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Abstract—In this paper, we study the distribution of the
minimum distance (in the Hamming metric) of a random linear
code of dimension k in F;. We provide quantitative estimates
showing that the distribution function of the minimum distance
is close (superpolynomially in n) to the cumulative distribution
function of the minimum of (¢* —1)/(q—1) independent binomial

random variables with parameters é and n. The latter, in turn,

converges to a Gumbel distribution at integer points when %

converges to a fixed number in (0,1). In a sense, our result
shows that apart from identification of the weights of parallel
codewords, the probabilistic dependencies introduced by the
linear structure of the random code, produce a negligible effect
on the minimum code weight. As a corollary of the main result,
we obtain an asymptotic improvement of the Gilbert—Varshamov
bound for 2 < g < 49.

A full version of this paper is accessible at: https://arxiv.
org/abs/1912.12833/

I. INTRODUCTION

Let IF, be a finite field. A linear code C'is a subspace of Fy
where n is the length of the code. The parameter ¢ of the field
is referred to as the alphabet size. The size of C' is the number
of elements in C. For a (not necessarily linear) code with size
M, alphabet size ¢, and length n, the rate R is defined to be
log,(M)/n. For a linear code this number is equal to k/n,
where k is the dimension of the code as a vector space.

Another fundamental parameter is the relative minimum dis-
tance. Let the Hamming distance between any two codewords
u = (ui, - ,u,) and v = (vy,--- ,v,) in F be given by

d(u,v) = {1 <i<m, u; # v},

and the Hamming weight of a codeword u be defined as
wt (u) := d(u,0). For linear codes, the minimum distance
between two distinct codewords in a code is equal to the
minimum weight over all nonzero codewords. The relative
minimum distance ¢ is defined as the ratio %.

In coding theory, the trade-off between the code rate R
and error-correcting ability ¢ is a central topic of study. Let
q be fixed. For linear codes, It has been proved that there
exists a function ag(-) with the following property: for any
do € (0,1 —1/q) and any Ry < ay(do), there is an infinite
sequence of linear codes with the relative minimum distance
converging to dp and the rate converging to Ry; on the other
hand, for every Ry > a4(dp), such a sequence does not exist.
(See [1] and [2].) An explicit description of «,(-) remains a

major open problem (see [3]-[5], as well as [6] for an upper
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bound for «). (See [1]) Considerable work has been done to
obtain explicit constructions for linear codes with good rate
and relative minimum distance (we refer, in particular, to [7]).

Rather than considering special codes, one may be interested
in studying the statistical properties on the space of all linear
codes, using probabilistic methods. A classical result in this
direction is the Gilbert—Varshamov argument. Gilbert [8] and
Varshamov [9] gave lower bound for the size of a (not
necessarily linear) code given n and d. Let A,(n,d) be the
maximal size of a code of length n over I, and with minimum
distance d. Then

n

q

d—1 o
Zj:o (?) (q - 1)]
and, moreover, there are linear codes that can achieve this
bound i.e. there exists a linear code over F, with dimension
at least n — [log, Z;l;(l) (¢ — 1)7|. The proof of the result can
be obtained by a union bound argument.

Recall that the q-ary entropy function is defined by

Ay(n,d) >

Hy(z) := xlog,(q — 1) — xlog,(z) — (1 — x)log, (1 — z).

In [10], it was shown that for ¢ = 2 and given a rate Ry and
€ > 0, the probability that a random linear code of length n
and rate Ry, uniformly distributed on the set of linear codes
of the given length and rate, has the minimum distance d <
n(dy — €), is exponentially small in n. Here 0 < &y < %
is the solution of the equation Ry = 1 — H3(dp). On the
other hand, if we fix any §y satisfying 0 < g < 1 — % and
0 < e <1— Hy(dy), then the Gilbert—Varshamov argument
implies that there exist infinitely many linear codes with a rate
R >1— H,(6y) — €. By taking ¢ — 0, one would obtain a
lower bound for the function a,(d) mentioned above:

0q(8) > 1 — Hy(9).

In fact, as was proved in [11], the following law of large
numbers holds for the minimum distance of a sequence of
random linear codes: if 7 — oo and the rate k/n converges to
a number Ry, € (0,1) then the relative minimum distance
converges (almost surely) to the number Jy given by the
equation Ry 1 — H,(do). Moreover, the probability that
a random linear code of length n has the relative minimum
distance outside of the interval [0 —¢, oo +¢], is exponentially

small in n (we remark here that in the same paper it was
I%IT 2020
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shown that the minimum distance of random non-linear codes
is asymptotically worse than in the linear setting).

Our goal in this paper is to obtain a more precise description
of the distribution of the minimum distance of random linear
codes. The main statement is the following

Theorem 1.1. For any prime power q and any real numbers
Ry < Ry in (0,1) there is ¢(Ry, Ra, q) > 0 with the following
property. Let positive integers k,n satisfy R; < k/n < Ra,
and let C be the random linear code uniformly distributed
on the set of all linear codes in ¥y of dimension k. Denote
by Famin the cumulative distribution function of the minimum
distance of C. Further, let Wi, be the minimum weight of
qq:f i.i.d. uniform random vectors in F', and Fymnin be its
cumulative distribution function. Then

mein(x) ’ = O( exp(_C(Rla R27 Q) \/ﬁ)) .

sup | Fimin(z) —
zeR

A surprising feature of this result is that the distribution
of the minimum distance can be approximated by a c.d.f.
of the minimum of i.i.d. binomial variables with precision
superpolynomial in n. In a sense, this result asserts that
dependencies between codeword weights introduced by the
linear structure of the code, produce a negligible effect on the
distribution of the minimum weight.

The proof of the result is based on analysis of moments
of certain functionals associated with the code. We remark
that in a recent work by Linial and Mosheiff [12], the authors
calculated centered moments for the number of codewords of
a random linear code with a given weight. The approach used
in that paper influenced our work.

As an immediate corollary of our result, we obtain the
following statement which gives an @(nl/ %) improvement
over the classical Gilbert—Varshamov bound:

Corollary L.1. For any prime power q, any o € (0,1), any
integer n, and d € [an, (1 — a)(n — n/q)] there is a linear
code with minimum distance d of size at least

n

1/2 q
Yizo (g —

where ¢ > 0 may only depend on o and q.

cn

)

1)7

We note that existence of non-linear codes of size at
least cn ——2% =Y has been previously established in
j=0 \j)\d=4)

[4], [13]. Linear double-circulant binary codes beating the
Gilbert—Varshamov bound were considered in [14]. To our
best knowledge, the above improvement for 2 < q < 49 is

new.

Further, we obtain an explicit limit theorem for the distri-
bution of the minimum distance. Due to the discrete nature of
our random variable, the convergence to a Gumbel distribution
can only be established on the points along certain arithmetic
progressions:

Theorem I.2 (The limit theorem for the minimum distance).

Let q be a prime power, and let Ry < Ro be numbers mllS

(0,1). Let (k) be a sequence of positive integers such that
Ry < kyn/n < Ry for all large n. For any n let dmin(n)
be the minimum distance of the random linear code uniformly
distributed on the set of linear codes of length n and dimension
ky,. Further, for any n let dy(n) be the largest integer satisfying

g —1d0(n) n 1\% |

u(n) := —— . (1 — 7) ¢ " <1
) q—1 ; (]) q

Denote by &, the random variable

(¢ = 1)(n —do(n))
d()(’n)

gn = (dO (n) - dmin(n)) log — 10g u(n)

Then, as n — 0o, we have

(g —1)(n —do(n))
do(n) z

sup {P{Sn <t} —G(t)|: telog

—logu(n) } — 0,

—t

where G is the Gumbel law given by G(t) = e~ ©

The paper is organized as follows. In Section II, we consider
some auxiliary results for the binomial distribution, including
a limiting result for the minimum of i.i.d. binomial random
variables. At the end of the section, we show that the main
result of the paper implies Theorem 1.2.

In Section III, we consider the set of random vectors {Y7 :
a € F\{0}} uniformly distribtued on F? that are mutually
independent up to the constraint that Y, = Y;, whenever a and
b are parallel. We study moments of the random variable that
counts number of codewords with weights less than or equal
to d in this configuration as well as that of random linear code
ensemble and give a quantitative comparison between them.

Finally, in Section IV we give the comparison of the c.d.f.
of minimum distance between these two ensembles. Due to the
discrete nature of this problem, either c.d.f. can be obtained
by solving a set of linear equations involving quantities we
computed in previous sections. Then we give a quantitative
comparison by estimating the truncation errors and moment
differences.

Most of the proofs will be omitted. Link for a longer version
of our paper is given in the abstract. Interested readers can
refer to that for more details.

II. AUXILIARY RESULTS FOR THE BINOMIAL
DISTRIBUTION

Our goal in this section is to obtain quantitative estimates
for the distribution of the minimum of i.i.d. binomial random
variables (with specially chosen parameters).

Let 1 < m < (¢ —1)" and let X;,...,X,, be iid.
vectors uniformly distributed in IF;‘. Here, we are interested
in estimates of the quantities
P{ minwt (X;) < d},

i<m

d>0

)
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where wt (X;) is the number of non-zero components of X;.

<y - Z( )=y

We start by recording the following approximations to pg:

Pd —]P{Wt X1

Proposition IL.1. For any a € (0, 1) there is Cy, > 0 with the
following property. Assume that n > 1 and C,log(n) < d <
(1 —a)(1 —1/q)n. Then we have

Pd n—d+1
v = (1 + Ou(logn/n)) —————.
T P R Pr
Pd+t

Furthermore, for any positive integer t < \/d, we have
1 t2 —1)(n—
Pavt _ (1410, (28" L5 (g=1)(n—d)
Pd n d d

d))t.

This leads to the next proposition, which provides an
approximation of the minimum of independent binomial vari-
ables in terms of the Gumbel distribution.

Recall that a Gumbel distribution is used to model the
distribution of maximum value of various distributions, which
is useful in predicting chances of rare events like natural
disasters.

Proposition IL.2. Fix ¢ > 2 and « € (0,1). Let ¢°™ < m <
¢ =" and let dy be the largest integer such that Pdem <
1. Let X4,...,X,, be i.id. binomial random variables with
parameters n and é, ie.

1\a
0= () - e

q
and set Y = minj—y ., X;. Then
—t bmmw}
PY —dy > — — 9 —
{ log (¢— 1);: do) log (g 1)50 do)
= 0a,q(1) + exp ( - t)’
for all t € log WZ — log(pa,m).

It is not difficult to see that the above proposition and the
main theorem of the paper imply Theorem 1.2.
ITI. MOMENTS COMPARISON FOR PARALLEL CODES

Fix a € R* and d > 0. Given the independent random
vectors X1, ..., X, uniform on F7?, we define

> Wald),

aEF’g\{O}

d>0,

where W, (d) is the indicator of the event

() <}

For any a,b € F¥\ {0}, we say a and b are parallel if there

exists f € F,\ {0} such that a = f b (here the multiplicationll

is in the field ). Notice that if a and b are parallel, then
the supports of the linear combinations are the same, and thus
W, (d) = Wy(d) whenever a and b are parallel.

Let {Ya}ae]Fq\ {0} be random vectors uniformly distributed
on Fy and mutually independent up to the constraint that Y, =
Y, whenever a and b are parallel. Define

> Wald)

a€Fk\{0}

2=

where Wa(d) is the indicator function of the event {wt (Y,) <
d}. B

The goal of this section is to compare the moments of Z;
and Z,; assuming certain constraints on the parameters n, k
and d. The main statement of the section is

Proposition IIL1. For any A\g € (0, 1) there are c;, (Mo, q) >
0 and C; (Ao, ) > 0 with the following property. Suppose
d,n € N satisfy 4 < Xo(1 — 3), and d?/n3? > Cy, (o, q).

Then for any positive integer m < ¢y, (Ao, )dz/ng/2 such

le(>\o q)d*
n m

(1+O(QXP(70111.1(/\0a q)d4/n3))+0

We briefly discuss the proof outline below.

First, let £ < m < k be positive integers. Suppose
I,...,I, is a partitioning of [m] into non-empty sets. Denote
by Q(I4, ..., I) the collection of all m—~tuples (a,...,a™) €
(F*\ {0})™ such that a' is parallel to a’ if and only if 4, j € I,
for some ¢ € [¢]. Further, define

Qe ={('...,v" €

ol .0t

that ¢ pg > exp ( ) we have

EZ,™ = (2779/2)) EZim

(F5\{0})
are pairwise non-parallel}.
Note that there is a natural (¢ — 1)~ ‘~to—one mapping from
Q(I,...,1;) onto Qy which assigns (amin{jelt})le to each
(at,...,a™).

Now, in view of the above remarks,

Z H Wa7' (d)

al ...,amEFk\{O} i=1

Zy =

where the second summation is taken over all partitions
I,..., I, of [m] into non-empty sets. Notice that Wlfl(d) =
Wi (d), so we can simplify the above representation to

m

¢
Zp=>"8m0@-0)"" > J[wu) ],

{=1 vl vleQ, =1

where S(m, ) is the number of ways to partition [m] into ¢
non-empty sets (a Stirling number of the second kind). The
above formula works for Zj" as well, up to replacing Wi(d)
with W, (d).

The central technical statement of the section is the follow-

in
6g
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Proposition IIL2. For any Ay € (0,1) there are c¢;;,( Mo, q) >
0 and Cy,(Mo,q) > 0 with the following property. Suppose
d,n € N satisfy % < Xo(l — %) and d > Cy,(Xo,q).
Suppose further that s < k, and (vl, v2, ., vs) are linearly
independent vectors in F¥, and that v**' = "7 cvt for
some c; € F,\ {0}. Then

s+1
E ] Wei (d) < Cpj exp(—cuz(No, @)d* /1)
i=1
where C > 0 is a universal constant.
As a corollary of the above statement, we have

Corollary II1.3. Suppose d,n € N are as in Proposition I11.2.

Suppose further that ¢ < k, and v*, v%, ..., v* are non-zero
vectors in ]F’; such that the rank of (vl, v2, L, vé) isr </
Then

4
E H Wi (d) < C,DZ eXp(*Cm.z(/\Ov q)d4/n3).
i=1

The following lemma gives the estimate of cardinality of

the set of (~tuples of vectors (v!, v, ..., v%) € Q; with a

given rank r. This completes the proof of III.1.
Lemma II14. For r < ¢ < k, denote
Qe = {(v*, 0% .., ve) ey
dim (span (vl, o
Then
€27,

/ r—1 .
r(l—r) k_ i
< (T>q i|:|0 (¢ —d)-

When r = {, equality holds, implying

Qe ¢ (@) "
: <€ - ’") T2t (g% — ¢i)

Qe ~

IV. ANALYSIS OF THE DISTRIBUTION OF THE MINIMUM
DISTANCE

The goal of this section is to prove our main result compar-
ing the distributions of the minimum distance of the random
linear code, with the minimum w,;, of the weights of the
random vectors Yy, a € F5\ {0} (defined earlier in the paper).

First, we state the “technical” version of the result:

Theorem IV.1. For any A\g € (0,1) there are ¢y, (Ao, q) > 0
and Cy,(Xo,q) > 0 with the following property. Let n >
1, and take any L > e. Assume further that k satisfies
Cri(Mo,q)Llog L < k < n, and take any d such that

1
Cri (Mo, Q)\/En3/4 <d< Ao (1 - 7)774
q
and C[V_I()\O;q)L Z qkpd 2 exp (_C’Vl(n);)io/vzqyiz) Let, as before,

Xi,..., Xk be iid. random vectors uniformly distributed in
F”, and denote

7
k
din = min {Wt (ZZ_ZI aiXZ) , a€ F]; \ {0}}

Then
|]P{dmin < d} - IP){u}min < d}’ = O(eXp(—L))

The theorem provides some freedom of the choice of
the parameters, and includes a regime when the ratio k/n
converges to one when n — oco. At the same time, we would
like to provide a cleaner statement for the most important
regime when k/n is “separated” from both 0 and 1. We obtain
Theorem 1.1 as a corollary of Theorem IV.1.

We give the proof outline of IV.1 as below.

For each » > 0, we let

Md(”f') = P{Zd :’I"}, Md(r) = P{Zd :T},
so that

P{dmin < d} =P{Zs >0} = iMd(T)§

r=1
P{wmin < d} =P{Zs >0} =Y My(r).

Observe further that the numbers My(r) and Md(r) satisfy
the relations

oo oo
Z My(r)yr™ =REZ}, Z ]\/Zd(r)rm =EZ}, m>1.
r=1 r=1

These identities, together with the relations between EZ[
and IEZCT obtained in ,the previous section, will allow us to
compare My(r) with My(r), and hence bound the distance
between the distributions of dy,;, and wy,,. Let us start by
recording a moment growth estimate for Zy:

Lemma IV.2. We have
k k
N1/t 4" pa ey < 4"pa
(Ezﬁ) "<c. { e 7= o
ettt D@ ST

k
qg—1
Here, C,,, > 0 is a universal constant.

Next, fix an integer parameter h > 1 (its value will be
defined later), and define the A x h square matrix B = (b;;)
as

bij=j' d,5=1,...,h
Then B is a Vandermonde matrix and the next lemma can be
easily checked by a straightforward computation.

Lemma IV.3. Let B = (b;;) be as above. Then B is invertible,
and the entries of the inverse matrix B~ = (bj;) are given
by

(-1)7-1 > mi...

Mh—j
1<mi<---<mp_;<h,
ml,...,mh_j;éi . . .
b — 7 I (m—1) ) lf.] < h7
] 1<m<h, m#i
1 =
% 11 (i—m)? ifj= h.

1<m<h, m#i

In what follows, we will not need a precise formula for
the entries of the inverse; just a crude upper bound will be

sufficient:
17
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Corollary IV.4. With the above notation, we have

(4)nh by
((h/2] — e = Ol

where C,,, > 0 is a universal constant.

b1 <

Denote_the vector (My(1),...,Mq(h))"T by V, and the
vector (Md( ), . Md(~h))T by V. Further, let U :=
(EZy, ... ,]EZC}[)T, and U := (EZy, ... ,IEZQ)T, and, finally,
define the “error vectors”

> h ~ > — h
E::( ’/‘iMd’I’>_ , E:z( ?"iMdT)_ .
r:;rl ( ) 1=1 r:;»l ( ) 1=1

In view of the above,
BV+E=U, BV+E=U,
whence the difference V — V can be expressed as
V-V=B'U-U)-B YE-E).
The following lemma gives the estimate of B~1(U — U):
Lemma IV.5. Suppose d,n € N satisfy £ < Xg(1 — %) and

alz/n?’/2 > C,,,,()\o, q). Assume additionally that h > q*pq >

Qo)) “pjog, G, + hlogy Cra+ b A hlog(hp—

€xp (_ n3h A
h) < k/4 and h < log, CIV4+1§{5”21(CVI\/0273‘)2+10g(q 1) n3/2 Then the
(U -T)

absolute value of each component of the vector B~
is bounded above by

1
O(exp ( — 56"“(/\0’ q)d4/n3> + 2_k/4>.

By a slightly more careful argument, we get an estimate on
the term B~!(E — E), which concludes the proof of IV.1.

Lemma IV.6. Suppose d,n € N satisfy % < Ao(1 - é) and
dz/n?’/2 > Cu/(Xo, q). Assume additionally that

4
e 8CmCmia=1) ) > gk > exp (_ (Mo, q)d )7

4n3h
and h < w d . Then
S M), Y Hatr ),
r=h-+1 r=h+1

and the absolute value of each component of the vector
B~Y(E — E) is bounded above by O(27").

Finally, we consider the improvement of the Gilbert—
Varshamov bound implied by our argument. We shall state
the result in a probabilistic form:

Corollary IV.7. Let q be a prime power and o € (0, 3). There
exists constants ¢, C' > 0 depending on q and « such that, for
a sufficiently large integer n and an < d < (1 —a)(1 — %)n,
with probability greater than exp(—cy/n), a uniform random
|k+ 4 log,(n) —C |—dimensional linear code has the minimum
distance at least d where k is the largest integer such that

n

1 q ko< q
S M- T a1y

n

(i.e. the dimension in Gilbert—Varshamov’s bound)

Proof. Notice that k is the largest integer satisfying ¢*pg_; <
1. The Gilbert—Varshamov result states that there exists a k—
dimensional linear code with the minimum distance at least
d.

Let ¢ > 0 be a positive integer which we will determine
later. Further, let wy,i, be the minimum weight of qkt#
i.i.d. random vectors uniformly distributed over F7', and let
dmin be the minimum distance of the uniform random (k+¢)-
dimensional linear code in IFZ We have

gt
IP){’wmin > d} = (1 - Pd—l) a1

qk+t -1
>exp| — 2pd_1q—71

> exp(—2pa-14""")
> exp(—2¢").
Recall the g-ary entropy function
Hy(r) = xlog,(q — 1) — xlog,(x) — (1 — z)log,(1 — x)

which appears in the Gilbert—Varshamov bound. It is a mono-
tone increasing function on (0,1 — %) with H,(0) = 0 and
H,(1) = 1. Furthermore, for z € (1,1 — %),

Hy(a) = log, (Z (”) (4 1>Z‘> To(1)
= %Iqu (pa:nqn) + 0(1)

whenever xn is an integer. (See [15, Proposition 3.3.1])
With ¢*pg < 1 < ¢*1py, we have

Hq<%) —1- % +o(1).

Therefore, there exist 0 < Ry < Rz < 1 depending only on
q, o such that

Ry < —<Rs.

S|

Now we apply Theorem I.1 to get

]P){dmin Z d+t} 2 P{wmin Z d+t}
> exp(—2q") — exp(—ca.qV/n)

where ¢, = ¢(R1, Rz, ¢). Choosing

7Q)

logq n+ 1ogq( 1

we obtain the desired bound.
O

It is not difficult to check that the above corollary implies

18Corollary I.1 from the introduction.
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