixed vector η ∈ R
n and t ∈ R, denote

F(η, t) = 1

N

N∑
k=1

ϕ(r〈η, θk〉 + t). (2.3)

Observe that F(η, t) ≤ 1 with probability one. First, we shall show a sharpening of
[11, Lemma 3.2].

Lemma 2.3.2 Let n ≥ 1. Let θ be a random vector uniformly distributed on S
n+2.

For any r > 0, for any t ∈ R, for any fixed η ∈ R
n+3, one has

Eϕ(r〈θ, η〉 + t) ≤
(

1 + c(log n)2

n

) √
n√

n + r2|η|2 ϕ

(
t
√

n√
n + r2|η|2

)
.

Here c > 0 is an absolute constant.

Proof Observe that the formulation of the Lemma allows to assume, without loss of
generality, that |η| = 1: indeed, in the case η = 0 the statement is straight-forward,
and otherwise it follows from the case |η| = 1 by scaling. The random variable
〈θ, η〉 is distributed on [−1, 1] according to the density

(1 − s2)
n
2∫ 1

−1(1 − s2)
n
2 ds

.

Recall that for any x ∈ [0, 1],

log(1 − x) = −x − x2

2
+ O(x3), (2.4)

and hence there is an absolute constant C > 0 such that for any x ∈ [0,
2 logn

n
],

log(1 − x) ≥ −x − C(log n)2

n2 . (2.5)

Applying (2.5) with x = s2, we estimate

∫ 1

−1
(1 − s2)

n
2 ds ≥

∫ √ 2 log n
n

−
√

2 log n
n

(1 − s2)
n
2 ds

≥
∫ √ 2 log n

n

−
√

2 log n
n

e− ns2
2 − C(log n)2

2n ds
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≥
(

1 − c′(log n)2

n

)∫ √ 2 log n
n

−
√

2 log n
n

e− ns2
2 ds

= 1√
n

(
1 − c′(log n)2

n

)∫ √
2 logn

−√
2 logn

e− s2
2 ds. (2.6)

Recall that for any a > 0, one has

∫ ∞

a

e− y2

2 dy ≤ 1

a
e− a2

2 , (2.7)

and therefore

∫ √
2 logn

−√
2 logn

e− s2
2 ds ≥ √

2π −
√

2

n
√

log n
. (2.8)

By (2.8) and (2.6), we conclude that there exists an absolute constant c̃ > 0 such
that

∫ 1

−1
(1 − s2)

n
2 ds ≥

√
2π√
n

(
1 − c̃(log n)2

n

)
. (2.9)

We remark that the second order term estimate is of course not sharp, yet it is more
than sufficient for our purposes.

Next, using the inequality 1 − x ≤ e−x for x = s2, we estimate from above

∫ 1

−1
(1 − s2)

n
2 e− (rs+t)2

2 ds ≤
∫ ∞

−∞
e− ns2+(rs+t)2

2 ds. (2.10)

It remains to observe that

ns2 + (rs + t)2 =
(√

n + r2s + tr√
n + r2

)2

+ nt2

n + r2 ,

and to conclude, by (2.10), that

∫ 1

−1
(1 − s2)

n
2 e− (rs+t)2

2 ds ≤ √
2π

1√
n + r2

ϕ

( √
nt√

n + r2

)
. (2.11)

From (2.9) and (2.11) we note, for every unit vector η :

Eϕ(r〈θ, η〉 + t) ≤
(

1 + c(log n)2

n

) √
n√

n + r2
ϕ

(
t
√

n√
n + r2

)
. (2.12)

��
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As an immediate corollary of Lemma 2.3.2 and Hoeffding’s inequality, we get:

Lemma 2.3.3 Let N ≥ n ≥ 4, r ≥ √
n and ρ ∈ (0, 1

3 ). There exist absolute
constants c, C,C′ > 0 such that for all η ∈ (1 + ρ)Bn

2 \ (1 − 2ρ)Bn
2 and t ∈

R, β > 0,

P

(
F(η, t) > β + (1 + c(ρ + (log n)2

n
+ n

r2 ))

√
n

r
ϕ

(
qt

√
n

r

))
≤ e−Cβ2N,

where q ≥ 1 − C′(ρ + n

r2 ).

Proof In view of Lemma 2.2.3 (Hoeffding’s inequality), it suffices to show that
under the assumptions of the Lemma,

Eϕ(r〈θ, η〉 + t) ≤ (1 + c(ρ + (log n)2

n
+ n

r2
))

√
n

r
ϕ

(
qt

√
n

r

)
. (2.13)

Indeed, by Lemma 2.3.2, for some c1 > 0,

Eϕ(r〈θ, η〉 + t) ≤
(

1 + c1(log n)2

n

) √
n√

n + r2|η|2 ϕ

(
t
√

n√
n + r2|η|2

)
.

It remains to observe, that since r ≥ √
n,

|t|√n√
n + r2|η|2 ≥ q|t|√n

r
,

where q = 1 + O(ρ + n
r2 ), and

(
1 + c1(log n)2

n

) √
n√

n + r2|η|2 ≤
(

1 + c(ρ + (log n)2

n
+ n

r2 )

) √
n

r
,

with an appropriate constant c > 0. ��

2.3.2 Union Bound

Given ρ > 0, recall the notation Fρ for the net from Lemma 2.2.1. Our next Lemma
is a combination of the union bound with Lemma 2.3.3.

Lemma 2.3.4 (Union Bound) There exist absolute constants C1, C2, C
′ > 0 such

that the following holds. Let ρ ∈ (0, 1
3 ). Let N ∈ [C1n log 1

ρ
, n10] be an integer. Fix
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r ∈ [C2
√

n, n]. Then with probability at least 1 − e−5n, for every η ∈ Fρ , and for
every t ∈ R,

F(η, t) ≤ C6

√
n

N
log

1

ρ
+
(

1 + C7(ρ + n

r2 + (log n)2

n
+ 1

r
)

) √
n

r
ϕ

(
q
√

nt

r

)
,

for large enough absolute constants C6, C7 > 0, which depend only on C1 and C2,

and for q ≥ 1 − C′(ρ + n
r2 ).

Proof Let

α = C6

√
n

N
log

1

ρ
+
(

1 + C7(ρ + n

r2 + (log n)2

n
+ 1

r
)

) √
n

r
ϕ

(
q
√

nt

r

)
,

where q ≥ 1 − C′(ρ + n/r2) and the constants shall be appropriately chosen later.
Note that

α ≥ C6

√
n

N
log

1

ρ
≥ n−4.5 · C6

√
log 2, (2.14)

since ρ ≤ 1
2 and N ≤ n10.

Observe also that for any pair of vectors θ ∈ S
n−1, η ∈ Fρ ⊂ 2Bn

2 and for any
t ≥ 3r , we have

|r〈η, θ〉 + t| ≥ r,

and hence

e− 1
2 (r〈η,θ〉+t )2 ≤ e− r2

2 . (2.15)

In view of (2.14), (2.15), and the fact that r ≥ √
n, we have, for t ≥ 3r:

F(η, t) ≤ e− r2
2 ≤ e− n

2 ≤ n−4.5C6
√

log 2 ≤ α,

where the inequality follows as long as C6 is chosen to be larger than 1 + o(1). This
implies the statement of the Lemma in the range t ≥ 3r .

Next, suppose t ∈ [0, 3r]. Let ε = 1
r2 . Consider an ε-net N = {t1, . . . , tm} on

the interval [0, 3r] with tj = ε · j . Note that

#N ≤ [3r3] + 1 ≤ 4r3, (2.16)

since r ≥ √
n ≥ 1.
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For any A ∈ R, for any ε > 0, and for any t1, t2 ∈ R such that |t1 − t2| ≤ ε, we
have

|A + t2|2 ≤ |A + t1|2 + 2ε|A + t1| + ε2,

and hence

ϕ(A + t1) ≤ ϕ(A + t2)e
|A+t1|ε+ ε2

2 . (2.17)

Observe that for all t ∈ [0, 3r], for an arbitrary η ∈ Fρ ⊂ 2Bn
2 , and any θ ∈

S
n−1, we have

|r〈η, θ〉 + t| ≤ 5r,

and hence

e|r〈η,θ〉+t |ε+ ε2
2 ≤ e5rε+ ε2

2 = e
5
r
+ 1

2r2 ≤ 1 + C′

r
, (2.18)

for an absolute constant C′.
By (2.17) and (2.18), for each t ∈ [0, 3r] there exists τ ∈ N , such that

F(η, t) ≤ (1 + C′

r
)F (η, τ ).

Therefore, by the union bound,

P
(∃t ∈ [0, 3r], ∃η ∈ Fρ : F(η, t) > α

)

≤ P

(
∃τ ∈ N , ∃η ∈ Fρ : F(η, τ ) >

α

1 + C ′
r

)

≤ #N · #Fρ · P

(
F(η, τ ) >

α

1 + C ′
r

)
. (2.19)

By Lemma 2.2.1 and (2.16),

#N · #Fρ ≤ 4r3
(

C

ρ

)n

≤
(

C̃

ρ

)n

. (2.20)

We used above that r ≤ n.

Let

β :=
(

1 + C′

r

)−1

C6

√
n

N
log

1

ρ
.
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Provided that C6 and C7 are chosen large enough, we have:

α

1 + C ′
r

≥ β + (1 + c(ρ + (log n)2

n
+ n

r2 ))

√
n

r
ϕ

(
qt

√
n

r

)
, (2.21)

and

Cβ2N = C(1 + C′

r
)−2C2

6n log
1

ρ
≥ 5n + n log

C̃

ρ
, (2.22)

where c and C are the constants from Lemma 2.3.3 and C̃ is the constant
from (2.20).

By Lemma 2.3.3, (2.21) and (2.22), we have

P

(
F(η, t) >

α

1 + C ′
r

)
≤ e−Cβ2N ≤ e

−5n−n log C̃
ρ . (2.23)

By (2.19), (2.20) and (2.23), we conclude that the desired event holds with
probability at least

1 −
(

C̃

ρ

)n

e
−5n−n log C̃

ρ = 1 − e−5n.

This finishes the proof. ��

2.3.3 An Application of Random Rounding and Conclusion of
the Proof of the Proposition 2.3.1

We begin by formulating a general fact about sub-Gaussian random variables, which
complements the estimate from Lemma 2.3.2.

Lemma 2.3.5 Let M ≥ 10. Let Y be a sub-Gaussian random variable with
constant 1

M
: that is, suppose for any s > 0,

P (|Y | > s) ≤ e−M2s2
. (2.24)

Then there exists an absolute constant C > 0, such that for any a ∈ R,

Eϕ(Y + a) ≥ ϕ(a) − C

M
.

Here the expectation is taken with respect to Y.
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Proof Since the condition (2.24) applies for both Y and −Y , and since ϕ is an even
function, we may assume, without loss of generality, that a ≥ 0 (alternatively, we
may replace a with |a| in the calculations below).

We begin by writing

Eϕ(Y + a) =
∫ 1

0
P(ϕ(Y + a) > λ)dλ =

∫ ∞

0
se− s2

2 P(|Y + a| < s)ds

≥
∫ ∞

a

se− s2
2 (1 − P(|Y + a| ≥ s)) ds

= e− a2
2 −
∫ ∞

a

se− s2
2 P(|Y + a| ≥ s)ds. (2.25)

Note that for s ≥ a ≥ 0, we have

P(|Y + a| ≥ s) = P(Y ≥ s − a)+P(−Y ≥ s + a) ≤ 2P(|Y | ≥ s − a). (2.26)

By (2.24) and (2.26), we estimate

∫ ∞

a

se− s2
2 P(|Y + a| ≥ s)ds ≤ 2

∫ ∞

a

se− s2
2 e−M2(s−a)2

ds

= 2
∫ ∞

0
(t + a)e− (t+a)2

2 e−M2t2
dt. (2.27)

Recall that

(t + a)e− (t+a)2
2 ≤ 1√

e
, (2.28)

and that

∫ ∞

0
e−M2t2

dt =
√

π

2M
. (2.29)

By (2.25), (2.27), (2.28) and (2.29), letting C =
√

π√
e

, we have

Eϕ(Y + a) ≥ ϕ(a) − C

M
, (2.30)

yielding the conclusion.
��

Next, we shall demonstrate the following corollary of Lemmas 2.2.4 and 2.3.5.
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Corollary 2.3.6 There exist absolute constantsC, c > 0 such that for anyM, r > 0

and ρ ∈ (0,
c
√

n
rM

], and for any ξ ∈ S
n−1,

F (ξ, t) ≤ EηF (ηξ , t) + C

M
,

with function F defined in (2.3) and ηξ defined in Definition 2.2, and the expectation
taken with respect to ηξ .

Proof By Lemma 2.2.4, for any fixed θ ∈ S
n−1, for an absolute constant c > 0, the

random variable r〈ηξ − ξ, θ〉 is sub-Gaussian with constant rρ

c
√

n
≤ 1

M
. Therefore,

applying Lemma 2.3.5 N times with Y = r〈ηξ − ξ, θk〉 and a = r〈ξ, θk〉+ t , we get

Eη
1

N

N∑
k=1

ϕ(r〈ηξ , θk〉 + t) ≥ 1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) − 1

N

N∑
k=1

C

M

= 1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) − C

M
,

finishing the proof. ��
We are ready to prove Proposition 2.3.1.

Proof of the Proposition 2.3.1 Let ρ = n
√

n
Nr

. By Corollary 2.3.6, applied with
M = cN

n
, we have, for every ξ ∈ S

n−1,

1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) ≤ Eη
1

N

N∑
k=1

ϕ
(
r〈ηξ , θk〉 + t

)+ C′n
N

≤ max
η∈Fρ

1

N

N∑
k=1

ϕ (r〈η, θk〉 + t) + C′n
N

. (2.31)

By Lemma 2.3.4 and with our choice of ρ, with probability 1 − e−5n, (2.31) is
bounded from above by

C6

√
n

N
log

Nr

n
√

n
+
(

1 + C7(
n
√

n

Nr
+ n

r2 + (log n)2

n
+ 1

r
)

) √
n

r
ϕ

(
q
√

nt

r

)
+ C′n

N
,

where q = 1 − C′(ρ + n
r2 ) ≥ 1 − C5(

√
n

r
), in view of our choice of ρ. It remains to

note, in view of the fact that N ≥ nC1 log 2 and r ≥ C2
√

n, that for an appropriate
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absolute constant C3 > 0, one has

C6

√
n

N
log

Nr

n
√

n
+ C′n

N
≤ C3

√
n

N
log

Nr

n
√

n
,

and for an appropriate absolute constant C4 > 0,

C7

(
n
√

n

Nr
+ n

r2 + (log n)2

n
+ 1

r

)
≤ C4

√
n

r
.

The proposition follows. ��

2.4 Proof of Theorem 2.1.1

Let m be the largest positive integer such that log(m) n ≥ C0, for a sufficiently large
absolute constant C0 > 0 to be determined shortly. Note that, hence,

log(m) n ≤ C′
0, (2.32)

for some absolute constant C′
0.

Consider, for k = 1, . . . ,m,

N1 = n10, N2 = n(log n)5, . . . , Nk = n
(

log(k−1) n
)5

, . . .

Let also

R1 = n

log n
, . . . , Rk = n

log(k) n
, . . .

Consider independent unit random vectors θkj ∈ S
n−1, where k = 1, . . . ,m and

j = 1, . . . , Nk . Following [11], consider the convex body

K = conv{±Rkθkj ,±nei},

and the probability measures

μk = 1

Nk

Nk∑
j=1

δRkθkj , μ−k = 1

Nk

Nk∑
j=1

δ−Rkθkj ,
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where δ stands for the Dirac measure. We now set

μ = γn ∗ μ1 ∗ μ2 ∗ . . . ∗ μm + μ−1 ∗ μ−2 ∗ . . . ∗ μ−m

2
.

Here γn stands for the standard Gaussian measure on R
n. We shall show that there

exists a configuration of θkj , such that μ and L = 4K satisfy the conclusion of the
theorem.

Step 1 Firstly, we estimate the volume of the body L = 4K from above, following

the method of [11]. Note that for all k = 1, . . . ,m we have ϕ
(

5n
Rk

)
≤ c, for some

absolute constant c ∈ (0, 1), and hence there exists an absolute constant Ĉ > 0 such
that

log

[
1 − ϕ

(
5n

Rk

)]
≥ −Ĉϕ

(
5n

Rk

)
, (2.33)

for all k = 1, . . . ,m.
By Khatri-Sidak lemma (see, e.g. [9] for a simple proof), applied together with

the Blaschke-Santalo inequality, and in view of (2.33), we have

|4K|−1 ≥ cn
1 |5nKo| ≥ cn

2γn(5nKo) ≥ cn

m∏
k=1

(
1 − ϕ

(
5n

Rk

))Nk

≥ cn exp

(
−Ĉ

m∑
k=1

Nke
− 25n2

2R2
k

)
. (2.34)

Plugging the values of Nk and Rk, and using 25
2 > 7, we get

m∑
k=1

Nke
− 25n2

2R2
k ≤ n10e−7(logn)2 + n

m∑
k=2

(log(k−1) n)5e−7(log(k) n)2 ≤ c′n, (2.35)

since the sum converges faster than exponentially.
By (2.34) and (2.35), we conclude that

|4K| ≤ cn
0 , (2.36)

for some absolute constant c0 > 0.

Step 2 Next, we estimate the sections from above. Note that (see [11] for details),

μ+(ξ⊥ + tξ) = A + B

2
(2.37)
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where

A = 1√
2π

1

N1 . . . Nm

N1∑
j1=1

N2∑
j2=1

. . .

Nm∑
jm=1

ϕ(t + R1〈ξ, θ1j1〉 + . . . + Rm〈ξ, θmjm〉)

(2.38)

and

B = 1√
2π

1

N1 . . . Nm

N1∑
j1=1

N2∑
j2=1

. . .

Nm∑
jm=1

ϕ(−t + R1〈ξ, θ1j1〉 + . . . + Rm〈ξ, θmjm〉)

(2.39)

For r ≥ C2
√

n we set q(r) = 1 − C5
√

n/r where C5 is the constant coming
from Proposition 2.3.1. We define r1, r2, . . . , rm ∈ [C2

√
n, n] such that

r1 := R1

and for k ≥ 1,

rk+1 := q(rk)
√

nRk+1

Rk

=
⎛
⎝ k∏

j=1

q(rj )
√

n

rj

⎞
⎠ · Rk+1.

Denote

αk :=
k−1∏
j=1

[(
1 + C4

√
n

rj

)
1

q(rj )

]
≤

k−1∏
j=1

[(
1 + Ĉ

√
n

rj

)]
. (2.40)

The reason for the definition of αk , is the inequality

k−1∏
j=1

[(
1 + C4

√
n

rj

) √
n

rj

]
≤ C

αk

√
n

Rk−1
,

which we will use below in a repeated application of Proposition 2.3.1. Observe that
there exists an absolute constant C̃ > 0 such that for every k = 1, . . . ,m, we have

αk ≤ (1 + Ĉ

√
n

R1
)

k−1∏
j=2

(1 + Č
log(j) n

log(j−1) n
) ≤ Ce

C̄
∑k−1

j=2
log(j) n

log(j−1) n ≤ C̃, (2.41)

since the sum converges faster than exponentially.
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Provided that C0 > 0 is selected large enough, we have that for each k, the
pair N = Nk and r = rk satisfies the assumptions of Proposition 2.3.1. Applying
Proposition 2.3.1 consecutively m times with N = Nk and r = rk for k = 1, . . . ,m,
we get that with probability at least 1 − me−5n = 1 − o(1), for every ξ ∈ S

n−1 and
for every t ∈ R, the term A from (2.38) is bounded from above by a constant
multiple of

√√√√n log N1r1
n
√

n

N1
+ α2

√
n

R1

√√√√n log N2r2
n
√

n

N2
+ . . . + αm

√
n

Rm−1

√√√√n log Nmrm
n
√

n

Nm

+ αm+1
√

n

Rm

≤ c′
√

n
+ c′′

√
n

m∑
k=1

αk

1

log(k) n
+ αm log(m) n√

n
≤ C√

n
,

for an appropriate constant C > 0, where we used (2.41) to bound αk , and (2.32) to
bound log(m) n.

The same bound applies also to the term B from (2.39). We conclude, in view
of (2.37) that with high probability, for all ξ ∈ S

n−1 and for all t ∈ R,

μ(ξ⊥ + tξ) ≤ C√
n
. (2.42)

Step 3 Recall that μ is an average of translates of the Gaussian measure, centered at
the vertices of K . As was shown in [11, Lemma 3.8], using the fact that

√
nBn

2 ⊂ K ,
and since 4K = 2K + 2K contains 2

√
nBn

2 + 2K, one has

μ(4K) ≥ γn(2
√

nBn
2 ) ≥ 1

2
, (2.43)

where, e.g. Markov’s inequality is used in the last passage.
Combining (2.36), (2.42) and (2.43), we arrive to the conclusion of the theorem,

with L = 4K . �

2.5 Further Applications

2.5.1 Comparison via the Hilbert-Schmidt Norm for Arbitrary
Matrices

As another consequence of the Lemma 2.2.4, we have:

Lemma 2.5.1 (Comparison via the Hilbert-Schmidt Norm) Let ρ ∈ (0, 1
2 ).

There exists a collection of points N ⊂ 2Bn
2 \ 1

2Bn
2 with #N ≤ (C

ρ
)n such that
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for any matrix A : Rn → R
N , for every ξ ∈ S

n−1 there exists an η ∈ N satisfying

|Aη|2 ≤ C1|Aξ |2 + C2
ρ2

n
||A||2HS. (2.44)

Here C,C1, C2 are absolute constants.

Proof Recall that |Ax|2 = ∑N
i=1〈Xi, x〉2, where Xi are the rows of A. In order to

prove the Lemma, it suffices to show, for every vector g ∈ R
n, that

Eη〈ηξ , g〉2 ≤ C1〈ξ, g〉2 + C2
ρ2

n
|g|2; (2.45)

the Lemma shall follow by applying (2.45) to the rows of A and summing up.
We shall show (2.45). Using the inequality a2 = (a −b+b)2 ≤ 2(a −b)2 +2b2,

we see

|〈ηξ , g〉|2 ≤ 2|〈ηξ , g〉 − 〈ξ, g〉|2 + 2|〈ξ, g〉|2,

and hence

Eη|〈ηξ , g〉|2 ≤ 2Eη|〈ηξ , g〉 − 〈ξ, g〉|2 + 2|〈ξ, g〉|2. (2.46)

By Lemma 2.2.4, |〈ηξ , g〉 − 〈ξ, g〉| is sub-Gaussian with constant c′ ρ|g|√
n

, and
hence

Eη|〈ηξ , g〉 − 〈ξ, g〉|2 ≤ 2
∫ ∞

0
te

− cnt2

ρ2|g|2 dt ≤ C
ρ2|g|2

n
, (2.47)

for some absolute constant C > 0; (2.46) and (2.47) entail (2.45).
��

A fact similar to Lemma 2.5.1 was recently shown and used by Lytova and
Tikhomirov [16].

Lemma 2.5.1 shows that there exists a net of cardinality Cn, such that for any
random matrix A : Rn → R

N whose entries have bounded second moments, with
probability at least

1 − P(||A||2HS ≥ 10E||A||2HS) ≥ 9

10

one has (2.44), with E||A||2HS in place of ||A||2HS . However, such probability
estimate is unsatisfactory when studying small ball estimates for the smallest
singular values of random matrices. In the soon-to-follow paper, we significantly
strengthen Lemma 2.5.1: we employ the idea of Rebrova and Tikhomirov [18], and
in place of the covering by cubes, we consider a covering by parallelepipeds of
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sufficiently large volume. This leads us to consider the following refinement of the
Hilbert-Schmidt norm: with κ > 1, for an N × n matrix A, define

Bκ(A) = min
αi∈[0,1],∏n

i=1 αi≥κ−n

n∑
i=1

α2
i |Aei |2.

Bκ acts as an averaging on the columns of A. In a separate paper we shall show that

there exists a net N ⊂ 2Bn
2 \ 1

2Bn
2 , of cardinality

(
C
ρ

)n
, such that for all N × n

matrices A, for every ξ ∈ S
n−1 there exists an η ∈ N satisfying

|Aη|2 ≤ C1|Aξ |2 + ρ2

n
B10(A). (2.48)

The proof shall be a combination of the argument similar to the proof of
Lemma 2.5.1 along with the construction of a net on the family of admissible
nets. The bound on the cardinality of that net shall follow, in fact, again from
Lemma 2.2.1.

The advantage of (2.48) over (2.44) is the strong large deviation properties of
B10(A). For example, we shall show an elementary fact that for any random matrix
A with independent columns and E||A||2HS < ∞,

P(B10(A) ≥ 2E||A||2HS) ≤ e−cn. (2.49)

The detailed proofs of the mentioned facts, and applications to sharp estimates for
the small ball probability of the smallest singular value of heavy-tailed matrices
shall be outlined in a separate paper.

2.5.2 Covering Spheres with Strips

For θ ∈ S
n−1, τ ∈ R and α > 0, consider a strip

S(θ, α, τ ) := {ξ ∈ S
n−1 : |〈ξ, θ〉 + τ | ≤ α}.

Observe that

N∑
k=1

1S(θk,
1
r
, t
r
)(ξ) ≤ C

N∑
k=1

ϕ(r〈ξ, θk〉 + t).

Therefore, Proposition 2.3.1 implies



62 B. Klartag and G. V. Livshyts

Proposition 2.5.2 For any N and for any α ≤ c√
n
with N ∈ [cn log N

αn3/2 , n10]
there exists a collection of points θ1, . . . , θN ∈ S

n−1 such that every strip of width
2α contains no more than

C̃

[√
Nn log

N

αn3/2 + N
√

nα

]

points in this collection.

We note that in view of the point-strip duality, bounding
∑N

k=1 1S(θk,
1
r
, t
r
)(ξ)

yields estimates of the form stated in Proposition 2.5.2.
The direct consideration of the characteristic functions in place of the Gaussian

functions gives exactly the same bound as an application of Proposition 2.3.1.
In [8], Frankl, Nagy and Naszodi conjecture that for every collection of N points

on S2 there exists a strip of width 2
N

containing at least f (N) points, where f (N) →
∞ as N → ∞. Proposition 2.5.2 generalizes Theorem 4.2 by Frankl, Nagy, Naszodi
[8] from the two-dimensional case to an arbitrary dimension, with good dimensional
constant, although it does not shed any light on the dependence on N .
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