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Abstract—In this paper, we study the distribution of the
minimum distance (in the Hamming metric) of a random linear
code of dimension k in Fn

q . We provide quantitative estimates
showing that the distribution function of the minimum distance
is close (superpolynomially in n) to the cumulative distribution
function of the minimum of (qk−1)/(q−1) independent binomial
random variables with parameters 1

q
and n. The latter, in turn,

converges to a Gumbel distribution at integer points when k
n

converges to a fixed number in (0, 1). In a sense, our result
shows that apart from identification of the weights of parallel
codewords, the probabilistic dependencies introduced by the
linear structure of the random code, produce a negligible effect
on the minimum code weight. As a corollary of the main result,
we obtain an asymptotic improvement of the Gilbert–Varshamov
bound for 2 < q < 49.

A full version of this paper is accessible at: https://arxiv.
org/abs/1912.12833/

I. INTRODUCTION

Let Fq be a finite field. A linear code C is a subspace of Fnq
where n is the length of the code. The parameter q of the field
is referred to as the alphabet size. The size of C is the number
of elements in C. For a (not necessarily linear) code with size
M , alphabet size q, and length n, the rate R is defined to be
logq(M)/n. For a linear code this number is equal to k/n,
where k is the dimension of the code as a vector space.

Another fundamental parameter is the relative minimum dis-
tance. Let the Hamming distance between any two codewords
u = (u1, · · · , un) and v = (v1, · · · , vn) in Fnq be given by

d(u, v) := |{1 ≤ i ≤ n, ui 6= vi}|,

and the Hamming weight of a codeword u be defined as
wt (u) := d(u, 0). For linear codes, the minimum distance
between two distinct codewords in a code is equal to the
minimum weight over all nonzero codewords. The relative
minimum distance δ is defined as the ratio d

n .
In coding theory, the trade-off between the code rate R

and error-correcting ability δ is a central topic of study. Let
q be fixed. For linear codes, It has been proved that there
exists a function αq(·) with the following property: for any
δ0 ∈ (0, 1 − 1/q) and any R0 ≤ αq(δ0), there is an infinite
sequence of linear codes with the relative minimum distance
converging to δ0 and the rate converging to R0; on the other
hand, for every R0 > αq(δ0), such a sequence does not exist.
(See [1] and [2].) An explicit description of αq(·) remains a
major open problem (see [3]–[5], as well as [6] for an upper

bound for αq). (See [1]) Considerable work has been done to
obtain explicit constructions for linear codes with good rate
and relative minimum distance (we refer, in particular, to [7]).

Rather than considering special codes, one may be interested
in studying the statistical properties on the space of all linear
codes, using probabilistic methods. A classical result in this
direction is the Gilbert–Varshamov argument. Gilbert [8] and
Varshamov [9] gave lower bound for the size of a (not
necessarily linear) code given n and d. Let Aq(n, d) be the
maximal size of a code of length n over Fq and with minimum
distance d. Then

Aq(n, d) ≥ qn∑d−1
j=0

(
n
j

)
(q − 1)j

,

and, moreover, there are linear codes that can achieve this
bound i.e. there exists a linear code over Fq with dimension
at least n−blogq

∑d−1
j=0(q − 1)jc. The proof of the result can

be obtained by a union bound argument.
Recall that the q-ary entropy function is defined by

Hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

In [10], it was shown that for q = 2 and given a rate R0 and
ε > 0, the probability that a random linear code of length n
and rate R0, uniformly distributed on the set of linear codes
of the given length and rate, has the minimum distance d <
n(δ0 − ε), is exponentially small in n. Here 0 < δ0 < 1

2
is the solution of the equation R0 = 1 − H2(δ0). On the
other hand, if we fix any δ0 satisfying 0 ≤ δ0 < 1 − 1

q and
0 < ε ≤ 1 − Hq(δ0), then the Gilbert–Varshamov argument
implies that there exist infinitely many linear codes with a rate
R ≥ 1 − Hq(δ0) − ε. By taking ε → 0, one would obtain a
lower bound for the function αq(δ) mentioned above:

αq(δ) ≥ 1−Hq(δ).

In fact, as was proved in [11], the following law of large
numbers holds for the minimum distance of a sequence of
random linear codes: if n→∞ and the rate k/n converges to
a number R0 ∈ (0, 1) then the relative minimum distance
converges (almost surely) to the number δ0 given by the
equation R0 = 1 − Hq(δ0). Moreover, the probability that
a random linear code of length n has the relative minimum
distance outside of the interval [δ0−ε, δ0 +ε], is exponentially
small in n (we remark here that in the same paper it was
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shown that the minimum distance of random non-linear codes
is asymptotically worse than in the linear setting).

Our goal in this paper is to obtain a more precise description
of the distribution of the minimum distance of random linear
codes. The main statement is the following

Theorem I.1. For any prime power q and any real numbers
R1 < R2 in (0, 1) there is c(R1, R2, q) > 0 with the following
property. Let positive integers k, n satisfy R1 ≤ k/n ≤ R2,
and let C be the random linear code uniformly distributed
on the set of all linear codes in Fnq of dimension k. Denote
by Fdmin the cumulative distribution function of the minimum
distance of C. Further, let wmin be the minimum weight of
qk−1
q−1 i.i.d. uniform random vectors in Fnq , and Fwmin be its

cumulative distribution function. Then

sup
x∈R

∣∣Fdmin(x)− Fwmin(x)
∣∣ = O

(
exp(−c(R1, R2, q)

√
n)
)
.

A surprising feature of this result is that the distribution
of the minimum distance can be approximated by a c.d.f.
of the minimum of i.i.d. binomial variables with precision
superpolynomial in n. In a sense, this result asserts that
dependencies between codeword weights introduced by the
linear structure of the code, produce a negligible effect on the
distribution of the minimum weight.

The proof of the result is based on analysis of moments
of certain functionals associated with the code. We remark
that in a recent work by Linial and Mosheiff [12], the authors
calculated centered moments for the number of codewords of
a random linear code with a given weight. The approach used
in that paper influenced our work.

As an immediate corollary of our result, we obtain the
following statement which gives an Θ(n1/2) improvement
over the classical Gilbert–Varshamov bound:

Corollary I.1. For any prime power q, any α ∈ (0, 1), any
integer n, and d ∈ [αn, (1 − α)(n − n/q)] there is a linear
code with minimum distance d of size at least

cn1/2 qn∑d−1
j=0

(
n
j

)
(q − 1)j

,

where c > 0 may only depend on α and q.

We note that existence of non-linear codes of size at
least cn qn∑d−1

j=0 (n
j)(q−1)j

has been previously established in
[4], [13]. Linear double-circulant binary codes beating the
Gilbert–Varshamov bound were considered in [14]. To our
best knowledge, the above improvement for 2 < q < 49 is
new.

Further, we obtain an explicit limit theorem for the distri-
bution of the minimum distance. Due to the discrete nature of
our random variable, the convergence to a Gumbel distribution
can only be established on the points along certain arithmetic
progressions:

Theorem I.2 (The limit theorem for the minimum distance).
Let q be a prime power, and let R1 < R2 be numbers in

(0, 1). Let (kn) be a sequence of positive integers such that
R1 ≤ kn/n ≤ R2 for all large n. For any n let dmin(n)
be the minimum distance of the random linear code uniformly
distributed on the set of linear codes of length n and dimension
kn. Further, for any n let d0(n) be the largest integer satisfying

u(n) :=
qkn − 1

q − 1

d0(n)∑
i=0

(
n

j

)(
1− 1

q

)i
qi−n ≤ 1.

Denote by ξn the random variable

ξn :=
(
d0(n)− dmin(n)

)
log

(q − 1)(n− d0(n))

d0(n)
− log u(n).

Then, as n→∞, we have

sup

{
|P{ξn < t} −G(t)| : t ∈ log

(q − 1)(n− d0(n))

d0(n)
Z

− log u(n)

}
−→ 0,

where G is the Gumbel law given by G(t) = e−e
−t

.

The paper is organized as follows. In Section II, we consider
some auxiliary results for the binomial distribution, including
a limiting result for the minimum of i.i.d. binomial random
variables. At the end of the section, we show that the main
result of the paper implies Theorem I.2.

In Section III, we consider the set of random vectors {Ya :
a ∈ Fkq\{0}} uniformly distribtued on Fnq that are mutually
independent up to the constraint that Ya = Yb whenever a and
b are parallel. We study moments of the random variable that
counts number of codewords with weights less than or equal
to d in this configuration as well as that of random linear code
ensemble and give a quantitative comparison between them.

Finally, in Section IV we give the comparison of the c.d.f.
of minimum distance between these two ensembles. Due to the
discrete nature of this problem, either c.d.f. can be obtained
by solving a set of linear equations involving quantities we
computed in previous sections. Then we give a quantitative
comparison by estimating the truncation errors and moment
differences.

Most of the proofs will be omitted. Link for a longer version
of our paper is given in the abstract. Interested readers can
refer to that for more details.

II. AUXILIARY RESULTS FOR THE BINOMIAL
DISTRIBUTION

Our goal in this section is to obtain quantitative estimates
for the distribution of the minimum of i.i.d. binomial random
variables (with specially chosen parameters).

Let 1 ≤ m ≤ (q − 1)n and let X1, . . . , Xm be i.i.d.
vectors uniformly distributed in Fnq . Here, we are interested
in estimates of the quantities

P
{

min
i≤m

wt (Xi) ≤ d
}
, d ≥ 0,
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where wt (Xi) is the number of non-zero components of Xi.
Denote

ρd := P
{

wt (X1) ≤ d
}

=
d∑
i=0

(
n

i

)(
1− 1

q

)i
qi−n.

We start by recording the following approximations to ρd:

Proposition II.1. For any α ∈ (0, 1) there is Cα > 0 with the
following property. Assume that n ≥ 1 and Cαlog(n) ≤ d ≤
(1− α)(1− 1/q)n. Then we have

ρd(
n
d

)
q−n(q − 1)d

=
(
1 +Oα(log n/n)

) n− d+ 1

n−
(

q
q−1

)
d+ 1

.

Furthermore, for any positive integer t ≤
√
d, we have

ρd+t

ρd
=

(
1 +Oα

(
log n

n
+
t2

d

))(
(q − 1)(n− d)

d

)t
.

This leads to the next proposition, which provides an
approximation of the minimum of independent binomial vari-
ables in terms of the Gumbel distribution.

Recall that a Gumbel distribution is used to model the
distribution of maximum value of various distributions, which
is useful in predicting chances of rare events like natural
disasters.

Proposition II.2. Fix q ≥ 2 and α ∈ (0, 1). Let qαn ≤ m ≤
q(1−α)n and let d0 be the largest integer such that ρd0m ≤
1. Let X1, . . . , Xm be i.i.d. binomial random variables with
parameters n and 1

q , i.e.

P{Xj = a} =

(
n

a

)(
1− 1

q

)a
qa−n, a = 0, 1, . . . , n,

and set Y := minj=1,...,mXj . Then

P

{
Y − d0 >

−t
log (q−1)(n−d0)

d0

− log(ρd0m)

log (q−1)(n−d0)
d0

}
= oα,q(1) + exp

(
− e−t

)
,

for all t ∈ log (q−1)(n−d0)
d0

Z− log(ρd0m).

It is not difficult to see that the above proposition and the
main theorem of the paper imply Theorem I.2.

III. MOMENTS COMPARISON FOR PARALLEL CODES

Fix a ∈ Rk and d ≥ 0. Given the independent random
vectors X1, . . . , Xk uniform on Fnq , we define

Zd :=
∑

a∈Fk
q\{0}

Wa(d), d ≥ 0,

where Wa(d) is the indicator of the event{
wt
( k∑
i=1

aiXi

)
≤ d
}
.

For any a, b ∈ Fkq\ {0}, we say a and b are parallel if there
exists f ∈ Fq\ {0} such that a = f b (here the multiplication

is in the field Fq). Notice that if a and b are parallel, then
the supports of the linear combinations are the same, and thus
Wa(d) = Wb(d) whenever a and b are parallel.

Let {Ya}a∈Fq\{0} be random vectors uniformly distributed
on Fnq and mutually independent up to the constraint that Ya =
Yb whenever a and b are parallel. Define

Z̃d :=
∑

a∈Fk
q\{0}

W̃a(d)

where W̃a(d) is the indicator function of the event {wt (Ya) ≤
d}.

The goal of this section is to compare the moments of Z̃d
and Zd assuming certain constraints on the parameters n, k
and d. The main statement of the section is

Proposition III.1. For any λ0 ∈ (0, 1) there are cIII.1(λ0, q) >
0 and CIII.1(λ0, q) > 0 with the following property. Suppose
d, n ∈ N satisfy d

n ≤ λ0(1 − 1
q ), and d2/n3/2 ≥ CIII.1(λ0, q).

Then for any positive integer m ≤ cIII.1(λ0, q)d
2/n3/2 such

that qkρd ≥ exp
(
− cIII.1(λ0,q)d

4

n3m

)
, we have

EZdm =
(
1+O(exp(−cIII.1(λ0, q)d

4/n3))+O(2−k/2)
)
EZ̃d

m
.

We briefly discuss the proof outline below.
First, let ` ≤ m ≤ k be positive integers. Suppose

I1, . . . , I` is a partitioning of [m] into non-empty sets. Denote
by Ω(I1, . . . , I`) the collection of all m–tuples (a1, . . . , am) ∈(
Fkq\ {0}

)m
such that ai is parallel to aj if and only if i, j ∈ It

for some t ∈ [`]. Further, define

Ω` :=
{

(v1, . . . , v`) ∈
(
Fkq\ {0}

)`
:

v1, . . . , v` are pairwise non-parallel
}
.

Note that there is a natural (q− 1)m−`–to–one mapping from
Ω(I1, . . . , I`) onto Ω` which assigns (amin{j∈It})

`
t=1 to each

(a1, . . . , am).
Now, in view of the above remarks,

Zmd =
∑

a1,...,am∈Fk
q\{0}

m∏
i=1

Wai(d)

=
m∑
`=1

∑
I1,...,I`

∑
v1,...,v`∈Ω`

(q − 1)
m−` ∏̀

i=1

W
|Ii|
vi (d),

where the second summation is taken over all partitions
I1, . . . , I` of [m] into non-empty sets. Notice that W |Ii|vi (d) =
Wvi(d), so we can simplify the above representation to

Zmd =
m∑
`=1

S(m, `) (q − 1)
m−`

 ∑
v1,...,v`∈Ω`

∏̀
i=1

Wvi(d)

 ,

where S(m, `) is the number of ways to partition [m] into `
non-empty sets (a Stirling number of the second kind). The
above formula works for Z̃md as well, up to replacing Wvi(d)

with W̃vi(d).

The central technical statement of the section is the follow-
ing
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Proposition III.2. For any λ0 ∈ (0, 1) there are cIII.2(λ0, q) >
0 and CIII.2(λ0, q) > 0 with the following property. Suppose
d, n ∈ N satisfy d

n ≤ λ0(1 − 1
q ) and d ≥ CIII.2(λ0, q).

Suppose further that s ≤ k, and
(
v1, v2, . . . , vs

)
are linearly

independent vectors in Fkq , and that vs+1 =
∑s
i=1 civ

i for
some ci ∈ Fq\ {0}. Then

E
s+1∏
i=1

Wvi(d) ≤ Cρsd exp(−cIII.2(λ0, q)d
4/n3)

where C > 0 is a universal constant.

As a corollary of the above statement, we have

Corollary III.3. Suppose d, n ∈ N are as in Proposition III.2.
Suppose further that ` ≤ k, and v1, v2, . . . , v` are non-zero
vectors in Fkq such that the rank of

(
v1, v2, . . . , v`

)
is r < `.

Then

E
∏̀
i=1

Wvi(d) ≤ Cρrd exp(−cIII.2(λ0, q)d
4/n3).

The following lemma gives the estimate of cardinality of
the set of `–tuples of vectors

(
v1, v2, . . . , v`

)
∈ Ω` with a

given rank r. This completes the proof of III.1.

Lemma III.4. For r ≤ ` ≤ k, denote

Ωr,` := {
(
v1, v2, . . . , v`

)
∈ Ω` :

dim
(
span

(
v1, . . . , v`

))
= r}.

Then

|Ωr,`| ≤
(
`

r

)
qr(`−r)

r−1∏
i=0

(
qk − qi

)
.

When r = `, equality holds, implying

|Ωr,`|
|Ω`,`|

≤
(

`

`− r

)
(qr)

`−r∏`−1
i=r (qk − qi)

.

IV. ANALYSIS OF THE DISTRIBUTION OF THE MINIMUM
DISTANCE

The goal of this section is to prove our main result compar-
ing the distributions of the minimum distance of the random
linear code, with the minimum wmin of the weights of the
random vectors Ya, a ∈ Fkq \{0} (defined earlier in the paper).

First, we state the “technical” version of the result:

Theorem IV.1. For any λ0 ∈ (0, 1) there are cIV.1(λ0, q) > 0
and CIV.1(λ0, q) > 0 with the following property. Let n ≥
1, and take any L ≥ e. Assume further that k satisfies
CIV.1(λ0, q)L logL ≤ k ≤ n, and take any d such that

CIV.1(λ0, q)
√
Ln3/4 ≤ d ≤ λ0

(
1− 1

q

)
n,

and cIV.1(λ0, q)L ≥ qkρd ≥ exp
(
− cIV.1(λ0,q)d

2

n3/2

)
. Let, as before,

X1, . . . , Xk be i.i.d. random vectors uniformly distributed in
Fnq , and denote

dmin := min

{
wt

(∑k

i=1
aiXi

)
, a ∈ Fkq \ {0}

}
.

Then ∣∣P{dmin ≤ d} − P{wmin ≤ d}
∣∣ = O(exp(−L)).

The theorem provides some freedom of the choice of
the parameters, and includes a regime when the ratio k/n
converges to one when n→∞. At the same time, we would
like to provide a cleaner statement for the most important
regime when k/n is “separated” from both 0 and 1. We obtain
Theorem I.1 as a corollary of Theorem IV.1.

We give the proof outline of IV.1 as below.
For each r ≥ 0, we let

Md(r) := P
{
Zd = r

}
, M̃d(r) := P

{
Z̃d = r

}
,

so that

P
{
dmin ≤ d

}
= P

{
Zd > 0

}
=
∞∑
r=1

Md(r);

P
{
wmin ≤ d

}
= P

{
Zd > 0

}
=

∞∑
r=1

M̃d(r).

Observe further that the numbers Md(r) and M̃d(r) satisfy
the relations
∞∑
r=1

Md(r)r
m = EZmd ,

∞∑
r=1

M̃d(r)r
m = EZ̃md , m ≥ 1.

These identities, together with the relations between EZmd
and EZ̃md obtained in the previous section, will allow us to
compare Md(r) with M̃d(r), and hence bound the distance
between the distributions of dmin and wmin. Let us start by
recording a moment growth estimate for Z̃d:

Lemma IV.2. We have(
EZ̃`d

)1/`

≤ CIV.2

{
qkρd
q−1 , if ` ≤ qkρd

q−1 ,
`

log(e`(q−1)/(qkρd))
, if ` ≥ qkρd

q−1 .

Here, CIV.2 > 0 is a universal constant.

Next, fix an integer parameter h ≥ 1 (its value will be
defined later), and define the h × h square matrix B = (bij)
as

bij = ji, i, j = 1, . . . , h.

Then B is a Vandermonde matrix and the next lemma can be
easily checked by a straightforward computation.

Lemma IV.3. Let B = (bij) be as above. Then B is invertible,
and the entries of the inverse matrix B−1 = (b′ij) are given
by

b′ij =


(−1)j−1 ∑

1≤m1<···<mh−j≤h,
m1,...,mh−j 6=i

m1...mh−j

i
∏

1≤m≤h,m6=i

(m−i) , if j < h;

1
i

∏
1≤m≤h,m6=i

(i−m) , if j = h.

In what follows, we will not need a precise formula for
the entries of the inverse; just a crude upper bound will be
sufficient:
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Corollary IV.4. With the above notation, we have

|b′ij | ≤
(
h
j

)
hh−j

((bh/2c − 1)!)2
≤ ChIV.4h

−j ,

where CIV.4 > 0 is a universal constant.

Denote the vector (Md(1), . . . ,Md(h))> by V , and the
vector (M̃d(1), . . . , M̃d(h))> by Ṽ . Further, let U :=
(EZd, . . . ,EZhd )>, and Ũ := (EZ̃d, . . . ,EZ̃hd )>, and, finally,
define the “error vectors”

E :=
( ∞∑
r=h+1

riMd(r)
)h
i=1

, Ẽ :=
( ∞∑
r=h+1

riM̃d(r)
)h
i=1

.

In view of the above,

BV + E = U, BṼ + Ẽ = Ũ ,

whence the difference V − Ṽ can be expressed as

V − Ṽ = B−1(U − Ũ)−B−1(E − Ẽ).

The following lemma gives the estimate of B−1(U − Ũ):

Lemma IV.5. Suppose d, n ∈ N satisfy d
n ≤ λ0(1 − 1

q ), and
d2/n3/2 ≥ CIII.1(λ0, q). Assume additionally that h ≥ qkρd ≥
exp

(
− cIII.1(λ0,q)d

4

n3h

)
, h log2 CIV.4 +h log2 CIV.2 +h+h log(hp−

h) ≤ k/4 and h ≤ cIII.1(λ0,q)
log2 CIV.4+log2 CIV.2+2+log(q−1)

d2

n3/2 . Then the

absolute value of each component of the vector B−1(U − Ũ)
is bounded above by

O

(
exp

(
− 1

2
cIII.1(λ0, q)d

4/n3
)

+ 2−k/4
)
.

By a slightly more careful argument, we get an estimate on
the term B−1(E − Ẽ), which concludes the proof of IV.1.

Lemma IV.6. Suppose d, n ∈ N satisfy d
n ≤ λ0(1 − 1

q ), and
d2/n3/2 ≥ CIII.1(λ0, q). Assume additionally that

e−8CIV.2CIV.4(q−1)h ≥ qkρd ≥ exp

(
− cIII.1(λ0, q)d

4

4n3h

)
,

and h ≤ cIII.1(λ0,q)
4

d2

n3/2 . Then
∞∑

r=h+1

Md(r),

∞∑
r=h+1

M̃d(r) = O(2−h),

and the absolute value of each component of the vector
B−1(E − Ẽ) is bounded above by O(2−h).

Finally, we consider the improvement of the Gilbert–
Varshamov bound implied by our argument. We shall state
the result in a probabilistic form:

Corollary IV.7. Let q be a prime power and α ∈ (0, 1
2 ). There

exists constants c, C > 0 depending on q and α such that, for
a sufficiently large integer n and αn ≤ d ≤ (1− α)(1− 1

q )n,
with probability greater than exp(−c

√
n), a uniform random

bk+ 1
2 logq(n)−Cc–dimensional linear code has the minimum

distance at least d where k is the largest integer such that
1

q

qn∑d−1
j=0

(
n
j

)
(q − 1)j

< qk ≤ qn∑d−1
j=0

(
n
j

)
(q − 1)j

.

(i.e. the dimension in Gilbert–Varshamov’s bound)

Proof. Notice that k is the largest integer satisfying qkρd−1 ≤
1. The Gilbert–Varshamov result states that there exists a k–
dimensional linear code with the minimum distance at least
d.

Let t ≥ 0 be a positive integer which we will determine
later. Further, let wmin be the minimum weight of qk+t−1

q−1
i.i.d. random vectors uniformly distributed over Fnq , and let
dmin be the minimum distance of the uniform random (k+t)–
dimensional linear code in Fnq . We have

P{wmin ≥ d} = (1− ρd−1)
qk+t−1

q−1

≥ exp
(
− 2ρd−1

qk+t − 1

q − 1

)
≥ exp(−2ρd−1q

k+t)

≥ exp(−2qt).

Recall the q-ary entropy function

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x)

which appears in the Gilbert–Varshamov bound. It is a mono-
tone increasing function on (0, 1 − 1

q ) with Hq(0) = 0 and
Hq(1) = 1. Furthermore, for x ∈ (1, 1− 1

q ),

Hq(x) =
1

n
logq

(
xn∑
i=0

(
n

i

)
(q − 1)i

)
+ o(1)

=
1

n
logq (ρxnq

n) + o(1)

whenever xn is an integer. (See [15, Proposition 3.3.1])
With qkρd ≤ 1 < qk+1ρd, we have

Hq

( d
n

)
= 1− k

n
+ o(1).

Therefore, there exist 0 < R1 < R2 < 1 depending only on
q, α such that

R1 ≤
k

n
≤ R2.

Now we apply Theorem I.1 to get

P {dmin ≥ d+ t} ≥ P {wmin ≥ d+ t}
≥ exp(−2qt)− exp(−cα,q

√
n)

where cα,q = c(R1, R2, q). Choosing

t =
1

2
logq n+ logq(

cα,q
4

)

we obtain the desired bound.

It is not difficult to check that the above corollary implies
Corollary I.1 from the introduction.
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