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Abstract
We study several of the recent conjectures in regards to the role of symmetry in the
inequalities of Brunn–Minkowski type, such as the L p-Brunn–Minkowski conjec-
ture of Böröczky, Lutwak, Yang and Zhang, and the Dimensional Brunn–Minkowski
conjecture of Gardner and Zvavitch, in a unified framework. We obtain several new
results for these conjectures.We show that when K ⊂ L, themultiplicative form of the
L p-Brunn–Minkowski conjecture holds for Lebesgue measure for p ≥ 1 − Cn−0.75,
which improves upon the estimate of Kolesnikov and Milman in the partial case when
one body is contained in the other. We also show that the multiplicative version of
the L p-Brunn–Minkowski conjecture for the standard Gaussian measure holds in the
case of sets containing sufficiently large ball (whose radius depends on p). In partic-
ular, the Gaussian Log-Brunn–Minkowski conjecture holds when K and L contain√
0.5(n + 1)Bn

2 . We formulate an a-priori stronger conjecture for log-concave mea-
sures, extending both the L p-Brunn–Minkowski conjecture and the Dimensional one,
and verify it in the case when the sets are dilates and the measure is Gaussian. We
also show that the Log-Brunn–Minkowski conjecture, if verified, would yield this
more general family of inequalities. Our results build up on the methods developed
by Kolesnikov and Milman as well as Colesanti, Livshyts, Marsiglietti. We further-
more verify that the local version of these conjectures implies the global version in
the setting of general measures, and this step uses methods developed recently by
Putterman.
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1 Introduction

Recall that a measure μ on R
n is called log-concave if for all nonempty Borel sets

K , L , and for any λ ∈ [0, 1],

μ(λK + (1 − λ)L) ≥ μ(K )λμ(L)1−λ (1)

In accordance with Borell’s result [1], if a measure μ has density e−V (x), where
V (x) is a convex function on R

n with nonempty support, then μ is log-concave.
Examples of log-concave measures include Lebesgue volume | · | and the Gaussian
measure γ.

A notable partial case of Borell’s theorem is the Brunn–Minkowski inequality,
proved in the full generality by Lusternik [27]:

|λK + (1 − λ)L| ≥ |K |λ|L|1−λ, (2)

which holds for all Borel-measurable sets K , L and any λ ∈ [0, 1]. Furthermore, due
to the n-homogeneity of Lebesgue measure, (2) self-improves to an a-priori stronger
form

|λK + (1 − λ)L| 1n ≥ λ|K | 1n + (1 − λ)|L| 1n (3)

for K , L nonempty. See an extensive survey by Gardner [12] on the subject for more
information.

Böröczky et al. [2] conjectured that a stronger inequality, called Log-Brunn–
Minkowski inequality, holds in the case when K and L are symmetric convex sets:

|λK +0 (1 − λ)L| ≥ |K |λ|L|1−λ, (4)

where the zero-sum stands for

λK +0 (1 − λ)L := {x ∈ R
n : ∀ u ∈ S

n−1 〈x, u〉 ≤ hK (u)λhL(u)1−λ};

here the support function of a convex set K is

hK (x) := sup
y∈K

〈x, y〉.

Böröczky et al. [2] verified this conjecture for planar symmetric convex sets. Sara-
glou [33] and Cordero-Erasquin et al. [10] verified the conjecture for unconditional
convex sets in Rn . Rotem [31] verified the conjecture for complex convex bodies.

Saraglou [32] showed that in case the Log-Brunn–Minkowski conjecture holds for
Lebesgue measure on R

n, then it is also correct for any even log-concave measure μ

in Rn : for all symmetric convex sets K and L and any λ ∈ [0, 1],

μ(λK +0 (1 − λ)L) ≥ μ(K )λμ(L)1−λ. (5)
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More generally, for p ∈ [0, 1], the L p-sum of convex sets is defined as

λK +p (1 − λ)L

:=
{
x ∈ R

n : ∀ u ∈ S
n−1 〈x, u〉 ≤ (λhK (u)p + (1 − λ)hL(u)p)

1
p

}
.

The limiting case p = 0 corresponds to the zero-sum, and the case p = 1 corresponds
to the usual Minkowski sum. The L p-Brunn–Minkowski conjecture states that for all
symmetric convex sets K and L and any λ ∈ [0, 1], and for p ∈ [0, 1]

|λK +p (1 − λ)L| ≥ |K |λ|L|1−λ. (6)

Equivalently (by homogeneity),

|λK +p (1 − λ)L| p
n ≥ λ|K | p

n + (1 − λ)|L| p
n . (7)

See Remark 2.2 for more details. Kolesnikov and Milman [20], in conjunction with
later results of Chen et al. [6] and Putterman [30] showed that (6) is true for p ∈
[1 − cn−3/2, 1].

One of our results is the following

Theorem 1.1 Let K and L be symmetric convex sets in Rn such that K ⊂ L. Suppose
that

p ≥ 1 − Cn−0.75,

for a sufficiently small absolute constant C > 0. Then for any λ > 0,

|λK +p (1 − λ)L| ≥ |K |λ|L|1−λ. (8)

Note that this improves upon the previous estimate p ≥ 1−Cn−1.5 of Kolesnikov
and Milman [20], in the partial case when K ⊂ L. While we follow the general
scheme of [20], we find an improvement in this partial case using a different estimate
at a certain key step; see Remark 7.2 for more details.

Independently of Böröczky, Lutwak, Yang, Zhang (and earlier), Gardner and Zvav-
itch conjectured [13] that for any even log-concave measure μ, any pair of symmetric
nonempty convex sets, and any λ ∈ [0, 1],

μ(λK + (1 − λ)L)
1
n ≥ λμ(K )

1
n + (1 − λ)μ(L)

1
n . (9)

The conjecture cannot hold without any structural assumptions: if, for example, K =
Bn
2 and L = Bn

2 + Re1, for R > 0 large enough, the inequality fails. Gardner and
Zvavitch [13] showed that (9) holds when K and L are dilates of a barycentered
convex set, building up on the work of Cordero-Erasquin et al. [10]. Nayar and Tkocz
[28] showed that the conjecture cannot hold only under the assumption that K and L
contain the origin. Kolesnikov and Livshyts [16] showed that for theGaussianmeasure
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μ and convex sets K and L containing the origin, the inequality (9) holds with power
1/2n in place of 1/n. Livshyts et al. [26] showed that the Log-Brunn–Minkowski
conjecture implies the dimensional Brunn–Minkowski conjecture, and thus (9) holds
for unconditional convex bodies and for symmetric convex sets on the plane.

In this paper we propose to study the following “unified” conjecture (which, as we
shall show, follows from the Log-Brunn–Minkowski conjecture):

Conjecture 1.2 (the (p,q)-inequality) Fix any p ∈ [0, 1]. For any even log-concave
measure μ, any pair of nonempty symmetric convex sets K and L and any λ ∈ [0, 1],
and for any q ∈ [0, p],

μ(λK +p (1 − λ)L)
q
n ≥ λμ(K )

q
n + (1 − λ)μ(L)

q
n .

Note that

• the case (0, 0) corresponds to the Log-Brunn–Minkowski conjecture;
• the case (1, 0) corresponds to Borell’s theorem;
• the case (p, 0) corresponds to the L p-Brunn–Minkowski inequality;
• for Lebesgue measure, (p, 0) automatically self-improves to (p, p) by a homo-
geneity argument. However, this is not the case for a general log-concave measure;

• the case (1, 1) corresponds to the conjecture of Gardner and Zvavitch.

It is important to note that for p ∈ (0, 1], this conjecture a-priori does not follow
and does not imply the Log-Brunn–Minkowski conjecture. It is also not clear, a-priori,
if the validity of this conjecture for p1 ∈ [0, 1] yields the validity of this conjecture
for a different p2 ∈ [0, 1]. In the case of Lebesgue measure, this implication works
for p1 < p2. In this paper, we shall show that the same implication works for any
log-concave measure!

We begin by outlining the following implications for the above conjecture, some
of which are straight-forward, others go back to previous results, and some we show
here.

Remark 1.3 Fix t > 0.

(1) The (p, q)-inequality implies the (p, q − t)-inequality, for any fixed pair of K
and L , fixed λ ∈ [0, 1] and a fixed μ.

(2) The (p, q)-inequality implies the (p + t, q)-inequality, for any fixed pair of K
and L , fixed λ ∈ [0, 1] and a fixed μ.

(3) (Saraglou) The (p, 0) inequality for Lebesgue measure (for all symmetric convex
K , L) implies the (p, 0) inequality for all even log-concave measures μ, and all
symmetric convex K , L .

Indeed, part (1) follows from Hölder’s inequality (the fact that (λa p + (1− λ)bp)
1
p is

increasing in p), and part (2) follows from the inclusion

λK +p (1 − λ)L ⊂ λK +p′ (1 − λ)L,

whenever p ≤ p′. This inclusion, in turn, also follows from Hölder’s inequality. Part
(3) was shown by Saraglou [32, Sect. 3] for p = 0, and the same argument yields this
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fact for any p ∈ [0, 1]. We would like to note that Saraglou [32, Sect. 5 ] also showed
that the inequality (5), verified in all dimensions, say, for theGaussianmeasure, implies
that it holds for all other log-concave even measures as well, in all dimensions.

Here, we show, furthermore,

Proposition 1.4 (Implication) Fix t > 0. The (p, q)-inequality for a fixed measure
μ (for all symmetric convex K , L) implies the (p + t, q + t)-inequality for μ and
all symmetric convex K , L. In particular, the validity of the Log-Brunn–Minkowski
conjecture would imply the validity of Conjecture 1.2 for all 0 ≤ q ≤ p ≤ 1.

Proposition 1.4, in the case when p = 0, was verified in [26]. Here we shall show
this more general fact, via an alternative argument, in Sect. 4.

We verify the (p, q)-inequali t y in certain cases for some range of p and q, and
our estimates depend on the appropriate parameters of the measure and on the inradius
of the sets K and L :
Theorem 1.5 Let K be a nonempty symmetric convex set in R

n containing r Bn
2 . Let

μ be the measure with twice-differentiable density e−V , where V is an even convex
function, such that

∇2V ≥ k1 I d

and

∫

K
�V ≤ k2nμ(K )

for some nonnegative k1, k2. Then for any λ > 0, and a nonempty symmetric convex
set L such that r Bn

2 ⊂ L, we have

μ(λK +p (1 − λ)L)
q
n ≥ λμ(K )

q
n + (1 − λ)μ(L)

q
n , (10)

whenever

• k1 ∈ [ 1n , 1] and

(1 − p)
1 + n

r2
+ q(1 + k2)(1 + k1) ≤ 2k1;

• Alternatively, for all k1 ≥ 0, (10) follows whenever

⎧⎨
⎩
q

(
k21 + k1k2 − (nk1 + k2)

1−p
r2

)
≤ k21 + n

(
1−p
r2

)2 − 1−p
r2

(n + 1)k1;
1−p
r2

≤ k1
n .

Additionally, we show
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Proposition 1.6 Under the assumptions of Theorem 1.5, assuming additionally that
K ⊂ L, and assuming that k1 ≤ 1, we moreover get the conclusion (10) with the
assumption

(1 − p)
2
√
n
√
1 + k2

√
1 + k1 + √

k1
2r

+ q(1 + k2)(1 + k1) ≤ 2k1.

As a corollary of Theorem 1.5 and Proposition 1.6, we get a result when μ is the
n-dimensional Gaussian measure, defined to have a density (2π)−n/2e−|x |2/2dx , as in
this case k1 = k2 = 1.

Corollary 1 Let γ be the Gaussian measure, and let K and L be symmetric convex
sets containing r Bn

2 . Then for any λ > 0,

(1) γ (λK +p (1 − λ)L) ≥ γ (K )λγ (L)1−λ, whenever p ≥ 0 and

p ≥ 1 − 2r2

n + 1
.

(2) In particular, the Gaussian Log-Brunn–Minkowski inequality holds for all convex
sets K and L containing

√
0.5(n + 1)Bn

2 .

(3) More generally, γ (λK +p (1−λ)L)
q
n ≥ λγ (K )

q
n + (1−λ)γ (L)

q
n , provided that

4q + n + 1

r2
(1 − p) ≤ 2.

(4) Assuming further that K ⊂ L, we show that γ (λK +p (1 − λ)L) ≥
γ (K )λγ (L)1−λ, whenever p ≥ 0 and

p ≥ 1 − r√
n + 0.25

.

Note that part (3) implies some of the results from [16], corresponding to the case
p = 1.

In addition to the above, we verify the (p, p)-inequality for all p ∈ [0, 1], in the
partial case when K and L are dilates. The result below extends both the B-theorem
of Cordero, Fradelizi and Maurey [10] and a result of Gardner and Zvavitch [13].

Theorem 1.7 Conjecture 1.2 holds in the case when the measure is Gaussian and K
and L are dilates of each other. That is, for any convex set K and any t ∈ R, and for
all p ∈ [0, 1], λ ∈ [0, 1],

γ (λK +p (1 − λ)t K )
p
n ≥ λγ (K )

p
n + (1 − λ)γ (t K )

p
n .

The methods of our proof involve considering local versions of the aforementioned
functional inequalities, building up on the methods developed by Kolesnikov and
Milman [17–20], Colesanti et al. [7–9], Kolesnikov and Livshyts [16]. In particular,
we use a Bochner-type identity obtained in [17].
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In Sect. 2 we derive local versions of the inequalities. In Sect. 3 we show that the
local version implies the global version, for any fixed measure μ, using the method of
Putterman [30] (whose result was derived in the Lebesgue case). In Sect. 4 we show the
Proposition 1.4. In Sect. 5 we describe a reduction of the inequality using integration
by parts. In Sect. 6 we do several preparatory estimates. In Sect. 7 we show the proof
of Theorem 1.1. In Sect. 8 we verify Theorem 1.5. In Sect. 9 we verify Proposition 1.6.
In Sect. 10 we prove Theorem 1.7.

2 Infinitesimal Forms

Below, an even log-concavemeasureμwith density e−V onRn is fixed, andwe assume
that V ∈ C2(Rn). Given a convex set K , II stands for its quadratic form, and Hx is
the weighted mean curvature at x associated with the measure μ:

Hx = tr(II) − 〈∇V , nx 〉.

In order to derive our results, we reduce the problem to its infinitesimal version
following the approach of [7–9,17–20].

Lemma 2.1 (the infinitesimal form of the (p,q)-inequality 1.2) Suppose Conjecture 1.2
holds for the measure μ with the parameters p and q. Then for any C2,+ symmetric
convex set K , and for any twice-differentiable f : ∂K → R, we have

∫

∂K
Hx f

2 − 〈II−1∇∂K f ,∇∂K f 〉 + (1− p)
f 2

〈x, nx 〉dμ − n − q

nμ(K )

(∫

∂K
f dμ

)2

≤ 0.

(11)

Proof Weapply the argument “the global concavity implies the local concavity”.More
precisely, we use the following fact: the inequality

μ(λK +p (1 − λ)L)
q
n ≥ λμ(K )

q
n + (1 − λ)μ(L)

q
n

implies
d2

dε2
μ(K +p ε f )

q
n ≤ 0. (12)

for sufficiently regular f on the unit sphere and strictly convex K with C2-boundary,

where K +p ε f is a convex body with support function p
√
h p
K + ε f p. Note that for

sufficiently small values of ε, this function is indeed a support function, given that K
is strictly convex. The proof mimics the arguments of Lemma 3.4 in [20] and we omit
it here.

We use the second-order Taylor expansion

hK +p ε f = hK + εzhK + ε2

2
(1 − p)z2hK + o(ε),
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where

z = f p

ph p
K

, if p 
= 0,

and

z = log f , if p = 0.

We recall the expressions for derivatives of μ(K + ε f ) from [19]:

d

dε
μ(K + ε f )|ε=0 =

∫

∂K
gdμ (13)

and
d2

dε2
μ(K + ε f )|ε=0 =

∫

∂K
Hxg

2dμ −
∫

∂K
〈I I−1∇∂K g,∇∂K g〉dμ, (14)

where

g = f (nx ).

We will use later the fact that the first derivative identity (13) does not require any
regularity assumption on K . A proof is provided in the appendix.

Applying the Taylor expansion along with these formulas, we get

d

dε
μ(K +p ε f )|ε=0 =

∫

∂K
f dμ

d2

dε2
μ(K +p ε f )|ε=0 =

∫

∂K
Hx f

2dμ

−
∫

∂K
〈I I−1∇∂K f ,∇∂K f 〉dμ + (1 − p)

∫

∂K

f 2

hK (nx )
dμ,

where

f = (zhK )(nx ).

Thus (12) reads as

∫

∂K
Hx f

2dμ −
∫

∂K
〈I I−1∇∂K f ,∇∂K f 〉dμ + (1 − p)

∫

∂K

f 2

hK (nx )
dμ ≤ 1

μ(K )

(
1 − q

n

)(∫

∂K
f dμ

)2
.

��
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We note that Kolesnikov and Milman [20] showed that the inequality (11) is true
when K = Bn

p, for p ∈ [2,∞], provided that n > c(p). For p = 2 this was also
verified by Colesanti et al. [9].

Remark 2.2 Consider an arbitrary symmetric bilinear form Q : A × A → R, where
A is a linear space. Suppose that for every a ∈ A, one has

Q(a, a) ≤ 0. (15)

Fix any element z ∈ A. We note that one may always improve (15) and make it
invariant under scaled addition of z. Indeed, (15) implies that for every t ∈ R,

Q(a + t z, a + t z) = Q(a, a) + 2t Q(a, z) + t2Q(z, z) ≤ 0. (16)

Viewing (16) as a family of inequalities indexed by t ∈ R, we note that (16) is sharpest
possible when t = − Q(a,z)

Q(z,z) , and in this case it becomes

Q(a, a) ≤ Q(a, z)2

Q(z, z)
. (17)

Note that (17) is sharper than (16), and, importantly, the inequality (17) is invariant
under the change a → a + sz, for any s ∈ R.

We apply this abstract observation with the algebra A of smooth functions on ∂K ,

the bilinear form

Q( f , g) =
∫

∂K
Hx f g − 〈II−1∇∂K f ,∇∂K g〉 + (1 − p)

f g

〈x, nx 〉dλ

− 1

|K |
(∫

∂K
f dλ

) (∫

∂K
gdλ

)
,

where λ is Lebesgue measure, and the special function z(x) = 〈x, nx 〉. Integration by
parts yields that the inequality (11) with μ = λ automatically yields the inequality

∫

∂K
Hx f

2 − 〈II−1∇∂K f ,∇∂K f 〉 + (1 − p)
f 2

〈x, nx 〉dλ − n − p

n|K |
(∫

∂K
f dλ

)2

≤ 0,

(18)
as per the argument above, according to which, generally, (15) yields an a-priori
stronger inequality (17).

This (together with the local-to-global result of Putterman [30], and with
Lemma 2.1) explains why (6) is equivalent to (7), and not just weaker. Alternatively,
a standard elementary argument can show this fact as well.

The underlying reason why the “improved” inequality (18) assumes such a nice
form is the homogeneity of Lebesgue measure. The choice of function z = 〈x, nx 〉
corresponds, geometrically, to taking additional dilates of K .

An important feature of (18) is its invariance under the change f → f + t〈x, nx 〉,
which was previously noticed and used by Kolesnikov and Milman [20].
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3 Local Implies Global

In this section, we show that verifying the local form of the (p, q) inequality leads to
the global form. We will use methods developed by Putterman [30].

We begin by recalling various notations and definitions. Let f be a positive contin-
uous function on the sphere. The Wulff shape of f is the set

W ( f ) = {x ∈ R
n : ∀ u ∈ Sn−1 〈x, u〉 ≤ f (u)}.

See, e.g. [2–4] or [34] for a discussion and properties of Wulff shapes. Observe that
W ( f ) is the intersection of closed half-spaces containing the origin and is therefore a
convex body. We shall use notation

(1 − λ)hK +p λhL = (
(1 − λ)h p

K + λh p
L

) 1
p .

Recall also that

(1 − λ)K +p λL = W
(
(1 − λ)hK +p λhL

)
.

In this section, we will use g to denote the continuous density of our log-concave
evenmeasureμ. Given a convex body K with Gauss map νK , the surface area measure
of K with respect to μ is defined as

σμ,K (
) =
∫

ν−1
K (
)

g(x)dHn−1(x)

for all Borel 
 ⊂ Sn−1. Here Hn−1 stands for the (n − 1)-dimensional Hausdorff
measure. Observe that in the special case when K is a polytope with outer normals
ui , 1 ≤ i ≤ N and corresponding faces Fi , 1 ≤ i ≤ N we have

dσμ,K (u) =
N∑
i=1

δui μn−1(Fi )du, (19)

where μn−1(Fi ) := ∫
Fi
g(x)dHn−1(x).

Let us now consider a family F of symmetric convex sets that is closed under L p-
Minkowski convex interpolation and that is open with respect to the Hausdorff metric.
This means that for every K , L ∈ F and λ ∈ [0, 1], p ≥ 0 we have (1−λ)K +p λL ∈
F and that for every K ∈ F there exists ε > 0 such that d(K , L) < ε for a symmetric
convex body L implies that L ∈ F .

Theorem 3.1 Assume that (11) holds for some p, q < 1 for any C2,+ symmetric
convex K ∈ F and any even C1-smooth f : ∂K → R, that is

∫

∂K
Hx f

2 − 〈II−1∇∂K f ,∇∂K f 〉 + (1 − p)
f 2

〈x, nx 〉dμ − n − q

nμ(K )

(∫

∂K
f dμ

)2

≤ 0.
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Then, for any symmetric convex sets K , L ∈ F and λ ∈ [0, 1] we have

μ((1 − λ)K +p λL)
q
n ≥ (1 − λ)μ(K )

q
n + λμ(L)

q
n .

As a prototypical example, one can takeF to be the set of symmetric convex bodies
that contain a ball of a given radius. In addition, Theorem 3.1 can also be applied in
the case when F is simply the set of symmetric convex bodies.

Our proof will be accomplished through approximation by strongly isomorphic
polytopes. Let us recall:

Definition 3.2 Two polytopes K and L are said to be strongly isomorphic if

dim F(K , u) = dim F(L, u)

for all u ∈ Sn−1, where F(K , u) denotes the support set {x ∈ K : 〈x, u〉 = hK (u)}.
When K , L and p are all assumed fixed, let us employ the notation

Kλ = (1 − λ)K +p λL.

We use the following lemma:

Lemma 3.3 Let α, β, γ ∈ [0, 1] and λ = (1 − γ )α + γβ. If Kα, Kλ, and Kβ are
strongly isomorphic then Kλ = (1 − γ )Kα +p γ Kβ .

Proof Let u1, . . . , uN be the facet normals of Kα, Kλ, and Kβ . We may write

Kλ = {x : 〈x, ui 〉 ≤ ((1 − λ)hK +p λhL)(ui ), i = 1, . . . , N }.

Since each ui is also a facet normal of Kα and Kβ , we have

hKα (ui ) = (
(1 − α)hK +p αhL

)
(ui )

and

hKβ (ui ) = (
(1 − β)hK +p βhL

)
(ui ).

Therefore,

(
(1 − γ )hKα +p γ hKβ

)
(ui ) = ((1 − γ )((1 − α)hK +p αhL)

+p γ ((1 − β)hK +p βhL))(ui )

= ((1 − λ)hK +p λhL)(ui ),

and so our proof is concluded. ��
A further ingredient we need is a weak-convergence result for the surface area

measure of a convex body with respect to μ.
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Lemma 3.4 Let K , L be convex bodies in R
n within Hausdorff distance ε from each

other, ε > 0. Then for every bounded function a(u),

∣∣∣∣
∫

Sn−1
a(u)dσμ,K (u) −

∫

Sn−1
a(u)dσμ,L(u)

∣∣∣∣ ≤ Cε,

where the constant C > 0 depends on ‖a‖∞, g,maxx∈K |x |,maxx∈L |x |.
In the case of Lebesgue measure, this lemma is implicit in results proved in Schnei-

der [34]. For the general case, one can argue by approximating K , L by strongly
isomorphic polytopes. To compare the (n−1)-dimensional μmeasure of correspond-
ing faces, one uses the fact that g is Lipschitz on compact sets.

Lemma 3.5 Assume that (11) holds for some p, q < 1 for any C2,+ symmetric convex
K ∈ F and any even C1-smooth f : ∂K → R. Then we have the following statement:
For any two strongly isomorphic symmetric polytopes K , L ∈ F , and for anyλ ∈ [0, 1]
such that there exists a (possibly one-sided) neighborhood U of λ for which all the

{Kλ′ : λ′ ∈ U } are strongly isomorphic to one another, we have d2

dλ2

(
μ(Kλ)

q
n

)
|λ ≤ 0.

Proof By Lemma 3.3 and the fact thatF is closed under Minkowski interpolation, we
may reduce our problem to showing that if K , L are strongly isomorphic polytopes
such that Kλ is strongly isomorphic to K and L for all λ ∈ [0, 1] then we have
d2

dλ2

(
μ(Kλ)

q
n

) ∣∣
λ=0 ≤ 0.

Let u1, . . . , uN denote the set of outer normals to K (and all Kλ) and let Fi (Kλ)

denote the face of Kλ with outer normal ui .

Let hi = hK (ui ). We choose si such that hL(ui ) = hi (1 + psi )
1
p and define

ai (λ) = (1 + λpsi )
1
p ,

bi (λ) = (1 + λpsi )
1−p
p ,

ci (λ) = (1 + λpsi )
1−2p

p .

Observe that hKλ(ui ) = hiai (λ). Since Kλ is strongly isomorphic to K , its surface
area measure is given by

∑N
i=1 μn−1(Fi (Kλ))δui by (15).

We have

d

dλ
μ(Kλ) = lim

ε→0

1

ε
(μ(Kλ+ε) − μ(Kλ))

= lim
ε→0

1

ε

N∑
i=1

∫ hi ai (λ+ε)

hi ai (λ)

μn−1(Fi (K(hi ai )−1(α)))dα

=
N∑
i=1

d

dλ
(hiai (λ))μn−1(Fi (Kλ))

=
N∑
i=1

hi si bi (λ)μn−1(Fi (Kλ)).

(20)
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Hence,

d

dλ
μ(Kλ)

∣∣
λ=0 =

N∑
i=1

hi siμn−1(Fi (K )).

We also compute, by the product rule applied to (20),

d2

dλ2
μ(Kλ) = (1 − p)

N∑
i=1

s2i hi ci (λ)μn−1(Fi (Kλ))

+
N∑
i=1

hi si bi (λ)
d

dλ
μn−1(Fi (Kλ)),

and so

d2

dλ2
μ(Kλ)

∣∣
λ=0 = (1 − p)

N∑
i=1

s2i hiμn−1(Fi (K ))

+
N∑
i=1

hi si
d

dλ
μn−1(Fi (Kλ))

∣∣
λ=0.

The claim that d2

dλ2

(
μ(Kλ)

q
n

)
≤ 0 is equivalent to the claim that

d2

dλ2
μ(Kλ)

∣∣
λ=0 − n − q

nμ(K )

(
d

dλ
μ(Kλ)

∣∣
λ=0

)2

≤ 0.

Using the above expressions, we thus wish to demonstrate that

(1 − p)
N∑
i=1

s2i hiμn−1(Fi (K )) +
N∑
i=1

hi si
d

dλ
μn−1(Fi (Kλ))

∣∣
λ=0

≤ n − q

nμ(K )

(
N∑
i=1

hi siμn−1(Fi (K ))

)2

.

Let Kε, Lε ∈ C2,+
e be approximations to K , L , respectively, such that

d(Kε, K ), d(Lε, L) < ε

in the Hausdorff metric. For sufficiently small ε, we have Kε, Lε ∈ F . Therefore the
inequality (11) yields
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(1 − p)
∫

∂Kε

f 2

〈x, nx 〉dμ∂Kε (x) +
∫

∂Kε

Hx f
2 − 〈II−1∇∂Kε f ,∇∂Kε f 〉dμ∂Kε

≤ n − q

nμ(Kε)

(∫

∂Kε

f dμ∂Kε

)2

(21)

for any C1-smooth f : ∂Kε → R. Let us take fε(x) = wε(nx ) where

wε(u) = 1

p
hKε (u)

((
hLε (u)

hKε (u)

)p

− 1

)
. (22)

Note that w0(ui ) = hi si . By Lemma 3.4, the fact that wε → w uniformly on Sn−1,
we have

∫

∂Kε

fεdμ∂Kε =
∫

Sn−1
wε(θ)dσμ,Kε (θ)

→
∫

Sn−1
w(θ)dσμ,K (θ)

=
N∑
i=1

hi siμn−1(Fi (K )).

Similarly,

∫

∂Kε

f 2ε
〈x, nx 〉dμ∂Kε (x) =

∫

Sn−1

w2
ε (θ)

hKε (θ)
dσμ,Kε (θ)

→
∫

Sn−1

w2(θ)

hK (θ)
dσμ,K (θ)

=
N∑
i=1

s2i hiμn−1(Fi (K )).

Furthermore, by the second derivative formula (14):

∫

∂Kε

Hx f
2
ε − 〈II−1∇∂Kε fε,∇∂Kε fε〉dμ∂Kε = d2

ds2
μ(W (hKε + swε))

∣∣
s=0.

It therefore remains to show that

lim
ε→0

d2

ds2
μ(W (hKε + swε))

∣∣
s=0 =

N∑
i=1

hi si
d

dλ
μn−1(Fi (Kλ)

∣∣
λ=0. (23)

By Lemma 11.1, we know that

d

ds
μ(W (hKε + swε))

∣∣
s=s0

= ∫
Sn−1 wε(θ)dσμ,W (hKε +s0wε)(θ).
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Therefore

d2

ds2
μ(W (hKε + swε))

∣∣
s=0

= lim
s→0

1

s

(∫

Sn−1
wε(θ)g(ν−1

W (hKε +swε)
(θ))dσW (hKε +swε)(θ)

−
∫

Sn−1
wε(θ)g(ν−1

Kε
(θ))dσKε (θ)

)
,

and so

lim
ε→0

d2

ds2
μ(W (hKε + swε))|s=0

= lim
ε→0

lim
s→0

1

s

(∫

Sn−1
wε(θ)g

(
ν−1
W (hKε +swε)

(θ)
)
dσW (hKε +swε)(θ)

−
∫

Sn−1
wε(θ)g(ν−1

Kε
(θ))dσKε (θ)

)
.

We denote the limiting expression by �(s, ε).
We now show that we can interchange the limits in s and ε. This will rely on

the Moore-Osgood theorem. It is clear by Hausdorff continuity and Lemma 3.4
that limε→0 �(s, ε) always exists for s 
= 0. Therefore, it must be shown that
lims→0 �(s, ε) is uniform for ε 
= 0.

We write �(s, ε) = �1(s, ε) + �2(s, ε), where

�1(s, ε) = 1

s

∫

Sn−1
wε(θ)(g(ν−1

W (hKε +swε)
(θ)) − g(ν−1

Kε
(θ)))dσW (hKε +swε)(θ)

and

�2(s, ε) = 1

s

∫

Sn−1
wε(θ)g(ν−1

Kε
(θ))(dσW (hKε +swε) − dσKε )(θ).

We first show that lims→0 �1(s, ε) is uniform for ε 
= 0.
To achieve this, it suffices to show that, for any fixed θ ∈ Sn−1,

lim
s→0

1

s
(g(ν−1

W (hKε +swε)
(θ)) − g(ν−1

Kε
(θ)))

is uniform for ε 
= 0. Now,

ν−1
W (hKε +swε)

(θ) = ∇(hKε + swε)(θ)

= ∇hKε (θ) + s∇wε(θ)

= ν−1
Kε

(θ) + s∇wε(θ),
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where we have used the fact that C2
h,e(S

n−1), the space of even C2-support functions,

is open in C2
e (S

n−1), the space of even C2-functions on the sphere, and moreover that
ν−1
K = ∇hK for C2,+ convex bodies K . Therefore,

lim
s→0

1

s
(g(ν−1

W (hKε +swε)
(θ)) − g(ν−1

Kε
(θ))) = D∇wε(θ)g(ν

−1
Kε

(θ))

and for every s > 0, there exists t(s) ∈ [0, s] such that

1

s
(g(ν−1

W (hKε +swε)
(θ)) − g(ν−1

Kε
(θ))) = D∇wε(θ)g(ν

−1
Kε

(θ) + t(s)∇wε(θ)).

Thus,

∣∣∣∣
1

s
(g(ν−1

W (hKε +swε)
(θ)) − g(ν−1

Kε
(θ))) − D∇wε(θ)g(ν

−1
Kε

(θ))

∣∣∣∣
=

∣∣∣D∇wε(θ)g(ν
−1
Kε

(θ) + t(s)∇wε(θ)) − D∇wε(θ)g(ν
−1
Kε

(θ))

∣∣∣
≤

∣∣∣Dg(ν−1
Kε

(θ) + t(s)∇wε(θ)) − Dg(ν−1
Kε

(θ))

∣∣∣ |∇wε(θ)| .

(24)

Recalling the definition of wε (22), we see that ∇wε can be bounded in terms of
hKε , hLε ,∇hKε ,∇hLε . As hKε ≤ 2 supx∈K |x |, hLε ≤ 2 supx∈L |x | and ∇hKε ∈
∂Kε ⊂ 2K ,∇hLε ∈ ∂Lε ⊂ 2L , it follows that there exists a uniform bound (inde-
pendent of ε) such that

|∇wε(θ)| � 1. (25)

Combining (24), (25), and the fact that Dg is uniformly continuous on a compact set,
it follows that our desired limit is indeed uniform for ε 
= 0.

We now prove that lims→0 �2(s, ε) is uniform for ε 
= 0. Observe that

dσW (hKε +swε) − dσKε

s
→ dσε,

where dσε is some second surface area measure on the sphere.
Therefore,

lim
s→0

�2(s, ε) =
∫

Sn−1
wε(θ)g(ν−1

Kε
(θ))dσε(θ).

To see that the convergence is uniform for ε 
= 0, we write

∣∣∣∣
1

s

∫

Sn−1
wε(θ)g(ν−1

Kε
(θ))

(
dσW (hKε +swε) − dσKε

)
(θ)

−
∫

Sn−1
wε(θ)g(ν−1

Kε
(θ))dσε(θ)

∣∣∣∣
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≤ ‖wε‖∞ ‖g‖∞
∣∣∣∣
dσW (hKε +swε) − dσKε

s
− dσε

∣∣∣∣ (Sn−1)

�
∣∣∣∣
dσW (hKε +swε) − dσKε

s
− dσε

∣∣∣∣ (Sn−1)

� OK ,L(s),

where the last step is simply a consequence of standard results on surface areameasures
presented in Schneider [34].

Therefore, indeed

lim
ε→0

d2

ds2
μ(W (hKε + swε))|s=0

= lim
ε→0

lim
s→0

1

s

(
d

ds
μ(W (hKε + swε)

∣∣
s − d

ds
μ(W (hKε + swε))|s=0

)

= lim
s→0

lim
ε→0

1

s

(
d

ds
μ(W (hKε + swε)

∣∣
s − d

ds
μ(W (hKε + swε))|s=0

)

= lim
s→0

lim
ε→0

1

s

(∫

Sn−1
wε(θ)dσμ,W (hKε +swε)(θ) −

∫

Sn−1
wε(θ)σμ,Kε (θ)

)

= lim
s→0

1

s

(∫

Sn−1
w(θ)dσμ,W (hK+sw)(θ) −

∫

Sn−1
w(θ)dσμ,K (θ)

)
.

Since ((1 − s)hK +p shL) = hK + sw + O(s2), it follows from Lemma 3.4 that

∫

Sn−1
w(θ)dσμ,W (hK+sw)(θ) =

∫

Sn−1
w(θ)dσμ,W ((1−s)hK+pshL )(θ) + O(s2).

Therefore,

lim
ε→0

d2

ds2
μ(W (hKε + swε))|s=0

= lim
s→0

1

s

(∫

Sn−1
w(θ)dσμ,Ks (θ) −

∫

Sn−1
w(θ)dσμ,K (θ) + O(s2)

)

= d

ds

∫

Sn−1
w(θ)dσμ,Ks (θ)

∣∣
s=0

= d

ds

N∑
i=1

w(ui )μn−1(Fi (Ks))
∣∣
s=0

=
N∑
i=1

hi si
d

ds
μn−1(Fi (Ks))

∣∣
s=0.

This concludes the proof of (23) and the lemma. ��
We will use as an important ingredient the following fact proven in Proposition 3.6

of Putterman [30].
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Lemma 3.6 (Putterman [30]) Let K , L be strongly isomorphic polytopes. There exist
finitely many open intervals I1, . . . , Im ⊂ [0, 1] such that [0, 1] \ ∪m

j=1 I j is a finite
set of points, and for each j , all the polytopes Kλ for λ ∈ I j are strongly isomorphic.

Moreover, as follows from Putterman’s proof, at points p not contained in ∪m
j=1 I j ,

we have that the face in Kp corresponding to some normal vector now vanishes, while
a face corresponding to this vector was present in the polytopes in at least one of the
intervals adjacent to p.

This allows us to demonstrate the following:

Proposition 3.7 Assume that (11) holds for some p, q < 1 for any C2,+ symmetric
convex K ∈ F and any even C1-smooth f : ∂K → R. Then for any two strongly
isomorphic symmetric polytopes K , L ∈ F , μ(Kλ)

q
n is concave on [0, 1].

Proof Weapply Lemma 3.6 to get a sequence of intervals I1, . . . , Im . From the remark,
for p /∈ ∪m

j=1 I j , a face corresponding to some normal just vanishes. However, even if
this face happens to be a facet (an (n − 1)-dimensional face), our computation in (20)
is unaffected. We simply have that μn−1(Fi (Kλ)) = 0 for some of the i . Therefore,
considering λ → p from the left and from the right separately, the formula in (20)
shows that d

dλμ(Kλ) is continuous at all points p ∈ [0, 1]\∪m
j=1 I j . Since formula (20)

implies continuity in ∪m
j=1 I j also, we see that

d
dλμ(Kλ) is continuous on the whole

interval [0, 1].
By Lemma 3.5, d

dλ

(
μ(Kλ)

q
n

)
is nonincreasing on the intervals Ii , i = 1, . . . ,m.

Since d
dλ

(
μ(Kλ)

q
n

)
is continuous, it must therefore be nonincreasing on the whole

interval [0, 1]. In other words, μ(Kλ)
q
n is concave on [0, 1], as desired. ��

Proof of Theorem 3.1 Since any two symmetric convex bodies K , L can be approx-
imated by sequences of strongly isomorphic polytopes converging in the Hausdorff
metric to K , L , respectively, and F is open with respect to this metric, and moreover
the pointwise limit of concave functions is concave, we deduce our theorem from
Proposition 3.7. ��

4 Proof of Proposition 1.4

Recall that a measure is said to be ray-decreasing, if its density f satisfies f (tv) ≥
f (v), for any v ∈ R

n and any t ∈ [0, 1]. In particular, a density of any even log-
concave measure is ray-decreasing. Further, let us assume without loss of generality
that the density of the measure is C2-smooth.

In view of Lemma 2.1, the local version of the (p, p)- conjecture reads as

∫

∂K
Hx f

2dμ −
∫

∂K
〈I I−1∇∂K f ,∇∂K f 〉dμ + (1 − p)

∫

∂K

f 2

hK (nx )
dμ ≤ 1

μ(K )

(
1 − p

n

)(∫

∂K
f dμ

)2
.
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By Theorem 3.1, the local version is equivalent to the global version. Therefore, in
order to show that the (p, p)-inequality strengthens when p decreases, it is enough to
show that

μ(K )

∫

∂K

f 2

〈x, nx 〉dμ ≥ 1

n

(∫

∂K
f dμ

)2

, (26)

for any measure μ with a ray-decreasing smooth density.
We shall verify (26).Wewrite (see, e.g., Nazarov [29] as well as Livshyts [22–24]):

μ(K ) =
∫ 1

0

∫

∂K
〈x, nx 〉tn−1e−V (t x)dtdHn−1(x).

As the density e−V is ray-decreasing, the function V is ray-increasing, and thus we
see that V (t x) ≤ V (x), for all t ∈ [0, 1]. We conclude that

μ(K ) ≥ 1

n

∫

∂K
〈x, nx 〉dμ,

which, together with Cauchy’s inequality, implies (26). ��

5 An Application of Bochner’s Method and Integration by Parts

Consider an even measure μ on R
n with C2 density dμ(x) = e−V (x)dx , and fix a

C2,+-smooth symmetric convex set K . In this section and everywhere below, we use
notation

∫
:= 1

μ(K )

∫

K
dμ(x).

We shall also use the notation

Var(g) =
∫

g2 −
(∫

g

)2

.

Let

Lu = �u − 〈∇u,∇V 〉.

The following Bochner-type identity was obtained byKolesnikov andMilman [17].
It is a particular case of Theorem 1.1 in [17] (note that Ric¯ = ∇2V in our case). This
is a generalization of a classical result of R.C. Reilly.

Proposition 5.1 (Kolesnikov and Milman [17]) Let u ∈ C2(K ) and un = 〈∇u, nx 〉 ∈
C1(∂K ). Then
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∫

K
(Lu)2dμ =

∫

K

(
||∇2u||2 + 〈∇2V∇u,∇u〉

)
dμ

+
∫

∂K
(Hxu

2
n − 2〈∇∂K u,∇∂K un〉 + 〈II∇∂K u,∇∂K u〉) dμ∂K (x).

(27)

Therefore, we get:

Lemma 5.2 Suppose for every even f ∈ C2(∂K ) there exists u ∈ C2(K ) such that
for each x ∈ ∂K ,

〈∇u, nx 〉 = f (x),

and

∫
||∇2u||2 + 〈∇2V∇u,∇u〉 ≥ Var(Lu) + q

n

(∫
Lu

)2

+1 − p

μ(K )

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 dμ∂K .

Then for every C2-smooth symmetric convex set L, and every λ ∈ [0, 1],

μ(λK +p (1 − λ)L)
q
n ≥ λμ(K )

q
n + (1 − λ)μ(L)

q
n .

Proof Recall that for any positive definite n × n matrix A and for any x, y ∈ R
n we

have
〈Ax, x〉 + 〈A−1y, y〉 ≥ 2〈x, y〉. (28)

As K is convex, its second quadratic form II is positive definite, and consequently,

− 2〈∇∂K u,∇∂K un〉 + 〈II∇∂K u,∇∂K u〉 ≥ −〈II−1∇∂K f ,∇∂K f 〉. (29)

Recall also that ∫

K
Ludμ =

∫

∂K
〈∇u, nx 〉dμ∂K . (30)

By (29), (30) and Proposition 5.1, the assumption of this Lemma implies the validity
of the local version of Conjecture 1.2, as per Lemma 2.1. The Lemma thus follows
from Theorem 3.1. ��

6 Preparatory Estimates

Fix a measure μ with even density e−V as in Theorem 1.5. Suppose

r Bn
2 ⊂ K ⊂ RBn

2 . (31)
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Let Cpoin(K ;μ) be the Poincare constant of the restriction of μ on K , that is the
smallest nonnegative number such that

∫

K
f 2dμ − 1

μ(K )

(∫

K
f dμ

)2

≤ C2
poin(K ;μ)

∫

K
|∇ f |2dμ,

for every differentiable function f : K → R. We recall that C−2
poin(K ;μ) is the first

Neumann eigenvalue of the operator Lu = �u − 〈∇u,∇V 〉 restricted on K , or in
other words, Cpoin(μ; K ) is the smallest number such that there exists a function
u with Lu = −Cpoin(μ; K )−2u on K and 〈∇u, nx 〉 = 0 on ∂K . The celebrated
Kannan–Lovasz–Simonovits (KLS) conjecture [15] states that the Poincare constant
of an isotropic log-concave measure is bounded from above by an absolute constant,
independent of the dimension (in our current notation, isotropicity means that the
restriction ofμ onto K is isotropic). See Lee–Vempala [21] for the best to date estimate
in the direction of this conjecture, and for the discussion of history and powerful
implications of the KLS conjecture.

The following fact is classical and appears, e.g. in Lemma 5.1 from [16].

Lemma 6.1 For any symmetric convex set K , and even log-concave measure μ with
even density e−V ,

1

μ(K )

∫

K
|∇V |2dμ ≤

∫
�V dμ.

Next, we show, using ideas similar to [16]:

Lemma 6.2 Suppose K is a set. Let u : K → R be a C2-smooth function, and fix
a, b > 0. Then

a||∇2u||2 + b|∇u|2 ≥ ab(Lu)2

a|∇V |2 + bn
.

Proof Assumewithout loss of generality that a = 1. By the Cauchy–Schwarz inequal-
ity,

||∇2u||2 ≥ 1

n
|�u|2. (32)

Indeed, recall that ||∇2u||2 = ∑n
i=1 λ2i , where λ1, . . . , λn are the eigenvalues of∇2u,

and recall also that �u = ∑n
i=1 λi . Hence (32) follows.

Next, writing �u = Lu + 〈∇V ,∇u〉, we see that

||∇2u||2 + b|∇u|2 ≥ 1

n
(Lu + 〈∇V ,∇u〉)2 + b|∇u|2

= 〈A∇u,∇u〉 + 2

〈
Lu

n
∇V ,∇u

〉
+ (Lu)2

n
, (33)
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where

A = 1

n
∇V ⊗ ∇V + bId.

We observe that for any vector z ∈ R
n and for all α, β ∈ R,

(β I d + αz ⊗ z)−1 z = z

β + α|z|2 .

Using this observation, and the inequality (28) with A defined above (as it is indeed
positive definite), x = −∇u and y = Lu

n ∇V , we estimate (33) from below by

(Lu)2

n

(
1 − 1

n
〈A−1∇V ,∇V 〉

)
= b(Lu)2

bn + |∇V |2 .

Rescaling finishes the proof. ��
From Lemmas 6.1 and 6.2 we get

Lemma 6.3 Suppose K is a symmetric convex set. Let u : K → R be an even C2-
smooth function such that Lu = 1 on K , and fix a, b ∈ R such that aC−2

poin(K , μ)+b ≥
0 and a ≥ b. Then

∫
a||∇2u||2 + b|∇u|2 ≥ C−2

poin(K , μ)a + b(
1 + C−2

poin(K , μ)
)

(1 + k2)n
.

Proof Since u is even,

∫
∇u = 0,

and we apply the Poincare inequality:

∫
||∇2u||2 ≥ C−2

poin(K , μ)

∫
|∇u|2.

We estimate
∫

a||∇2u||2 + b|∇u|2 ≥
∫

(a − ε)||∇2u||2 + (b + εC−2
poin(K , μ))|∇u|2. (34)

Pick ε = a−b
1+C−2

poin(K ,μ)
. Note that ε ≥ 0 since a ≥ b. We get

a − ε = b + εC−2
poin(K , μ) = b + aC−2

poin(K , μ)

1 + C−2
poin(K , μ)

.

123



On the Lp-Brunn–Minkowski and Dimensional Brunn–Minkowski

We combine (34) with Lemma 6.2 (applied with the parameters a − ε and b +
εC−2

poin(K , μ)), to get

∫
a||∇2u||2 + b|∇u|2 ≥

∫ C−2
poin(K , μ)a + b(

1 + C−2
poin(K , μ)

)
(n + |∇V |2)

.

Next, we use Jensen’s inequality and recall that

∫
|∇V |2 ≤ k2n (35)

by Lemma 6.1 (in view of the definition of k2). The Lemma follows. ��

7 Proof of Theorem 1.1

Let K be a symmetric convex set, and denote by Cpoin(K ) the Poincare constant of
the restriction of the Lebesgue measure on K .

Proposition 7.1 For every convex symmetric C2-smooth set K , and for every non-
negative even C1-smooth function f : ∂K → R, there exists a C2-smooth function
u : K → R such that 〈∇u, nx 〉 = f (x) for all x ∈ ∂K , and such that

∫
||∇2u||2 ≥ Var(�u) + 1 − p

|K |
∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 ,

whenever

p ≥ max

(
1 − r

Cpoin(K )(
√
n + 1)

, 0

)
.

Proof Wemay assume that f is not identically zero, and thus by continuity,
∫
∂K f > 0.

Without loss of generality, by scaling, we may assume that

∫

∂K
f = |K |. (36)

Let u : K → R be such a function that

〈∇u, nx 〉 = f (x) ∀ x ∈ ∂K

and

�u = 1.
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By (36) this system is compatible, and it has a solution. Further, by the standard
regularity results (see, e.g. Evans [11]), this solution is twice differentiable. Moreover,
since K , F and f are even, the solution is even as well [11].

We estimate, using |〈∇u, nx 〉| ≤ |∇u|,
∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 ≤ 1

r

∫

∂K
〈|∇u|∇u, nx 〉 = 1

r

∫

K
div(|∇u|∇u), (37)

where in the last line we used the divergence theorem, and we also used the fact that
〈∇u, nx 〉 = f ≥ 0, and hence |〈∇u, nx 〉| = 〈∇u, nx 〉. We write

div(|∇u|∇u) = |∇u|�u + 1

|∇u| 〈∇
2u∇u,∇u〉 = |∇u| + 1

|∇u| 〈∇
2u∇u,∇u〉,

where we used that �u = 1. Next, we estimate

1 − p

|K |
∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 ≤ 1 − p

r

∫
|∇u| + 1

2

(
1

α
||∇2u||2 + α|∇u|2

)
,

for any α > 0. By Cauchy’s inequality, the above is bounded by

1 − p

r

√∫
|∇u|2 + 1 − p

2r

∫ (
1

α
||∇2u||2 + α|∇u|2

)
. (38)

Lastly, since u is an even function,

∫
|∇u|2 ≤ C2

poin

∫
||∇2u||2,

where Cpoin = Cpoin(K ) is the Poincare constant of K . Therefore, selecting α =
C−1

poin , we get that (38) is bounded by

(1 − p)Cpoin

r

√∫
||∇2u||2 + (1 − p)Cpoin

r

∫
||∇2u||2. (39)

Since �u = 1, we have Var(�u) = 0, and using (38) we see, that our goal is

√∫
||∇2u||2 +

∫
||∇2u||2 ≤ r

(1 − p)Cpoin

∫
||∇2u||2. (40)

As ||∇2u||2 ≥ 1
n (�u)2 = 1

n , we see that (40) is indeed correct whenever
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p ≥ max

(
1 − r

Cpoin(K )(
√
n + 1)

, 0

)
.

��
Proof of Theorem 1.1 Consider K a symmetricC2-smooth convex body inRn . Choose
T ∈ GLn such that T K is in isotropic position. For isotropic convex bodies, r ≥
1 + o(1), as shown by Kannan et al. [15], and Cpoin(T K ) ≤ cn

1
4 , as shown by

Lee and Vempala [21]. Thus the conclusion of Proposition 7.1 holds for T K with
p ≥ 1 − Cn−0.75. From Proposition 5.1, we can write the conclusion of Proposition
7.1 as

∫

∂T K
Hxu

2
n − 2〈∇∂T K u,∇∂T K un〉 + 〈II∇∂T K u,∇∂T K u〉

+ (1 − p)
u2n

〈x, nx 〉dx ≤
∫

T K
(Lu)2dx .

Here, the last term is simply |T K |.
Therefore, since the quadratic form II is positive definite, for any nonnegative even

C1-smooth f : ∂T K → R, we have

∫

∂T K
Hx f

2 − 〈II−1∇∂T K f ,∇∂T K f 〉 + (1 − p)
f 2

〈x, nx 〉dx

− 1

|T K |
(∫

∂T K
f dx

)2

≤ 0.

By the argument of Lemma 2.1, this statement is equivalent to

d2

dε2
log |T K +p ε f | ≤ 0

for each nonnegative C1-smooth f : Sn−1 → R. Therefore, we also have

d2

dε2
log |T−1(T K +p ε f )| ≤ 0

for each nonnegative even C1-smooth f : Sn−1 → R, in view of the fact that

|T−1(T K +p ε f )| = | det T |−1|T K +p ε f |.

Following the arguments in Kolesnikov and Milman [18, Sect. 5], let us define fT−1 :
Sn−1 → R by

fT−1(θ) = f

(
(T−1)tθ

|(T−1)tθ |
)

|(T−1)tθ |.
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Then, for small enough ε > 0 and all θ ∈ Sn−1, we have

hK+pε fT−1 (θ) = (h p
K (θ) + ε f p

T−1(θ))
1
p

=
(
h p
T K

(
(T−1)tθ

|(T−1)tθ |
)

+ ε f p
(

(T−1)tθ

|(T−1)tθ |
)) 1

p

|(T−1)tθ |

= (h p
T K + ε f p)

1
p

(
(T−1)tθ

|(T−1)tθ |
)

|(T−1)tθ |
= hT K+pε f ((T

−1)tθ)

= hT−1(T K+pε f )(θ),

where in the last passage we used the fact that for any linear map A, any vector y and
any convex body L,

hAL(y) = sup
z∈AL

〈z, y〉 = sup
x∈L

〈x, (A−1)t y〉 = hL((A−1)t y).

It follows that

d2

dε2
log |K +p ε fT−1 | ≤ 0

for each nonnegative even C1-smooth f : Sn−1 → R. Since f → fT−1 is a bijection
on the set of nonnegative even C−1-smooth functions on Sn−1, we have that

d2

dε2
log |K +p ε f | ≤ 0

for each nonnegative even C1-smooth f : Sn−1 → R.
To finish, we may apply the procedure of Theorem 3.1. While our local inequality

only holds for f nonnegative, this is sufficient to conclude the global inequality for
K ⊂ L . To see this, take our approximations Kε, Lε in Lemma 3.6 such that Kε ⊂ K
and L ⊂ Lε and recall that our choice of f in the local inequality is

fε(x) = 1

p
hKε (nx )

((
hLε (nx )

hKε (nx )

)p

− 1

)
,

which is nonnegative. It remains to recall that p-Minkowski interpolations preserve
inclusions. ��
Remark 7.2 We note that Kolesnikov and Milman [20] used the estimate

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 ≤ 1

r2

∫

∂K
〈|∇u|2x, nx 〉 = 1

r2

∫

K
div(|∇u|2x),
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in place of (37),which is rougher, and hence leads to the rougher bound p ≥ 1−cn−1.5.
However, (37) only works for nonnegative functions, hence our result is only valid in
the partial case K ⊂ L. We note also that the form of the inequality which we prove
is not invariant under the transformation L → t L, unlike the additive version of the
conjecture, and hence we cannot assume that K ⊂ L without loss of generality.

8 Proof of Theorem 1.5

For brevity, we will sometimes write Cpoin = Cpoin(K , μ), for the Poincare constant
of the restriction of μ on K (which was defined in Sect. 6).

Proposition 8.1 Let K be a convex set in R
n containing r Bn

2 . Then for every f ∈
C1(∂K ) there exists u ∈ C2(K ) such that for each x ∈ ∂K ,

〈∇u, nx 〉 = f (x),

and

∫
||∇2u||2 + 〈∇2V∇u,∇u〉 ≥ Var(Lu) + q

n

(∫
Lu

)2

+1 − p

μ(K )

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 dμ∂K , (41)

provided that at least one of the two conditions hold:

• k1 ∈ [ 1n , 1] and

(1 − p)
1 + n

r2
+ q(1 + k2)(1 + k1) ≤ 2k1;

• for all k1 ≥ 0,

⎧
⎨
⎩
q

(
k21 + k1k2 − (nk1 + k2)

1−p
r2

)
≤ k21 + n

(
1−p
r2

)2 − 1−p
r2

(n + 1)k1;
1−p
r2

≤ k1
n .

Proof Let u be the solution of the Neumann system

〈∇u, nx 〉 = f (x),

and

Lu =
∫
∂K f dμ∂K

μ(K )
.

Note that
Var(Lu) = 0. (42)

123



J. Hosle et al.

Observing that 〈x, nx 〉 ≥ r , 〈∇u, nx 〉 ≤ |∇u| and using the divergence theorem
(similarly to the argument in Remark 7.2), we estimate

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 dμ∂K ≤ 1

r2

∫

K
div(|∇u|2e−V x)dx .

We write

div(|∇u|2e−V x) = e−V (|∇u|2 (n − 〈x,∇V 〉) + 2〈∇2u∇u, x〉), (43)

and note that

〈x,∇V 〉 ≥ k1|x |2.

Indeed, to see this, consider a function g(t) = 〈x,∇V (t x)〉. By the intermediate
value theorem, g(1) − g(0) = g′(ξ), for some ξ ∈ [0, 1]. Observe that g′(ξ) =
〈∇2V (ξ x)x, x〉 ≥ k1|x |2, by our assumption that ∇2V ≥ k1Id. It remains to note that
g(0) = 0 since V is a smooth convex even function.

Using the inequality 2ab ≤ a2
t + tb2, for all t > 0, estimating the operator norm

of ∇2u with the Hilbert–Schmidt norm, and applying the Cauchy inequality, for any
α > 0, we estimate (43) by

e−V
(

|∇u|2
(
n − (k1 − α)|x |2

)
+ 1

α
||∇2u||2

)
.

Therefore, (41) will follow in case we verify

∫
||∇2u||2 + k1|∇u|2 ≥ q

n
+ 1 − p

r2

∫
|∇u|2

(
n − (k1 − α)|x |2

)
+ 1

α
||∇2u||2.

Denote θ = 1−p
r2

. We let α = k1, and the inequality becomes

∫
a||∇2u||2 + b|∇u|2 ≥ q

n
,

where

a = 1 − θ

k1
,

b = k1 − θn.

Case 1 Suppose k1 ∈ [ 1n , 1]. In this case, a ≥ b, and we are in a position to employ

Lemma 6.3, provided that we also verify the condition C−2
poin(K , μ)a + b ≥ 0. The
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restriction on q and θ then reads

C−2
poin(K , μ)a + b(

1 + C−2
poin(K , μ)

)
(1 + k2)n

≥ q

n
,

Recall that the Brascamp–Lieb inequality yields that for any convex set K , we have
C−2

poin(K , μ) ≥ k1 (see [5].) Therefore, the inequality amounts to

(1 − p)
1 + n

r2
+ q(1 + k2)(1 + k1) ≤ 2k1. (44)

Case 2 Suppose k1 ∈ [0, 1
n ). The Lemma 6.3 is not applicable, and therefore we

employ Lemma 6.2, which yields, together with Jensen’s inequality, that

∫
a||∇2u||2 + b|∇u|2 ≥ 1

n
· ab

ak2 + b
,

provided that a ≥ 0 and b ≥ 0. With our choice of parameters, the latter assumption
boils down to

1 − p

r2
≤ k1

n
, (45)

which implies that a ≥ 0, and the restriction on p and q becomes

q ≤ ab

ak2 + b
=

(
1 − θ

k1

)
(k1 − θn)

(
1 − θ

k1

)
k2 + k1 − θn

,

or equivalently, since the denominator is nonnegative in view of (45),

q

(
k21 + k1k2 − (nk1 + k2)

1 − p

r2

)
≤ k21 + n

(
1 − p

r2

)2

− 1 − p

r2
(n + 1)k1.

��
Theorem 1.5 follows from Proposition 8.1 and Lemma 5.2.

Remark 8.2 More generally, we get the result under the assumptions:

(1 − p)
1/k1 − n

r2
≤ 1 − k1

and

(1 − p)
C−2

poin/k1 + n

r2
+ q(1 + k2)(1 + C−2

poin) ≤ k1 + C−2
poin
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Alternatively, in case K and L are additionally contained in RBn
2 , and assuming that

R ≤ C−1
poin(K ,μ)

k1
, we get the result under the assumptions

(1 − p)
2RC−1

poin + n − k1R2

r2
+ q(1 + k2)(1 + C−2

poin) ≤ k1 + C−2
poin .

and

(1 − p)
k1R2 − n

r2
≤ 1 − k1.

We skip the computation for the sake of brevity.

9 Proof of Proposition 1.6

Proposition 9.1 Let K be a symmetric convex set inRn containing r Bn
2 . Then for every

nonnegative f ∈ C1(∂K ) there exists u ∈ C2(K ) such that for each x ∈ ∂K ,

〈∇u, nx 〉 = f (x),

and

∫
||∇2u||2 + 〈∇2V∇u,∇u〉 ≥

∫
(Lu)2 −

(∫
Lu

)2

+ q

n

(∫
Lu

)2

+1 − p

μ(K )

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 dμ∂K , (46)

whenever

(1 − p)
2
√
n
√
1 + k2

√
1 + k1 + √

k1
2r

+ q(1 + k2)(1 + k1) ≤ 2k1

and

k1 ≤ 1.

Proof Let u be the solution of the Neumann system

〈∇u, nx 〉 = f (x),

and

Lu =
∫
∂K f dμ∂K

μ(K )
.
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Note that
Var(Lu) = 0. (47)

Observing that 〈x, nx 〉 ≥ r , 〈∇u, nx 〉 ≤ |∇u| and using the divergence theorem,
we estimate

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 dμ∂K ≤ 1

r

∫

K
div(|∇u|e−V∇u)dx .

We observe that

div(|∇u|e−V∇u) = e−V
(

|∇u|Lu + 1

|∇u| 〈∇
2u∇u,∇u〉

)
. (48)

Using the inequalities 2ab ≤ a2
t + tb2, for all t > 0, estimating the operator norm of

∇2u with the Hilbert–Schmidt norm, and applying the Cauchy’s inequality, for any
α, β > 0, we estimate (48) by

1

2
e−V

(
|∇u|2(α + β) + (Lu)2

α
+ ||∇2u||2

β

)
.

Without loss of generality, since (46) is scale-invariant, we may assume that

Lu =
∫
∂K f dμ∂K

μ(K )
= 1.

Since ∇2V ≥ k1 I d, we have 〈∇2V∇u,∇u〉 ≥ k1|∇u|2. Therefore, in view of (47),
the inequality (46) will follow from

∫
||∇2u||2 + k1|∇u|2 ≥ q

n
+ 1 − p

2r

∫
|∇u|2(α + β) + 1

α
+ ||∇2u||2

β
. (49)

In other words, we need to show

∫
a||∇2u||2 + b|∇u|2 − c ≥ 0, (50)

where, letting θ = 1−p
2r , we write

a = 1 − θ

β
,

b = k1 − θ(α + β),

c = θ

α
+ q

n
.
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It remains to apply Lemma 6.3, and the conditions on θ, q become:

C−2
poin(K , μ)

(
1 − θ

β

)
+ k1 − θ(α + β)

(
1 + C−2

poin(K , μ)
)

(1 + k2)n
≥ θ

α
+ q

n
;

(
1 − θ

β

)
C−2

poin(K ) + k1 − θ(α + β) ≥ 0;

1 − θ

β
≥ k1 − θ(α + β).

Letting α = √
n
√
1 + k2

√
1 + C−2

poin and β = C−1
poin , we arrive at

(1 − p)

√
n
√
1 + k2

√
1 + C−2

poin + C−1
poin

r
+ q(1 + k2)

(
1 + C−2

poin

)
≤ k1 + C−2

poin

and

(1 − p)
Cpoin − C−1

poin − √
n
√
1 + k2

√
1 + C−2

poin

2r
≤ 1 − k1.

Recall that C−2
poin ≥ k1, and thus we could replace C

−1
poin with

√
k1 in the statement of

Lemma 6.3, which would transform the above restrictions into

(1 − p)

√
n
√
1 + k2

√
1 + k1 + √

k1
r

+ q(1 + k2)(1 + k1) ≤ 2k1

and

(1 − p)

√
k1 − 1/

√
k1 − √

n
√
1 + k2

√
1 + k1

2r
≤ 1 − k1.

The second of the required restrictions holds under the assumptions of the present
Proposition, in view of the fact that k1 ≤ 1, as in this case the left hand side is negative
and the right hand side is nonnegative. The first condition was assumed explicitly. ��

Proposition 1.6 follows from Proposition 9.1 and Lemma 5.2, in view of the fact
that interpolations preserve inclusions.

Remark 9.2 More generally, we get the conclusion under the assumptions

(1 − p)
2
√
n
√
1 + k2

√
1 + C−2

poin + C−1
poin

2r
+ q(1 + k2)(1 + C−2

poin) ≤ k1 + C−2
poin
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and

(1 − p)
Cpoin − C−1

poin − √
n
√
1 + k2

√
1 + C−2

poin

2r
≤ 1 − k1.

10 The (p,p)-Brunn–Minkowski Inequality for Dilates of Symmetric
Convex Sets in the Case of the GaussianMeasure

In this section we prove Theorem 1.7. Let γ be the Gaussian measure, and fix K to be
an arbitrary convex set with the Gaussian barycenter at the origin. Denote

∫
:= 1

γ (K )

∫

K
dγ (x).

First, we recall

Lemma 10.1 (Cordero-Erasquin et al. [10])

∫
|x |4 −

(∫
|x |2

)2

≤ 2
∫

|x |2.

Lemma 10.1, in conjunction with Lemma 6.1, implies:

Lemma 10.2 Pick any p ∈ [0, 1]. Let

u(x) = |x |2
2

on K . Let

F = Lu = n − |x |2

on K . Then

∫
||∇2u||2 + |∇u|2

≥ Var(F) + p

n

(∫
F

)2

+ 1 − p

γ (K )

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 dγ∂K (x). (51)

Proof Integrating by parts, we see that

∫

∂K

〈∇u, nx 〉2
〈x, nx 〉 dγ∂K (x) = γ (K )

(
n −

∫
|x |2

)
.
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In view of the fact that Var(F) = Var(|x |2), and the definition of u, the inequality
(51) rewrites as

n +
∫

|x |2 ≥ Var(|x |2) + p

n

(
n −

∫
|x |2

)2

+ (1 − p)

(
n −

∫
|x |2

)
,

which, by Lemma 10.1, follows from

0 ≤ p
∫

|x |2 − p

n

(∫
|x |2

)2

.

This, in turn, follows from Lemma 6.1, applied with V = |x |2
2 . ��

In view of Lemma 5.2, in order to prove Theorem 1.7, it is enough to verify the
inequality (21) just for the function f (x) = 〈x, nx 〉. Therefore, the application of
Lemma 10.2 finishes the proof. ��
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Appendix

Lemma 11.1 Let K be an origin-symmetric convex body and w a continuous function
on Sn−1. Then,

lim
ε→0

μ(W (hK + εw)) − μ(K )

ε
=

∫

Sn−1
w(θ)dσμ,K (θ).

Proof Our proof follows the proof given in the appendix of [25]. Recall that for Hn−1-
almost every x ∈ ∂K there exists a unique normal vector nx . Let us denote the subset
of ∂K where this occurs by ∂̃K . Let X : ∂̃K × [0,∞) → R

n \ K be defined by
X(x, t) = x + tnx , and let D(x, t) be the Jacobian of this map. Moreover, from
properties of Wulff shapes, we have that hA[hK+εw](nx ) ≤ hK (nx ) + εw(nx ) with
equality for Hn−1-almost every x ∈ ∂̃K . See Schneider [34, Sect. 7.5]. Let ∂̃K

′ ⊂ ∂̃K
be the subset where we have equality. Then,

1

ε
(μ(A[hK + εw]) − μ(K )) = 1

ε

∫

∂̃K
′

∫ εw(nx )

0
D(x, t)g(x + tnx )dtdHn−1(x).
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Observe that X(x, t) is an expandingmap. Indeed, for x1, x2 ∈ ∂̃K and t1, t2 ∈ [0,∞)

we have

|X(x1, t1) − X(x2, t2)|2 = |x1 + t1nx1 − x2 − t2nx2 |2
= |x1 − x2|2 + |t1nx1 − t2nx2 |2

+ t1〈x1 − x2, nx1〉 + t2〈x2 − x1, nx2〉.
(52)

Since K is convex, we have 〈x1, nx1〉 ≥ 〈x2, nx1〉 and 〈x2, nx2〉 ≥ 〈x1, nx2〉. Therefore,

|X(x1, t1) − X(x2, t2)| ≥ |x1 − x2|2 + |t1nx1 − t2nx2 |2
≥ |x1 − x2|2 + |t1 − t2|2

as desired. It follows that D(x, t) ≥ 1, and so

lim inf
ε→0

1

ε
(μ(A[hK + εw]) − μ(K ))

≥ lim inf
ε→0

1

ε

∫

∂̃K
′

∫ εw(nx )

0
g(x + tnx )dtdHn−1(x)

=
∫

∂̃K
′ w(nx )g(x)dHn−1(x).

(53)

Since ∂K \ ∂̃K
′
has Hn−1-measure zero, we get that

lim inf
ε→0

1

ε
(μ(A[hK + εw]) − μ(K )) ≥

∫

∂K
w(nx )g(x)dHn−1(x)

=
∫

Sn−1
w(θ)dσμ,K (θ).

(54)

We now pursue the reverse inequality. For an arbitrary δ > 0, define

(∂K )δ = {x ∈ ∂K : ∃ a ∈ R
n s.t. x ∈ B(a, δ) ⊂ K }

where B(a, δ) is the Euclidean ball {y ∈ R
n : |y − a| < δ}. For a sufficiently small

ε > 0, take 0 ≤ t1, t2 ≤ ε and x1, x2 ∈ (∂K )δ . From (52), we have

|X(x1, t1) − X(x2, t2)| ≤ |x1 − x2|2 + |t1 − t2|2 + ε2|nx1 − nx2 |2
+ ε〈x1 − x2, nx1 − nx2〉.

Now, it is a result of Hug [14] that the Gauss map is Lipschitz on (∂K )δ . Let us denote
the Lipschitz constant by L(δ). Then

|x1 − x2|2 + |t1 − t2|2 + ε2|nx1 − nx2 |2 + ε〈x1 − x2, nx1 − nx2〉
|x1 − x2|2 + |t1 − t2|2

≤ 1 + L(δ)ε + L(δ)2ε2.
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Hence,

D(x, t) ≤ (1 + L(δ)ε + L(δ)2ε2)n−1 ≤ 1 + C(K , n, δ)ε.

We have therefore

lim sup
ε→0

1

ε

∫

(∂K )δ∩∂̃K
′

∫ εw(nx )

0
D(x, t)g(x + tnx )dtdHn−1(x)

≤
∫

(∂K )δ∩∂̃K
′ w(nx )g(x)dHn−1(x)

=
∫

(∂K )δ

w(nx )g(x)dHn−1(x).

Since D(x, t) ≥ 1, we have as in (53) also that

lim inf
ε→0

1

ε

∫

(∂K )δ∩∂̃K
′

∫ εw(nx )

0
D(x, t)g(x + tnx )dtdHn−1(x)

≥
∫

(∂K )δ

w(nx )g(x)dHn−1(x).

It follows that the limit in ε exists and

lim
ε→0

1

ε

∫

(∂K )δ∩∂̃K
′

∫ εw(nx )

0
D(x, t)g(x + tnx )dtdHn−1(x)

=
∫

(∂K )δ

w(nx )g(x)dHn−1(x).

By the dominated convergence theorem and lower semi-continuity,

lim sup
ε→0

1

ε
(μ(A[hK + εw]) − μ(K ))

= lim sup
ε→0

1

ε

∫

∂̃K
′

∫ εw(nx )

0
D(x, t)g(x + tnx )dtdHn−1(x)

= lim sup
ε→0

lim
δ→0

1

ε

∫

(∂K )δ∩∂̃K
′

∫ εw(nx )

0
D(x, t)g(x + tnx )dtdHn−1(x)

= lim
δ→0

lim
ε→0

1

ε

∫

(∂K )δ∩∂̃K
′

∫ εw(nx )

0
D(x, t)g(x + tnx )dtdHn−1(x)

= lim
δ→0

∫

(∂K )δ

w(nx )g(x)dHn−1(x)

=
∫

∂̃K
w(nx )g(x)dHn−1(x)

=
∫

∂K
w(nx )g(x)dHn−1(x)
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=
∫

Sn−1
w(θ)dσμ,K (θ).

Combining this with (54) gives us the desired conclusion. ��
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