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ABSTRACT

Human-robot collaboration (HRC) is a challenging task in
modern industry and gesture communication in HRC has
attracted much interest. This paper proposes and demonstrates
a dynamic gesture recognition system based on Motion History
Image (MHI) and Convolutional Neural Networks (CNN).
Firstly, ten dynamic gestures are designed for a human worker
to communicate with an industrial robot. Secondly, the MHI
method is adopted to extract the gesture features and generate
static images of dynamic gestures as inputs. Then an augmented
gesture dataset is established, which includes the activities of
six human subjects. Finally, a CNN model is constructed for
gesture recognition. The experimental results show very good
classification accuracy using this method. False recognition
cases are analyzed and discussed.

Keywords: Human-robot collaboration, Dynamic
gesture recognition, Motion History Image, Convolutional
Neural Networks

1. INTRODUCTION

With the development of industrial intelligence, robotic
systems are becoming an essential part of factory production.
Meanwhile, the concept of human-robot collaboration (HRC)
has attracted more and more interest in the industrial field.
Literature suggests that in the industry with a high degree of
automation, the HRC system can increase human-robot
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collaboration efficiency and also provide more flexibility in the
work environment [1]. In 2012, Shi et al. [2] proposed different
degrees of work-sharing. At the lowest level, the robot and the
human operator do not have any contact and they work in two
different spaces, but without any barriers between them. In
2014, Morato et al. [3] designed a framework to address safety
and efficiency during assembly operations involving humans
and robots. In 2019, Li et al. [4] proposed a method of
human-robot collaboration planning, which considered human
fatigue in assigning disassembly tasks to humans and robots.

Ideally, an HRC system should be similar to human-human
collaboration in the industry. However, in the application of
HRC, space-separation and time-separation of workers and
robots result in lower productivity. To improve this situation and
realize higher-efficieny collaboration, different communication
channels between humans and robots should be established [5].
In the limited communication channels between human workers
and industrial robots, gesture recognition has been effectively
applied for use as an interface between humans and robots [6].
In 2010, Riek et al. [7] conducted a video-based lab experiment
to measure time for a human to cooperate with a robot using
gestures. Three gestures (beckon, give, shake hands) were
designed in that experiment. In 2015, Chen et al. [8] proposed
an approach for recognizing the gestures of a human worker
during an assembly task in the HRC. In 2016, Liu et al. [9]
established an interactive astronaut-robot system, which applied
wearable glove and American Sign Language in the
collaboration of the astronaut with a robot co-worker. In 2018,
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Islam et al. [10] presented a set of robust gestures for a diver to
control an underwater robot in collaborative task execution.
There are other prior works in gesture communication [11], but
using standardized sets of gestures is limited.

To collaborate with human workers, robots need to
understand human gestures correctly. In this regard, deep
learning methods have demonstrated impressive performance in
the generalization ability. For example, convolutional neural
networks (CNN) have better performance in the action
recognition with a limited dataset than traditional methods,
especially when the dataset is limited [12-15]. Unlike the
common feature extraction, which focuses on specific patterns,
the deep learning extractor is trained to obtain the most
discriminative features from given data. In 2018, Du et al. [16]
combined the skeletonization algorithm and CNN method to
realize the gesture recognition. In 2019, Wu [17] selected hand
images and the edge images of a hand to design a
double-channel CNN for the hand recognition task.

In this paper, a method of dynamic gesture recognition
based on the Motion History Image (MHI) approach and depth
CNN algorithm is proposed and demonstrated. This paper is
organized as follows. Section 2 describes ten dynamic sign
gestures and the corresponding robotic arm motions in our HRC
system. Section 3 combines an image preprocessing algorithm
and an MHI method to extract the features of dynamic gestures,
and the dynamic gesture videos are converted into static images.
Section 4 illustrates the construction of the CNN framework.
The experimental setups and results are described in Sections 5.
Section 6 provides the conclusion.

2. DESIGN OF DYNAMIC GESTURE SET

For the gestures used in the communication between human
workers and robots, they should be easy to sign and remember,
socially acceptable, and minimizing the cognitive workload.
McNeil [18] proposed a classification scheme of gestures with
four categories: Iconic (gestures present images of concrete
entities and/or actions), Metaphoric (gestures are not limited to
depictions of concrete events), Deictic (the prototypical deictic
gesture is an extended ‘index’ finger, but almost any extensible
body part or held object can be used), and Beats (gestures use
hands to generate time beats). Based on these principles and
categories, we design gestures that are mainly Iconic or Deictic
for the HRC.

2.1. Gesture Set

Based on the real cases of human collaboration with a
six-degrees-of-freedom (6 DoF) robotic arm (with a gripper as
the end effector), we defined some essential commands to
communicate with the robot. It consists of to a basic set of ten
gestures, which are shown in Fig. 1. All the gestures are

dynamic gestures. They are more natural than static gestures
and can be combined together generate more commands.

In Fig. 1, the left image of each gesture illustrates the start
position: The person stands up with arms straight down. Hands
are in a natural pose and pinky fingers are to the back. Then,
the person can follow the direction of yellow arrows to carry out
the gestures with their hands and arms. The right image of each
gesture illustrates the end position. These various gestures can
be carried out as follows:

e Start: Fully clap in front of the chest.

e Stop: Raise the right arm until the hand reaches the
shoulder level and extend the arm with the palm facing the
front, like a ‘stop’ sign in the traffic direction gesture.

e U p: Extend the right arm straight up with the index finger
pointing up.

e Down: Bend the left hand and raise its wrist to the chest
level. Then extend the left hand straight down with the index
finger pointing down.

e Left: Swing the left arm straight out and up to the side
with the index finger extended until the arm reaches the shoulder
level.

e Right: Swing the right arm straight out and up to the side
with the index finger extended until the arm reaches the shoulder
level.

e /nward: Rotate the right forearm up around the right
elbow joint with the hand open, until the right hand reaches the
chest level and the palm faces back.

e Outward: Rotate the left forearm up around the left
elbow joint with the left hand open until the hand reaches the
chest level. Then rotate the left arm down around the left elbow
joint until the arm is straight with about 30 ° from the bodyline
and its palm faces back.

e Open gripper: Bend each of the two arms up against its
shoulder and the elbow until its fingers touch the same side of
shoulder and its pinky finger at the front.

e Close gripper: Bend the two arms and cross them in
front of the chest with the two hands on the different sides of
shoulders. The palms face backward and the fingers are open.

2.2. Robot Movement

The next step is to consider the corresponding robot
movement for each gesture above. The robot is a 6 DoF robot,
with six joints and a gripper as the end-effector. The six DoF is
needed in order to reach a volume of space from any orientation.
The robot is free to change position of its end-effector as
forward/backward (surge), up/down (heave), and left/right
(sway) translations in three orthogonal (x-y-z) axes, as well as
changes in the orientation of the end-effector. through rotation
about three perpendicular axes.

The position and orientation changes of the end-effector
within the robot’s workspace can be realized by converting the
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(f) right (g) inward

(h) outward

(i) open gripper (j) close gripper

FIGURE 1: The ten dynamic gestures.

end-effector position and orientation changes into the changes
in the linear and angular displacements of the six joints. This is
an inverse kinematics problem that can be readily solved for
most of industrial robots. In order to have more intuitive
human-robot interaction, the movement of the robot and the
movement of the human will have a mirrored relationship since
the human will face the robot in signing the gestures in
human-robot collaboration. Thus when the human signs the
robot to move right, the robot should move left and vice versa.
However, when the human signs the robot to move up, down,
inward, or outward, to start or stop, and to open gripper or close
gripper, the robot should move accordingly (i.e., no mirror
images on these commands).

3. FEATURE ACQUISITION BASED ON MOTION
HISTORY IMAGE

The Motion History Image (MHI) approach is adopted to
realize the feature extraction of human movements. This
approach is a view-based template method that records the
temporal history of a movement and converts it into static
images. The MHI H; (X, y, t ) can be obtained from an update
function ¥ (x, y, t ) using the following formula:

He(x,y,1) = {r i () = 1 "

max(0,Hz(x,y,t —1)—9)) otherwise

where x and y are the image pixel coordinates and t is time. ¥
(x, v, t) represents the movement of an object in the current video
frame, the duration 7 denotes the temporal extent of a movement,
and ¢ is the decay parameter. This function ¥ (x, y, t) is called
for every new video frame analyzed in the sequence. The result
of this computation is a scalar-valued image where more recently
moving pixels are brighter and vice-versa.

Regarding the parameters in Eq. (1), an MHI with a T
smaller than the number of frames will lose prior motion

information. When the value of 7 is set too high, the brightness
changes (changes of pixel values) in the MHIs will be less clear.
So in the generation of MHIs, 7 is set same as the number of
frames. In all dynamic gestures, both arms and body change
their locations in different ranges. In an MHI, most features of
the human movement exist in the arm pixels. After some tests,
the decay parameter & is set as 4 to eliminate the extra
movements of the body, and only the arm pixels are recorded in
the final MHIs.

Figs. 2 and 3 demonstrate the generation of the MHIs for
the gesture representing the /e ft movement. Generally, an MHI
is obtained from binary images of the sequential frames in Fig. 2.
Note that not all frames are shown in this figure. The binary
images are generated using the frame subtraction:

W(ryit) = {1 if D(x,y,1) > & 2

0 otherwise

where P(x,y,f) represents the binarized image, and & is a
threshold. The threshold & can eliminate the background noise
in the MHIs, and it is set as 85 based on the environment shown
in Fig. 1. D(x,y,t) is defined as:

D(x,y,t) =[1(x,y,t) —I(x,y,t £ ) | ()

where the I(x,y,?) is the intensity value of pixel location with the
coordinate (X, y) at the 7th frame of the image sequence. A is the
difference in distance between two pixels at the same location
but at different times [19].

Now that all the parameters in the MHI approach are set,
the MHI of each dynamic gesture can be obtained. Fig. 4 shows
the final MHIs for the ten gestures. All arm pixels during the
movements are recorded. The brightness of pixels denotes the
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FIGURE 2: Binary images of different frames.

FIGURE 3: The MHI of the /e ft gesture.

gesture sequence. More recently moving pixels are brighter and
vice-versa.

R aNNe

(a) start (b) stop (c) up (d) down (e) left

QAN ED

(f) right (g) inward

FIGURE 4: The MHIs of the ten dynamic gestures.

4. CONVOLUTIONAL NEURAL NETWORK MODEL

The overall architecture of our CNN model is shown in
Fig. 5. The input images are MHIs with the depth of one. The
input MHIs are resized to 32 x 32 (width x height ). The CNN
consists of two convolution layers, each of which is followed by
the max-pooling layers. The sizes of the convolution kernels,
volumes at each layer, and the pooling operators are all shown
in Fig. 5. A5 x 5 x 40 feature map is obtained after the second
pooling. Next, it is flattened as a 1000 feature vector. Then, a

(h) outward (i) open gripper(j) close gripper

fully connected layer with 128 neurons is obtained. The output
of this network is a softmax layer, which produces the
class-membership probabilities for the 10 gestures.

In each convolution layer, the Recitified Linear Unit
(RELU) is applied as the activation function [20]. The output of
the softmax layer is computed as:

P(C|x) = ;CIC’;(IZZ

“

where P(C | x) is the predicted probability of being class C for
sample X, zc¢ is the output feature vector of the neuron q in the
softmax layer, and 10 is the number of gestures.

The dropout is carried out after the second pooling layer,
which randomly drops units from the neural network during
training. It has been proven to be a powerful regularization
technique used to avoid overfitting [21].

5. EXPERIMENT AND RESULT
5.1. Datasets

The raw training dataset includes 10 dynamic gestures
signed by 5 human subjects. For each subject, every gesture was
recorded 50 times. After the MHI extraction, there are 2500
MHI samples and each gesture class has 250 samples.

For deep learning, training data including a large number
of samples can achieve good performance. To build a powerful
image classifier using limited training data, image augmentation
is applied to boost the performance of the network model.

Image augmentation artificially increases the variations of
images in training data by using flips, rotation, variations in
brightness and shifts, etc. [22]. In Fig. 4, it is obvious that the
gestures left and right are the same movements of the mirrored
direction with a different arm. Hence the flip and rotation
transformations will reduce the separability of these two
images. The brightness change and horizontal/vertical shifts are
finally carried out to enlarge the size of the training dataset to
10000 images, and there are 1000 images in every gesture class.
Fig. 6 shows some samples of the augmented images. The
inputs are the first images in both Fig. 6(a) and 6(b).

The test dataset is constructed with another human subject
whose gestures are not recorded in the training dataset. There
are 500 gestures without image augmentation in the test dataset.
Each gesture class includes 50 samples.

5.2. Preprocessing

The image size of samples obtained from Section 5.1 is
1920 x 1080 (width x height). In the CNN model described in
Section 4, the input images need to have a uniform size of 32 X
32 (width x height). Therefore, a preprocessing procedure of
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FIGURE 5: The overall architecture of the CNN model. (The ‘Conv.’ and ‘Pool.” denote the operations of convolution and pooling,

respectively).

(a) brightness (b) shift

FIGURE 6: Samples of the augmented images.

the size is implemented to resize the image data for the CNN
model.

5.3. Result and Discussion

The confusion matrix of classification is shown in Fig. 7.
The confusion matrix is also known as an error matrix. It realizes
visualization of the classification performance. Each column of
the matrix represents the instances in a predicted class while each
row represents the instances in a ground truth class.

Some commonly used metrics are adopted to evaluate the
classification performance:

A TP+TN )
ccuracy —
YT TP+FN+FP+TN

up

Ground truth labels

outward

open [~

close [~

down [ 3

left

right [

inward

L
q P o
Y, %o, %,

Predicted Iabelsv

FIGURE 7: The confusion matrix of classification.

. TP
Precision = ——— (6)
TP+FP
TP
Recall = ——— @)
TP+FN

. precision- recall )

F —score = —
precision + recall

where in Eq. (5), (6) and (7), the True Positive (TP) describes a
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sample x from a certain class C that is correctly classified as C.
The True Negative (TN) means a sample x from a 'not C’ class
is correctly classified as the 'not C’ class. The False Positive
(FP) is defined as a sample x from a ‘not C’ class is incorrectly
classified as C. The False Negative (FN) describes a sample x of
class C is misclassified as other ‘not C’ classes. They are the four
basic combinations of actual data category and assigned category
in the classification [23, 24].

In Eq. (8), the F — score is a measure that considers both
the precision and the recall of the test. It represents the harmonic
mean of the precision and recall [25].

Table 1 shows the values of the metrics of the classification
results. Take the start gesture as an example, in the first cell,
50 start gestures (ground truth label) are predicted as the start
(predicted label), so the TP is 50. In other diagonal cells, a total
of 446 samples from ’not start’ gestures are predicted as 'not
start’ gestures, so the TN is 446. In the first column, there are 4
not start’ gestures are predicted as ’start’ gesture, so the FP is
4. In the first row, 0 start gestures are predicted as other gestures,
so the FN is 0.

TABLE 1: The metrics of classification evaluation.

Classes TP TN FP FN Accuracy Precision Recall F-score

start 50 446 4 0  0.992 0.925 1.00 0.961
stop 47 449 1 3 0.992 0979 0940 0.959
up 50 450 0 O 1.00 1.00 1.00  1.00
down 47 449 1 3  0.992 0979 0940 0.959
left 50 450 0 1.00 1.00 1.00  1.00
right 50 450 0 1.00 1.00 1.00  1.00
inward 49 447 I 0992 0942 1.00 0.970

outward 48 450
open 50 450
close 50 450

2 0996 1.00 0.960 0.980
0 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00  1.00

oSO O O W o o

In the evaluation, the Precision describes the exactness or
quality of the method, whereas Recall can be seen as a measure
of completeness or quantity. The F-score can provide a more
realistic measure of a test’s performance by using both Precision
and Recall. From Fig. 7 and Table 1, it can be seen that most
gestures are recognized completely correctly. All the metrics are
higher than 90% and the values of Accuracy and F-score are even
higher than 95%, which shows how well the trained model could

be generalized to a new subject.

On failure recognition, two cases in Fig. 7 should be
particularly mentioned. Three stop gestures are recognized as
the inward and three down gestures are classified as the start
gesture. To find out the reason, we checked the training dataset
and the test dataset. In Fig. 8, images in the first column are the
correctly classified images of the test dataset. The middle three
columns show the samples recognized as wrong gestures. The
last column demonstrates samples of the gesture start and
inward in the training dataset. For the down gesture, we can see
that all right edges of gestures in the middle three images are
more similar to the circle-shape with the start gesture, but
different from the real down gesture with the straight edge on
the right. For the false inward gestures, they share almost the
same convex shape on the upper right corner with the real
inward gesture, yet the actual stop gestures do not have that

feature.
Down Down recognized as Start Start
Stop Stop recognized as Inward Inward

FIGURE 8: The failure recognition gestures.

Therefore, based on the reasons for resulting in the
incorrect classifications as discussed above, two possible
remedies are as follows. First, the instructions of some gestures
can be more detailed, in order to avoid similar features existing
in gestures of different classes. Second, the dataset can be more
diverse, in order to cover more features extracted. In the future,
we will improve instructions for signing all the gestures and will
enlarge the dataset for extraction of more gesture features. Also,
a modified network structure of deep learning will be
constructed to improve the classification result.

6. CONCLUSION

In this paper, we design a new set of dynamic gestures for
human-robot collaboration and construct a Convolutional
Neural Network (CNN) model for dynamic gesture recognition.
Ten hand gestures are designed, each represents a different
instruction to the robot. The Motion History Images (MHIs)
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approach is applied to the feature extraction, and an image
dataset is established from the video-based dataset. The gesture
dataset has five training subjects and one test subject. The
developed CNN model is evaluated on the test dataset and
achieves a recognition accuracy of higher than 94 %, which
shows that our method has very good practicability in
classification and robust generalization ability.

In the future, we will apply our dynamic gesture system to
real-time human collaboration with robots and design more
dynamic gestures to improve the performance of our HRC
system.
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