
PBE-CC: Congestion Control via Endpoint-Centric,
Physical-Layer Bandwidth Measurements

Yaxiong Xie, Fan Yi, Kyle Jamieson
Department of Computer Science, Princeton University

{yaxiongx,fanyi,kylej}@cs.princeton.edu

ABSTRACT
Cellular networks are becoming ever more sophisticated and over-
crowded, imposing the most delay, jitter, and throughput damage
to end-to-end network flows in today’s internet. We therefore ar-
gue for fine-grained mobile endpoint-based wireless measurements
to inform a precise congestion control algorithm through a well-
defined API to the mobile’s cellular physical layer. Our proposed
congestion control algorithm is based on Physical-Layer Bandwidth
measurements taken at the Endpoint (PBE-CC), and captures the
latest 5G New Radio innovations that increase wireless capacity,
yet create abrupt rises and falls in available wireless capacity that
the PBE-CC sender can react to precisely and rapidly. We imple-
ment a proof-of-concept prototype of the PBEmeasurement module
on software-defined radios and the PBE sender and receiver in C.
An extensive performance evaluation compares PBE-CC head to
head against the cellular-aware and wireless-oblivious congestion
control protocols proposed in the research community and in de-
ployment, in mobile and static mobile scenarios, and over busy and
idle networks. Results show 6.3% higher average throughput than
BBR, while simultaneously reducing 95th percentile delay by 1.8×.

CCS CONCEPTS
• Networks → Transport protocols; Mobile networks.

KEYWORDS
TCP congestion control, Transport protocols, Cellular network, LTE,
Physical control channel, Control information, Capacity estimation
ACM Reference Format:
Yaxiong Xie, Fan Yi, Kyle Jamieson. 2020. PBE-CC: Congestion Control
via Endpoint-Centric, Physical-Layer Bandwidth Measurements. In Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communi-
cation (SIGCOMM ’20), August 10–14, 2020, Virtual Event, NY, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3387514.3405880

1 INTRODUCTION
Most of today’s downlink end-to-end data flows terminate at a
cellular last hop to a mobile endpoint, where they encounter the
most delay, variations in delay, loss of their constituent packets,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405880

and limits on their bandwidth. With the increasingly sophisticated
design of today’s and tomorrow’s cellular networks in mind, this
paper argues that it is actually the endpoints that are the entities
best positioned to measure the congestion state of an end-to-end
connection. We further argue that the physical layer of the mobile
endpoint ought to measure the congestion state of the wireless
last hop, and feed these very fine-grained measurements up to the
transport layer and applications through a well-defined API. This
position follows from three challenges that all congestion control
algorithms face when they operate in today’s wireless networks.

First, wireless is fundamentally a shared medium. This means
that when a user’s flow commences or finishes, other users associ-
ated with the same cell tower experience an abrupt drop or rise in
available wireless capacity that takes time to be reflected in the flow
of acknowledgements that today’s ack-based congestion control
protocols send back to the sender [10, 43, 49]. Second, in recent
years, to achieve high throughput and low end-to-end queuing de-
lay, senders must now swiftly react to other abrupt capacity changes
in the wireless cellular link that neither the sender nor even the cell
tower may directly observe. One reason behind this change is that
the newest cellular standards, such as LTE-Advance [2] and 5G New
Radio [1] aggressively exploit a wireless diversity technique called
carrier aggregation to increase wireless capacity, in which the cellu-
lar network aggregates the capacity from two or more cellular base
stations, making that aggregate capacity available to a single user.
When the cellular network adds or removes base stations participat-
ing in a user’s aggregated capacity, the wireless capacity available
to each user abruptly changes, accordingly. Wireless-aware con-
gestion control systems centered on a single base station, such as
Accel-Brake Control (ABC) [17, 18] require non-trivial extensions
to share state across cell sites when carrier aggregation is enabled.
Finally, wireless channel quality is inherently highly dynamic, due
to, e.g., user mobility, multipath propagation, and interference from
neighboring cell towers. These factors change the wireless data
rate that a particular user’s cellular link supports over a time scale
known as the wireless channel coherence time, which can be as
small as milliseconds in the case of vehicular-speed mobility. In
the event of a handover between cell towers, ABC would need to
migrate state, which is not considered in its design.

Further, the foregoing factors interact, exacerbating their effect.
Due to carrier aggregation, an end-to-end connection experiences
fluctuation due to the dynamics of all its aggregated cells, typically
fewer (two to four) than can offer a smoothing of capacity due to
statistical multiplexing.

While both base station and the mobile endpoint are able to
observe these fluctuations, it is only the latter that has fully up-to-
date state on the wireless connection to each and every base station
the mobile connects with. In the current design of the cellular

https://doi.org/10.1145/3387514.3405880
https://doi.org/10.1145/3387514.3405880

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Yaxiong Xie, Fan Yi, Kyle Jamieson

physical layer, however, mobile users decode only their own channel
allocation messages, and so cannot track other users’ channel usage
and thus identify idle wireless capacity.

This paper introduces a new congestion control algorithm based
on Physical-Layer Bandwidth measurements, taken at the mobile
Endpoint (PBE-CC). At a high level, PBE-CC is a cross-layer design
consisting of two modules. Our first module comprises an end-to-
end congestion control algorithm loosely based on TCP BBR [10],
but with senders modified to leverage precise congestion control
techniques [25] when possible. We harness our end-to-end conges-
tion control to our secondmodule, a wireless physical-layer capacity
measurement module for mobile devices. Our key innovation is
to enable highly accurate capacity measurements of the wireless
cellular link, which track its variations at millisecond-timescale
granularity, thus enabling significantly more precise control over
senders’ rates as they attempt to match their sending rate to the
available wireless capacity, should the bottleneck capacity be the
wireless link itself. In the event of an increase in wireless capacity,
this allows PBE-CC to be rapidly responsive, detecting the amount
of newly-emerged idle wireless capacity and prompting the sender
to increase its offered rate accordingly. In the event of a decrease
in wireless capacity, this allows PBE-CC senders to rapidly quench
their sending rate, thus avoiding queuing delays, as our evaluation
demonstrates in drill-down experiments (§6).

Our evaluation shows that most of the time, the cellular link is
indeed the bottleneck in the end-to-end path, as many congestion
control protocols [17, 43, 49] assume. PBE-CC makes the same
initial assumption, leveraging the above wireless-aware precise
congestion control functionality to more accurately control the
sender’s pacing, while also taking into account the number of users
sharing the wireless link, so that each PBE-CC sender can offer a
load that results in an overall-fair distribution of wireless capacity
between those users. Further refinements allow PBE-CC senders to
gently approach this target at the connection start, so that other
senders have time to react and adjust accordingly. However, if PBE-
CC detects an increase in the one-way delay of its packets that its
wireless capacity forecasts do not anticipate, this triggers a BBR-
like mechanism to probe the bottleneck rate based on the pace of
acknowledgement packets received by the PBE-CC sender.

We have implemented the PBE-CC congestion control module
in 814 lines of user space C++ code. Mobile telephone wireless
front ends should decode the necessary frequency bands in order
to implement PBE-CC’s physical-layer wireless capacity measure-
ment module, but their (closed-source) firmware does not offer this
functionality, and so we emulate the missing firmware function-
ality using the USRP software-defined radio in our 3,317-LoC C
implementation.

Our performance evaluation uses Pantheon [48] to test PBE-CC
head-to-head against BBR and CUBIC [19], leading congestion con-
trol algorithms, as well as recent congestion control algorithms
for cellular [43, 49], and other recently-proposed algorithms such
as Copa [6], PCC [11] and PCC-Vivace [12]. Our experiments be-
gin with measurements of delay and throughput, under stationary
user-device conditions, both indoors and outdoors, and both dur-
ing busy and quiet hours. Further experiments evaluate the same
under mobile user-device conditions, “controlled” competition for

Table 1: Summary throughput speedup and delay reduction
performance comparison vs. BBR, Verus, and Copa (aver-
aged over 15 idle cellular links and 25 busy links).

PBE-CC delay reductionScheme PBE-CC
tput. speedup 95th. pctl. avg. delay

Busy 1.04× 1.54× 1.39×BBR Idle 1.10× 2.07× 1.84×
Busy 1.25× 3.97× 2.53×Verus Idle 2.01× 3.44× 2.67×
Busy 10.35× 0.80× 0.80×Copa Idle 12.94× 0.79× 0.82×

the wireless network capacity (that we introduce ourselves in a
known manner), and “uncontrolled” competition from background
traffic of other users at various times of the day. For each competing
scheme, we report (individually) all throughput and delay order sta-
tistics, measured across 100-millisecond time windows, as well as
average case results for these experiments. Table 1 summarizes our
performance results: on average, PBE-CC achieves a 6.3% higher
average throughput than BBR, while simultaneously reducing 95th
percentile delay by a factor of 1.8× and average delay by a factor
of 1.6×. Against Verus, an algorithm specially designed for cellular
networks, PBE-CC achieves significant gains in both throughput
and delay reduction, and against the much-slower Copa, PBE-CC
achieves an approximate 11× throughput improvement while pay-
ing a relative 20% latency penalty. We also evaluate multi-user
fairness, RTT fairness and TCP friendliness of PBE-CC in §6.4.

2 RELATED WORK

End-to-end congestion control. Loss-based algorithms [15, 19,
23, 39] achieve high throughput, but often introduce excessive
delay, while delay-based algorithms [6, 8, 41] are prone to ACK
delay, ACK compression, or network jitter, and thus often result in
network capacity under-utilization. Moreover, it is widely known
that these methods achieve poor capacity utilization when compet-
ing with concurrent loss-based algorithms [6, 39]. Other proposals
use learned algorithms to optimize specific objective functions,
to generate better congestion control actions than human crafted
rules [5, 11, 12, 38, 42]. As we show in our evaluation (§6), online
learning frequently converges to solutions that result in significant
network under-utilization. BBR [10] targets convergence to Klein-
rock’s optimal operating point, i.e., simultaneously maximizing
throughput and minimizing delay, based on estimates of bottle-
neck bandwidth and round trip propagation time. BBR achieves
the best performance among all the algorithms we test, but still
under-utilizes the network and introduces excessive delay because
of its capacity estimates are coarse-grained.
End-to-end congestion control for cellular networks. Some
prior work treats the cellular link as a black box and makes use
of throughput, packet delay and loss statistics to infer link capac-
ity [21]. Raven [29] reduces interactive video latency by sending
redundant data over multiple paths (Wi-Fi and cellular), using Mul-
tipath TCP [44]. PROTEUS [47] collects current throughput, loss,

2

Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
Fr

eq
ue

nc
y

Time1𝑚𝑠

Subframes
PRB

Transport
block (TB)

slots

10 MHz

20 MHz

5 MHz

CC 1

CC 2

CC 3

Time

Activation De-activation

Figure 1: PRBs inside a sub-
frame can be allocated to
multiple users. Allocation
in two slots are the same
(represented using colors).

0 0.5 1 1.5 2 2.5 3
Time (s)

0

20

40

60

80

100

A
llo

ca
te

d
PR

B
s

0

50

100

150

Pa
ck

et
 d

el
ay

 (m
s)PRB of secondary cell

PRB of primary cell
Packet delay

Secondary cell activated

Steady state 6 Mbit/s

Draining the queue

Building
up queue

Secondary cell de-activated 40Mbit/s

Figure 2: When the offered load of the server
exceeds the maximum capacity of the primary
cell, cellular network activates a secondary cell
for the mobile user to support the high data
rate, and deactivates it if the rate drops.

Retransmission causes 8 𝑚𝑠 delay

Scheduled retransmission after 8 subframes (8 𝑚𝑠)

3 4 98765

2

1
1

2
3

5

3
4

4
6

5
7

6
8

7
9

8
10

9
12

10
3

11

Reordering
buffer

21 3 12......

1 2 3 4 5 6 7 8 9 10

UDP/TCP
packets

Transport
block

……

……

……

Figure 3: The mobile user buffers all out-
of-sequence transport blocks in a reordering
buffer until the erroneous block is retransmit-
ted and corrected received (multiple retrans-
missions is possible), introducing a 8ms delay.

and one-way delay, using regression trees to forecast future net-
work performance. PropRate [30] replaces BBR’s periodic band-
width probing with continuous probing that oscillates the send rate
around the estimated receive rate using packet size, and packet
send/receive times. Sprout [43] leverages packet arrival times to
infer the uncertain dynamics of the network path, forecasting link
capacity based on these measurements. Similarly, ExLL [35] mod-
els the relationship between packet arrival patterns and cellular
bandwidth usage to adjust send rate. Instead of attempting to infer
the cellular network dynamics, Verus [49] tries to learn a delay
profile that captures the relationship between target send window
size and perceived end-to-end delay. Purely relying on end-to-end
statistics, above algorithms inevitably suffers from capacity esti-
mation inaccuracies and are sensitive to network dynamics, as we
have demonstrated (§6.3). PBE-CC delivers superior performance
because of its more fine-grained capacity estimation, achieved by
directly measuring the wireless channel.
Cellular-aware congestion control proposals.ABC [17, 18] and
the Draft IETF Mobile Throughput Guidance (MTG) standard [22]
propose modifications of each mobile base station to explicitly com-
municate the best rate to the sender, but do not explicate specifics
in the design of the capacity monitor that is critical for high perfor-
mance. CQIC [32] embarks on a cross-layer design by extracting 3G
link capacity estimates, but still lacks fine granularity. piStream [45]
and CLAW [46] formulate a model that predicts utilized resource
blocks from signal strength measurements. CLAW uses this model
to speed up web browsing workloads, while piStream uses the
model for video workloads, but the authors’ own measurements
show that signal strength’s predictive power is quite limited, while
PBE-CC decodes the control channel metadata directly, resulting
in precise bandwidth utilization data that are not estimates.
Cellular PHY-layermonitoring tools.QXDM [36] andMobileIn-
sight [31] extract control messages for a single mobile user, but
cannot provide net information on the cell tower’s capacity occu-
pancy, as PBE-CC does. BurstTracker [7] locates the bottleneck of
an end-to-end connection. LTEye [28] and OWL [9] decode control
messages, but do not work with carrier aggregation (§3) and later
advanced MIMO standards as PBE-CC does. All the foregoing tools
stop short of a congestion control algorithm design.

3 LTE/5G NEW RADIO PRIMER
In this section, we introduce the relevant design of LTE’s MAC and
physical layer, with a focus on frequency division duplexing (FDD),
the mode cellular operators use most widely. LTE adopts OFDMA,
dividing the available wireless frequency bandwidth into 180 KHz
chunks and time into 0.5 millisecond slots, as shown in Figure 1.
The smallest time-frequency block (180 KHz and 0.5 ms) is called a
physical resource block (PRB), which is the smallest unit that can
be allocated to a user. LTE groups two slots into a one-millisecond
subframe. The PRB allocation of two slots inside one subframe is the
same. The data transmitted over one subframe is called one transport
block (TB). The size of one TB varies, depending on the number of
allocated PRBs and the wireless physical data rate of the user. The
base station informs the mobile user of its bandwidth allocation
(the amount and position of allocated PRBs) and wireless bit rate,
including themodulation and coding scheme (MCS) and the number
of spatial streams, through a control message transmitted over a
physical control channel [3]. A mobile user decodes the control
message of a subframe before decoding the TB inside it.
Carrier aggregation. By default, the base station delivers data to
a mobile user via a primary component carrier (CC), or primary cell.
When there is a huge amount of data to be delivered to the user, the
base station activates a secondary cell to add capacity. The cellular
network maintains a list of aggregated cells for each user and will
activate them sequentially if necessary. The aggregated cells are
deactivated if and when the user does not utilize the extra capacity.
An example of the carrier activation and deactivation process is
shown in Figure 2. A sender first sends data to a mobile user with a
fixed offered load of 40 Mbits for two seconds, which exceeds the
maximum capacity of the primary cell, so it causes packet buffering
at this cell,1 even when all the bandwidth are allocated for this
user. The cellular network detects such a high-data-rate user and
activates a secondary cell to help deliver the data to this user, at
0.13 seconds. Since 40 Mbit/s is below the aggregated capacity of
the primary and secondary cell, the cellular network drains the
built queue within 0.6 seconds, as shown in Figure 2. The sender
reduces its sending rate to 6 Mbit/s, which is below the capacity of
the primary cell, so the secondary cell is deactivated.
Cellular retransmission and reordering. The cellular network
1 We note that packet buffering at the base station is not a prerequisite for activating
secondary cells. The cellular network activates another cell for a user as long as such
a user is consuming a large fraction of the bandwidth of the serving cell(s).

3

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Yaxiong Xie, Fan Yi, Kyle Jamieson

5

Rate
Server MobileCell tower

Data packets

ACK

Extracted
sending rate

6 25 14 3

Internet link
Cellular wireless link

Congestion
window

4 2 13
ACK

Physical control

5

Transport layer

Physical layer
messages

Data pkt

ACK Rate

Data pkt

ACK Rate

Client

Figure 4: An overview of PBE-CC congestion control. The mobile clients decode the cellular control channel, which contains
detailed information about the base station’s available wireless capacity. PBE-CC senders control their send rate based on the
estimated bottleneck capacity that the mobile user explicitly sends back, or based on the presence of ACKs from the receiver.

retransmits an erroneous transport block after eight subframes
(milliseconds) of the original transmission, as shown in Figure 3. To
guarantee in order delivery, the mobile user buffers all the transport
blocks received in subframes between the original transmission and
retransmission of the erroneous transport block (supposing they
are received correctly) in a reordering buffer. When the retrans-
mission succeeds, the mobile user report all the buffered transport
blocks together with the retransmitted transport block to upper
layers where the transport layer packets inside the transport blocks
are extracted. As a result, the retransmission introduces a eight
millisecond delay to the transport layer packets inside the erro-
neous transport block and the buffering and reordering operations
at the receiver side introduces a decreasing delay (from seven to
zero milliseconds) to the packets inside the following transport
blocks. If the retransmission fails, the cellular network repeats the
retransmission at most three times, introducing a latency penalty
equal to a multiple (smaller than three) of eight milliseconds.

4 DESIGN
PBE-CC is a rate based, end-to-end congestion control algorithm
for flows traversing cellular networks and terminating at mobile
devices. PBE-CC mobile clients decode the cellular physical con-
trol channel, which contains detailed information about the base
station’s available wireless capacity. From this, the mobile user is
able to estimate this quantity accurately, at millisecond time granu-
larity. Depending on the location of the bottleneck link, PBE-CC
senders control their send rate based on the estimated bottleneck
capacity that the mobile user explicitly sends back, or based on the
presence of ACKs from the receiver, as shown in Figure 4. Using its
fine-grained capacity estimates, when the bottleneck is the wireless
hop, PBE-CC can immediately increase its send rate to grab new
available capacity without causing any congestion, and decrease
its send rate accordingly, if competition with other mobile users or
the wireless channel reduces wireless capacity.

As traffic patterns are highly dynamic, end-to-end connections
face two possible network states, depending on the relative capaci-
ties of the bottleneck link in the Internet, and the cellular link. Most
of the time, connections are in what we term a wireless-bottleneck
state where the wireless cellular link is the bottleneck of the whole
end-to-end connection. In this state, the PBE-CC mobile user can
estimate and track the bottleneck capacity of the whole connec-
tion at millisecond granularity by decoding the cellular physical
control channel (§4.2.1). The PBE-CC sender matches its send rate
with the bottleneck capacity that the mobile user explicitly feeds

back, almost exactly utilizing capacity and at the same time caus-
ing minimal packet buffering in the network. On the other hand,
the connection is in an Internet-bottleneck state if the capacity of
the Internet bottleneck is smaller than the capacity of the wireless
cellular link. PBE-CC then switches to a cellular-tailored BBR-like
congestion control strategy, to compete fairly with other flows that
share the Internet bottleneck for a fair share of the bottleneck ca-
pacity (§4.2.3). PBE-CC tracks possible changes in these two states,
controlling the sender’s actions accordingly.

Kleinrock has proven that the operating point—maximizing de-
livered bandwidth while minimizing delay—is optimal for both
individual connections and the network as a whole [26, 27]. The
operating point is characterized by the insight that one should keep
the pipe only just full. PBE-CC shares the same goal as BBR, which
is to fill the pipe and minimize the buffering inside the network.
PBE-CC limits the amount of inflight data to the bandwidth-delay
product (BDP) calculated using estimated round-trip propagation
time RTprop and bottleneck capacity with a congestion window,
as shown in Figure 4, so PBE-CC senders often do not send exces-
sive packets even when the feedback from mobile user is delayed,
minimizing queuing in the network, for very low latency, as our
experimental evaluation later demonstrates (§6).

4.1 Connection Start: Linear Rate Increase
On connection start, a PBE-CC sender executes a linear rate increase
in order to approach a fair-share of the bottleneck capacity. By
decoding the control channel, each PBE-CC user knows the number
of other users sharing the cell bandwidth, as shown in Figure 5. PBE-
CC therefore calculates expected fair-share bandwidth (in units of
PRBs) Pexp using the total PRBs available in the cell Pcell and the
number of active users N (including the mobile itself):

Pexp = Pcell/N . (1)

The user then estimates its expected fair-share send rate Cf (in
units of bits per subframe) as:

Cf = Rw · Pexp, (2)

where Rw is the wireless physical data rate (with units of bits per
PRB) calculated using the number of spatial streams together with
the coding and modulation rate for each stream.

The PBE-CC sender linearly increases its send rate from zero to
the fair-share send rate Cf in three RTTs. The mobile user updates
Cf every millisecond, and sends the calculated rate back to the
server in each acknowledgement. PBE-CC’s linear increase pre-
vents bursty traffic and leaves time for the cell tower and the other

4

Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

users sharing that tower to react to the increased traffic. The cell
tower reacts to the mobile user’s increasing send rate by propor-
tionally allocating more bandwidth, which results in less bandwidth
allocated to other users. Another PBE-CC user immediately detects
such a decrease in its allocated bandwidth and signals its sender to
lower its send rate accordingly. Eventually, all PBE-CC’s users tend
to achieve equilibrium with an equally-shared bandwidth. When
two or more component carriers are active during the fair-share
approaching state, we calculate target send rate separately for each
aggregated cell, and sum them up as Cf . When more carriers are
activated during congestion avoidance (§4.2), PBE-CC restarts this
fair-share approaching process.

The user ends linear rate increase and enters congestion avoid-
ancewhen it achieves its fair-share sending rateCf . If the bottleneck
of the connection is inside the Internet, rate Cf is not achievable,
so the achieved throughput at the cell tower stays at a rate below
Cf and end-to-end packet delay increases with increasing sender
offered load. When the mobile user detects that the receiving rate
stops increasing for one RTprop, while the oneway packet delay in-
creases monotonically with an increasing offered load, it also ends
the linear rate increase phase and switches to our cellular-tailored
BBR to handle congestion in the Internet (§4.2.3).

4.2 Steady State: Congestion Avoidance
We now present the design of PBE-CC’s congestion avoidance algo-
rithm. When the connection is in the wireless bottleneck state, PBE-
CC senders match their send rate to estimated wireless capacity
(§4.2.1). Similar to connection startup, PBE-CC identifies a possible
transition from a wireless-bottleneck to Internet-bottleneck state
(§4.2.2), and if this happens, switches to to a cellular-tailored BBR
(§4.2.3) to compete fairly with flows at the bottleneck.

4.2.1 Wireless Bottleneck State. Here a PBE-CC mobile user esti-
mates the available cellular wireless capacity Cp (in units of bits
per subframe) as

Cp =

Ncell∑
i=1

(
Rw,i ·

(
Pa,i +

1
Ni

Pidle,i

))
(3)

where Ncell is the number of activated cells for this user, Pa,i is
the number of PRBs allocated for this user in the ith cell, Ni is the
number of mobile users in the ith cell, and Pidle,i represents the
number of idle PRBs in the ith cell:

Pidle,i = Pcell,i −
Ni∑
j=1

P
j
a,i (4)

where P ja,i represents the allocated PRB for user j of the ith cell.
To smooth the estimation results, we average the calculated Rw,i ,
Pidle,i and Pa,i from the most recent RTprop subframes (e.g., we
average the above parameters over the most recent 40 subframes if
the connection RTT is 40 ms).

To interpret estimated capacityCp , we consider each component
of Eqn. 3. First, the wireless physical layer data rate Rw enables the
mobile user to track capacity variations caused by varying channel
quality. Second, the mobile user reacts to the appearance of new
users by tracking the number of PRBs allocated for itself (Pa). For
example, as shown in Figure 5, Pa for User 1 decreases when a

Index of subframes (1ms)

B
an

dw
id

th

1 2 3 4 5 6 7 8 10 11 12 13

TimeUser 1 User 2 IdleUser 3

9

Figure 5: One mobile user tracks the number of PRBs allo-
cated for itself, for other mobile users and that are idle.

new user, i.e., User 2, starts receiving traffic. On detection of fewer
allocated PRBs, User 1’s sender lowers its send rate to match the
decreasing capacity estimated using Eqn. 3.

When idle PRBs Pidle appear in a cell for a connection that is
wirelessly bottlenecked, all PBE-CC clients immediately detect them
by checking the decoded control message, and inform their senders
to increase their rates to grab a fair-share portion of the idle PRBs,
i.e., Pidle/N . This may happen in several cases: first, idle PRBs
appear when a sender finishes a flow. As shown in the example
of Figure 5, after User 2’s flow finishes in subframe six, Users 1
and 3 immediately observe idle PRBs in subframe seven and then
share the available PRBs equally in subframe eight. Second, idle
PRBs also appear when the data rate of a user’s flow decreases, e.g.,
Subframe 9 in Figure 5, which could be caused by, e.g., congestion
in the Internet, the application itself, or a shift of traffic from one
cell to another aggregated cell by the cellular network. In this case,
all other users immediately detect and occupy their fair share of
the newly-idle PRBs. Other users share 1/N of the idle PRBs with
User 3, whose data rate is limited and thus is not able to grab more
PRBs. As a result, if we define the number of idle PRBs in Subframe 9
as P ′, there will be P ′/N left idle in Subframe 10. Similarly, other
users detect these idle PRBs in Subframe 11, but still only occupy
their fair share portion, so P ′/N 2 will be left idle in Subframe 12.
The network converges to a state where all other users other than
the User 2 grab all the idle bandwidth.

5 10 15 20 25 30 35 40
Offered load (Mbit/s)

0

4

8

12

16

Pe
rc

en
ta

ge
 (%

)

Retransmission (-98 dBm)
Protocol overhead (-98 dBm)
Retransmission (-113 dBm)
Protocol overhead (-113 dBm)

(a) Percentage of overhead.

10 20 30 40 50 60 70
Transport block size (Kbit)

0

0.1

0.2

0.3

Tr
an

sp
or

t b
lo

ck
 e

rr
or

 ra
te -98 dBm

-113 dBm
BER=5x10-6

BER=3x10-6

BER=2x10-6

BER=1x10-6

(b) Block error rate.

Figure 6: The percentage of capacity used for transport block
retransmission and transmission of protocol overhead is
given in (a). The relationship between transport block error
rate and transport block size is given in (b).

Cross-layer bit rate translationThe capacitiesCf andCp (Eqns. 2
and 3) are wireless physical-layer capacities differing from trans-
port-layer data rates due to MAC-layer retransmissions and (con-
stant) protocol header overhead. PBE-CC therefore needs to trans-
form the estimated physical-layer capacity Cp to a transport layer
goodput Ct , and feedback Ct back to the server to set its send rate.

5

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Yaxiong Xie, Fan Yi, Kyle Jamieson

The cell indicates a retransmitted transport block using a new-data-
indicator, so we can separately measure retransmission overhead
and protocol overhead. Figure 6(a) plots the measured overhead
at two different locations and varying sender offered loads. The
probability of a TB error determines retransmission overhead: if
the bit error rate (BER) of each bit inside one TB is p and bit errors
are i.i.d., the TB error rate is 1 − (1 − p)L , where L is the TB size.
We plot in Figure 6(b) theoretical TB error rate (for p = 5 × 10−6,
3 × 10−6, and 1 × 10−6) and empirical TB error rate, noting a good
fit between experimental data and theory. Based on these results,
PBE-CC models the relationship between Cp and Ct as

Cp = Ct +Ct ·
(
1 − (1 − p)L

)
+ γ ·Cp (5)

where γ = 6.8% is the protocol overhead. When one user takes
its PBE-CC-allocated fair-share capacity (Eqn. 3), the TB size L
(number of bits in one subframe, i.e., 10−3 s), is L = Ct · 10−3. We
estimate p using measured signal to interference noise ratio (SINR),
then by solving Eq. 5 given a measured physical layer capacity Cp ,
we estimate transport layer goodputCt . To speed up the calculation,
PBE-CC uses a look-up table to store the transformation.
Handling control traffic. PBE-CC aims to fairly share wireless
bandwidth between all active users, but our experimental results
shows that significant amount of detected users are active not for
data, but rather to update network parameters shared by both base
station and mobile, e.g., the periods of various timers, list of ag-
gregated cells, and many pricing and security-related parameters.
Because of such users, the number of detected active users at each
time point could be large. For example, we plot the distribution of
the number of detected active users in a 40 ms interval, across a
5 hour interval, measured from a busy cell tower, in Figure 7(b).
On average, we observe on average 15.8 and maximum 28 active
users, in those 40 ms interval. PBE-CC excludes those users in its
fair-share capacity calculation, reverting to the cell tower to allo-
cate small amounts of bandwidth for these users and then reacting
to that allocation by tracking the decrease of allocated bandwidth
(Pa in Eqn. 3) and lowering send rate by that amount. Our key
observation is that the control traffic occupies a small number of
PRBs and only active for small amount of time. We plot the distri-
bution of the average occupied PRBs and active time (subframes)
of all detected active users in Figure 7(b). We see that 68.2% of
users occupies exactly four PRBs and is active for exactly one sub-
frame, among which 95% of users are receiving control traffic from
the base station. Therefore, the PBE-CC monitor filters users that
are only active for parameter updating, based on thresholding the
active time duration (subframes) and allocated bandwidth (PRBs)
(Ta > 1, Pa > 4), after which the number of detected active users
decreases significantly—the average number of detected user inside
a 40 ms interval decreases from 15 to 1.3, and we only observe at
most seven active users competing for the bandwidth simultane-
ously, as shown in Figure 7(a). We set the N in Eqns. 2 and 3 to the
number of active users we detect after applying the threshold. The
calculation of idle PRBs in Eqn. 4, however, takes every identified
user into account.

4.2.2 Switching between Bottleneck States. When sender offered
load exceeds the capacity of the Internet bottleneck, packet queuing
induces PBE-CC to switch from the wireless bottleneck state to

0 4 8 12 16 20 24 28
Number of mobile users

0

0.2

0.4

0.6

0.8

1

C
D

F

All users
Ta >1, Pave>4

(a) Number of active users.

0 10 20 30 40
Active length (ms)

0
0.2
0.4
0.6
0.8

1

C
D

F

Active length

0 25 50 75 100
Average used PRB

0
0.2
0.4
0.6
0.8
1

C
D

FOccupied PRB

68.2% users are active for
only 1 subframe

47.7% users
occupy 4 PRBs

(b) Measured Ta and Pave.

Figure 7: Number of mobile users exchanging data with the
base station (a), and activity lengthTa and average consumed
PRBs Pave of each detected mobile user (b).

the Internet bottleneck state. PBE-CC triggers a switch when the
instantaneous one-way packet delay exceeds a threshold. Theo-
retically, we should set the threshold to the one way propagation
delay between the server and clients (Dth = Dprop). PBE-CC esti-
matesDprop as the minimum delay observed in a 10-second window,
evoking BBR’s round-trip propagation delay estimation method.
PBE-CC also updates the true Dprop by draining the buffer as BBR
does, if estimated packet delay maintains constant for 10 seconds.

0 0.5 1 1.5 2
Time (s)

30

40

50

60

D
el

ay
 (m

s) 3 ms
8 ms

Minimum delay

(a) 6 Mbit/s.

0 0.5 1 1.5 2
Time (s)

30

40

50

60

(b) 24 Mbit/s.

0 0.5 1 1.5 2
Time (s)

30

40

50

60

(c) 36 Mbit/s.

Figure 8: Higher send rates (sub-caption label) result in a
higher probability of transport block errors, so more pack-
ets encounter eight millisecond retransmission delays.

The theoretical threshold, however, works poorly in practice
because of the reordering operation. We observe that the mobile
user frequently buffers received packets in its reorder buffer (§3),
especially when offered load from the sender is high, causing sig-
nificant fluctuations of packet delay. To demonstrate such an effect,
we plot the measured one way delay at a mobile user under dif-
ferent sender offered loads in Figure 8. We see that when offered
load is low (6 Mbit/s), only a small portion of the received pack-
ets are retransmitted, as shown in Figure 8(a). We also observe
an approximate three millisecond network jitter introduced to the
packet delay. When the offered load increases, the transport block
error rate increases accordingly, as we have discussed in §4.2.1.
Consequently, the mobile user buffers more and more packets in its
reorder buffer, introducing an multiple of eight ms retransmission
delay to a increasing number of received packets, as shown in Fig-
ure 8(b) and 8(c). We note that, the minimum delay still captures the
one way propagation delay, as there always are packets received
correctly without retransmission and directly without buffering at
the reorder buffer, e.g., the packets inside transport block of the
first subframe in Figure 3.

6

Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

11 1 1.25 0.75 1 11

TimeRTpropProbing bandwidth Draining queue

Figure 9: BBR adopts a eight-phase cycle to probe the net-
work bandwidth. The length of each phase is set to RTprop.

According to the above analysis, we set the switching thresh-
old to Dth =

(
Dprop + 3 · 8 + 3

)
ms, where (3 · 8) ms accounts for

the delay introduced by the three consecutive retransmissions (a
transport block can be retransmitted at most three times [4]) and
3ms accounts for the network jitter (according to our experimental
results, 94.1% of the time, jitter is ≤ 3 ms). To further mitigate the
impact of greater network jitter and improve robustness, PBE-CC
adds a threshold for the number of consecutive packets with delay
exceeding the delay threshold, set to the number of packets Npkt
that can be transmitted over six subframes using current data rate:

Npkt = 6 ·Ct /MSS (6)
where Ct is the current transport layer capacity with unit bits per
subframe, and MSS is the maximum segment size. We note that
since our algorithm makes decisions based on relative delay, i.e., the
difference between current propagation delay and the threshold,
instead of the absolute value of the delay, PBE-CC does not require
synchronization between the server and mobile clients.

4.2.3 Internet Bottleneck State. PBE-CC switches to a cellular-tai-
lored BBR to probe a rate that matches the capacity of the bottleneck
link inside the Internet. BBR senders estimate the bottleneck band-
width of the connection (BtlBw) as the maximum delivery rate in
recent 10 RTTs, and set their offered rate to pacinд_дain · BtlBw .
BBR’s pacing_gain is set to 1.25 to probe possible idle bandwidth,
to 0.75 when draining packets buffered in the previous probing
period, and to one the rest of time. BBR’s ProbeBW state repeats
an eight-phase cycle to probe bandwidth. The length of each phase
is set to RTprop, and the pacing gain in each phase is shown in Fig-
ure 9. PBE-CC directly enters BBR’s ProbeBW state, then follows
the same control logic as BBR to alternate between BBR’s ProbeBW,
ProbeRTT, StartUp, and Drain states.
Wireless-aware, BBR-like probing. PBE-CC probes for a higher
data rate that the Internet bottleneck supports, but also takes into
account the fair-share send rate of the cellular wireless link. We
adapt BBR’s bandwidth probing scheme, changing the probing rate
Cprobe from a fixed 1.25BtlBw to

Cprobe = min
{
1.25BtlBw,Cf

}
, (7)

where Cf is the maximum fair-share capacity of the wireless link
(estimated according to Eqn. 2 and translated to transport layer
capacity according to Eqn. 5 below). The mobile user explicitly
sendsCf back to the sender when an Internet bottleneck is detected.
Similar to BBR, PBE-CC enters a draining phase after the probing
phase to drain any buffered packets.

When PBE-CC detects that the network is in the Internet-bot-
tleneck state, there is already a packet queue formed inside the
network. Therefore, before switching to handle that state, PBE-
CC enters an additional draining phase that lasts for one RTprop.
During the draining phase, PBE-CC sets its send rate to 0.5BtlBw ,
leaving the remaining capacity of 0.5BtlBw for the bottleneck link

to drain the packets buffered inside its queue.
Switching back to wireless bottleneck state. If PBE-CC’s send
rate reachesCf without causing any packet queuing in the network,
i.e., the mobile user observes Npkt (calculated according to Eqn 6)
consecutive packets with delay smaller than Dth ms are observed
at the mobile user, then PBE-CC exits the Internet-bottleneck state
and re-enters the wireless bottleneck state, staying in that state
until the network is switched back to Internet-bottleneck state.

4.3 Fairness and TCP-friendliness
As it only modifies BBR’s algorithms to be more conservative, PBE-
CC is strictly less aggressive than BBR when competing with flows
sharing the same Internet bottleneck. BBR’s multi-user fairness,
RTT-fairness and TCP-friendliness have been well established in
the literature[20, 33, 37, 40].

In the wireless bottleneck state, multiple competing PBE-CC
mobile clients quickly converge to a equilibrium with fair-share
cellular wireless capacity (as we demonstrate below in §6.4.1), be-
cause each PBE-CC mobile client knows the number of competing
users and their capacity usage in each aggregated cell by decod-
ing the cellular physical control channel, allowing it to explicitly
calculate its fair-share capacity (§4.1) and then guide its sender to
match its sending rate accordingly. In contrast, conventional end-
to-end congestion control algorithms need to probe the fair-share
of bottleneck capacity with a more complicated series of probing
and backoff steps, which is less efficient. PBE-CC also fairly shares
wireless link capacity with existing congestion control algorithms,
e.g., CUBIC and BBR, with the help of cell tower’s fairness policy,
as our experimental evaluation later demonstrates (§6.4.3).

PBE-CC flowswith different propagation delays fairly share wire-
less capacity (as we demonstrate in §6.4.2), because of two reasons,
one from the design of PBE-CC and one from the buffer structure
of base station. First, PBE-CC explicitly calculates the fair-share
capacity, while most conventional congestion control algorithm
adopt additive-increase multiplicative-decrease (AMID) schemes to
probe for the fair share. During the additive increase, the sender of
a flow with smaller propagation delay increases its window faster
than flows with larger delay, resulting in unfairness [19, 34]. Sec-
ond, the base station provides separate buffers for every user, which
prevents large-RTprop connections from dominating the bottleneck
buffer. For example, a BBR connection with a large RTprop calcu-
lates a large BDP and thus injects significant amount of inflight
packets into the network, which queue at the bottleneck buffer and
lower the delivery rate for another BBR flow with a small RTprop
and hence a small number of inflight packets. The separate buffer
at cellular base station isolates the inflight packets from different
flows sharing the wireless link and thus prevents unfairness.

5 IMPLEMENTATION
Programming a mobile phone to decode every control message
transmitted over the control channel requires customization of the
cellular firmware inside the phone. The source code of current
cellular firmware, however, is proprietary to cellular equipment
manufacturers, thus is not accessible. As a proof of concept, we build
an open-source congestion control prototyping platform that sup-
ports control message decoding, bypassing the need to customize

7

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Yaxiong Xie, Fan Yi, Kyle Jamieson

Decoder 2Decoder 1 Decoder 3

PBE-CC

Cell 1

USRP 1

Cell 2 Cell 3

USRP 2 USRP 3 Mobile
user

Remote
server

Cellular network

Message fusion

(a) Prototyping platform.

Host PC

USRP X310

USRP B210

MIX3 Redmi 8S8

(b) System setup.

Figure 10: The architecture of the open-source PBE-CC cel-
lular congestion control prototyping platform (a). The setup
of PBE-CC mobile clients is shown in (b).

firmware. The key component of our platform is an open-source
control channel decoder that uses an off-the-shelf software defined
radio (USRP in our implementation) as the RF front-end to collect
cellular wireless signals, and a PC as the host to decode the control
messages from the collected signals. We start multiple parallel con-
trol channel decoders, each decoding the signal from one cell in the
list of aggregated cells of the mobile user, as shown in Figure 10(a).
OurMessage Fusion module aligns the decoded control messages
from multiple decoders according to their subframe indices, feeding
the aligned messages to our Congestion Control module.

We implement our cellular control channel decoder in 3,300
lines of C code (excluding reused code). We reuse the physical
layer signal processing modules from an open-source LTE library
(srsLTE [16]), i.e., a wireless channel estimator, a demodulator, and
a convolutional decoder. Each decoder decodes the control channel
by searching every possible message position inside the control
channel of one subframe and trying all possible formats at each
location until finding the correct message.2 We implement the
parallel decoding structure using multi-threading, allowing one
PC to decode the control channel of multiple cells simultaneously.
In our test, a six-core PC is able to decode six cell towers while
maintaining CPU usage of each core below 40 percent. We will
open-source our platform to facilitate future cross-layer cellular
congestion control design and prototyping.

We implement a user-space, UDP-based prototype of PBE-CC’s
congestion control algorithm using 874 lines of C++ code (517 on
the mobile client side and 357 at the sender side). The client-side
PBE-CC module takes the decoded control messages as input, and
communicates with the sender side via a commercial mobile phone
tethered with the host PC, as shown in Figure 10(a). When the
PBE-CC mobile client receives a data packet, it estimates the one
way packet propagation delay Dprop (§4.2.2), and feeds back the
estimated capacity. We describe the capacity using an interval in
milliseconds between sending two 1500-byte packets, and represent
it with a 32-bit integer. The PBE-CC client also identifies the current
bottleneck state, notifying the sender via one bit in the ACK. When
the PBE-CC sender receives an ACK, it sets its sending rate to the
capacity indicated therein. The PBE-CC sender also updates its
estimated RTprop and BtlBw with every received ACK, so it can
immediately switch to the cellular-tailored BBR if and when the
bottleneck location changes.
2The 3GPP standard defines 10 formats for control messages [3]. The base station does
not explicitly indicate the format of the message it sends.

6 EVALUATION
In this section, we evaluate the performance of PBE-CC in a com-
mercial cellular network and compare with existing end-to-end
congestion control algorithms.

6.1 Methodology

Content senders. We configure Amazon AWS servers as the PBE-
CC senders. To evaluate PBE-CC’s performance over flows with
significantly different RTT, we setup AWS servers at different con-
tinents, i.e., three in US and one in Singapore.
Mobile clients. Each PBE-CC mobile client is a combination of
multiple USRPs for signal collection, a host PC for control channel
decoding, and a commercial mobile phone for cellular communica-
tion, as shown in Figure 10(b). We use both USRP X310 [14] and
B210 [13] in our implementation. The host PC we use for each
mobile client is a Dell OptiPlex 7060 (Intel Core i7-8700 CPU, 16 GB
RAM, and Ubuntu 16.04). We use various types of mobile phones
that support carrier aggregation in hardware, including a Xiaomi
MIX3, a Redmi 8, and a Samsung S8. The cellular network con-
figures the same primary cell for all three phones, but different
numbers of aggregated cells for each phone, i.e., only one cell for
the Redmi 8, two cells for the MIX3 and three cells for the S8.
Congestion control algorithms to compare. We compare PBE-
CC against seven end-to-end congestion control algorithms, in-
cluding algorithms specially designed for cellular networks like
Sprout [43] and Verus [49], algorithms that have already been in-
cluded inside the official Linux kernel like BBR [10] and CUBIC [19],
and recently-proposed algorithms like Copa [6], PCC [11] and PCC-
Vivace [12]. We test all the above algorithms in commercial cellular
networks covering our campus using Pantheon [48].

0 4 8 12 16 20 24
Time of a day (hour)

0

50

100

150

200

250

D
et

ec
te

d
us

er
s

20MHz cell
10MHz cell

(a) Detected users.

0 0.4 0.8 1.2 1.6 2
Physical rate (Mbits/s/PRB)

0

0.2

0.4

0.6

0.8

1
C

D
F

20MHz cell
10MHz cell

(b) Physical data rate.

Figure 11: (a) The number of detected users in each hour of
a day that have data communication with two base stations
(a 20 MHz one and a 10 MHz one). (b) The distribution of
wireless physical data rate of the detected users.

6.2 Micro-benchmark: Cell Status
In this section, we perform a micro-benchmark to present two im-
portant statistics of the cell tower: (1) the number of users that
have communicated with the cell tower in each hour and (2) the
distribution of wireless physical data rate of the users. We leverage
our control channel decoder to decode the control messages that
two base stations (a 20 MHz one and a 10 MHz one) transmit. We
conduct the experiments for 24 hours and count the number of
active users in each hour. We plot the result in Figure 11(a), from
which we see that each cell serves a large number of users during

8

Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

0 20 40 60 80 100
Throughput (Mbit/s)

0

0.2

0.4

0.6

0.8

1

C
D

F
ac

ro
ss

 lo
ca

tio
ns

BBR
PBE
CUBIC
Verus

(a) Average throughput.

40 80 160 320 640
95th percentile delay (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F
ac

ro
ss

 lo
ca

tio
ns

(b) 95th percentile delay.

Figure 12: The distribution of throughput (a) and 95th per-
centile delay (b), of PBE-CC, BBR, Verus, and CUBIC (the
four “high throughput” algorithms), across 40 locations.

peak hours of a day, e.g., during the 12 to 20 hours period, the
average number of users per hour is 181 and 97 for 20 MHz and
10 MHz cell, respectively. Furthermore, the number of users varies
significantly within a day, i.e., maximum 233 and 135 users, mini-
mum 13 and zero users for 20 MHz and 10 MHz cell, respectively.
We note that the 10 MHz cell is turned off by the operator during
zero to three hour period, so we observe zero users. We also plot
the distribution of the wireless physical data rate of all detected
users, in Figure 11(b). We see that even though the users has diverse
data rates, a large portion are low-rate users, e.g., 77.4% and 71.9%
users have rate smaller than half of the maximum achievable data
rate (1.8 Mbit/s/PRB), for 10 MHz and 20 MHz cell, respectively. In
the following sections, we evaluate the performance of PBE-CC
working atop of these cells that serve large number of diverse users.

6.3 End-to-end Delay and Throughput
In this section, we investigate the delay and throughput perfor-
mance of PBE-CC achieved in a commercial cellular network.

6.3.1 Performance of Stationary Cellular Links. We investigate PBE-
CC’s performance on stationary cellular links.We build connections
between servers and stationary mobile users over which senders
transmit to their corresponding users for 20 seconds, recording
achieved throughput, packet delay, and arrival time in each flow.
We change the congestion control algorithm the sender adopts
and test eight algorithms sequentially. Since the capacity of the
cellular network varies when testing each algorithm, we repeat the
whole preceding test sequence (sequentially testing all algorithms)
five times at one location to provide a fair comparison of achieved
throughput, across different congestion control algorithms. Fur-
thermore, we conduct the foregoing experiment using different
phones, in order to measure performance with different numbers
of aggregated cells. We repeat these experiments at multiple indoor
and outdoor locations and at different times of the day, i.e., daytime
when the cell is busy, and late night when the cell is idle. In total,
we test 40 locations, covering all combinations of indoor/outdoor,
one/two/three aggregated cells and busy/idle links.
Comparison among high-throughput algorithms. As we will
demonstrate in the following section, PBE-CC, BBR, CUBIC, and
Verus achieve significantly higher throughput than the other four
algorithms we examine. We plot the distribution of the averaged
throughput and 95th percentile one way delay achieved by these
four algorithms, in Figure 12(a) and 12(b). We see that PBE-CC

achieves the highest throughput for most of the stationary links,
while simultaneously maintaining very low latency. Table 1 on p. 2
summarizes the performance improvement of PBE-CC over BBR
and Verus. PBE-CC achieves 2.3× average higher throughput than
CUBIC, and at the same time reduces 95th percentile delay by 1.8×.
Detailed comparison among eight algorithms. To provide a
detailed performance comparison among all eight algorithms, we
select six representative locations, and plot the 10th, 25th, 50th,
75th, and 90th percentile throughputs (averaged over every 100-
millisecond interval) and delay, for eight algorithms, in Figures 13
and 14. We have three observations from these figures. First, PBE-
CC achieves high average throughput, but also has somewhat high
throughput variance, since PBE-CC is able to match its send rate to
the varying wireless channel capacity. BBR achieves comparable
throughput with PBE-CC in all selected locations, but with higher
delay. Verus, a congestion control algorithm designed for cellular
networks, also achieves relatively high throughput in many loca-
tions, but introduces excessive packet delays. The performance of
CUBIC is highly unpredictable, alternating between high through-
put (but high delay) and low throughput (but low delay), as our
order statistics demonstrate. The other four algorithms, including
Copa, PCC, PCC-Vivace, and Sprout, have a large throughput dis-
advantage compared to PBE-CC. We plot the number of locations
at which each congestion control algorithm triggers the cellular
network to activate secondary cells for providing extra throughput
(maximum 30 locations, since we use Redmi 8 that uses only one
cell, in 10 locations), in Figure 15. We see that Copa, PCC, PCC-Vi-
vace, and Sprout use very conservative send rates, so the cellular
network disables carrier aggregation at most locations, resulting in
significant under-utilization of the available wireless capacity.

PBE-CC achieves a low delay and delay variance. Comparing
against BBR and Verus, two algorithmswith relatively high through-
put, PBE-CC incurs much smaller delays. However, PBE-CC has a
slightly higher latency than the four algorithms with low through-
put. Such a delay gap is mainly caused by cellular retransmissions:
as we have demonstrated in Figure 6(b), higher throughputs result
in a larger TB error rates, and thus more retransmissions. Therefore,
under schemes with higher throughput, slightly more packets incur
a multiple of eight millisecond retransmission delay.

Finally, we observe that PBE-CC has low variance in both de-
lay and throughput when cells are idle, as shown in Figures 13(d)
and 14(b). Without competing traffic and mobility, wireless capacity
becomes stable for a static user in an idle cell. PBE-CC then achieves
stable throughput and delay by accurately estimating this capacity.
Alternation between states. On average, PBE-CC spends 18%
and 4% of its time working in Internet-bottleneck state, for 25 busy
links and 15 idle links, respectively, which validates our assumption
that a connection traversing a cellular network is bottlenecked at
the cellular wireless link for most of the time.

6.3.2 Performance under Mobility. A major source of cellular wire-
less capacity variations arise from wireless channel quality vari-
ations, caused by client mobility. In this section, we investigate
PBE-CC’s performance under mobility. We conduct this experi-
ment at night when the cell is approximately idle to reduce the
capacity variations introduced by other random competing users. In

9

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Yaxiong Xie, Fan Yi, Kyle Jamieson

3060120240480
One way delay (ms)

0

15

30

45

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Verus

CUBIC
Sprout

Copa

PCC
Vivace

BBR

PBE

(a) One aggregated cell, indoor
and busy hours.

30240 120 60
One way delay (ms)

(ms)

0

20

40

60

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Copa

 CUBIC
Sprout

Vivace

PCC

PBE

BBR
Verus

(b) Two aggregated cells, in-
door and busy hours.

30240 120 60
One way delay (ms)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

bi
t/s

)

PBE
BBR

Verus

CUBIC

Sprout
Copa

PCC

Vivace

(c) Three aggregated cells, in-
door and busy hours.

3040506070
One way delay (ms)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Sprout

Copa

PCC

CUBICVerus

Vivace

BBR
PBE

(d) Three aggregated cells, in-
door and late night (idle cells).

Figure 13: One way packet delay and throughput achieved by eight congestion control algorithms. The right and lower edge
of the box represents the 25% percentile of the achieved delay and throughput, respectively. The left and upper edge give the
75th percentiles. The two ends of the error bar gives the 10th and 90th percentiles. The intersection point of the horizontal
and vertical error bar represents the median of achieved delay and throughput.

30240 120 60
One way delay (ms)

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Copa

PBE
BBR

CUBIC

Sprout

PCC

Vivace

Verus

(a) Two aggregated cells, out-
door and busy hours.

30240 120 60
One way delay (ms)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

bi
t/s

) PBEBBR

Copa
Sprout

PCC
Vivace

Verus

CUBIC

(b) Two aggregated cells, out-
door and late night (idle).

Figure 14: The oneway packet delay and throughput
achieved by eight congestion control algorithms in two dif-
ferent outdoor tests covering the busy and idle cell status.

0 5 10 15 20 25 30
Number of locations

PCC
Vivace

Copa
Sprout

CUBIC
Verus
BBR
PBE

CA triggered
Not triggered

Figure 15: The number of lo-
cations at which each conges-
tion control algorithm trig-
gers carrier aggregation.

3060120240480
Oneway delay (ms)

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

bi
t/s

)

CUBIC

PCC

VivaceSprout

Verus

BBR PBE

Copa

Figure 16: The achieved de-
lay and throughput of when
the mobile client is moving
along the same trajectory.

0 5 10 15 20 25 30 35 40
Time (s)

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

bi
t/s

) Throughput Delay

0 5 10 15 20 25 30 35 40
Time (s)

0
30
60
90
120
150
180
210

D
el

ay
 (m

s)

(a) PBE (b) BBR

Figure 17: Delay and throughput achieved byPBE-CC (a) and
BBR (b) when the user is moving along the same trajectory.

each test, we put the phone at a location with RSSI of −85 dBm for
the first 13 seconds, and then move it along a predefined trajectory
to another location with RSSI of −105 dBm in the next 13 seconds.
We move the phone back to the starting location (−85 dBm) with
a faster speed, taking about four seconds and put it there for 10
seconds. In total, each test takes 40 seconds. We repeat the same
process for each congestion control algorithm.

We present each algorithm’s achieved throughput and delay in
Figure 16, from which, we see that PBE-CC consistently achieves
low delay (95th percentile of 64 ms) and high average through-
put (55 Mbit/s). BBR achieves comparable throughput (55 Mbit/s)
with PBE-CC but suffers much higher delay (156 ms). CUBIC and
Verus achieve much lower throughput than PBE-CC (38 Mbit/s
and 41 Mbit/s) and also introduces high delay (296 ms and 467 ms).
Other algorithms, e.g., PCC, PCC-Vivace, Sprout, and Copa, have
low throughput, resulting in under-utilization of wireless capacity,
so mobility has a trivial effect on their packet delay.

To further demonstrate PBE-CC’s ability to track mobility, we
divide the 40-second experimentation period into 20 two-second
intervals and plot median throughput and delay of each interval
for PBE-CC and BBR, in Figure 17. We see that PBE-CC lowers
and increases its send rate accurately when the signal strength
decreases from 13 to 26 seconds and then increases from 26 to 30
seconds because of mobility, resulting in nearly zero buffering in the
network. On the other hand, BBR overreacts to the signal strength
decrease, reducing its send rate more than needed, because of its
inaccurate end-to-end capacity estimation. BBR also overestimates
capacity when the signal quality recovers at 30 seconds, causing
packet queuing and introducing excessive packet delay.

6.3.3 Performance under Controlled Competition. Besides mobility,
the competition betweenmobile clients for limited wireless capacity
is another major source of variations in network capacity. In this
section, we use controllable, on-off competing traffic to demonstrate
PBE-CC’s capability to track the time-varying wireless bandwidth
allocation caused by competition. Specifically, we start a PBE-CC
flow that runs for 40 seconds using a Redmi 8 phone. Every eight
seconds, we also start a four-second concurrent flow with a fixed
offered load of 60 Mbit/s from an AWS server, using a Xiaomi MIX3.
We conduct the experiments at night to make the possibility of
uncontrolled competition from other users remote. We repeat the

10

Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

3060120240480
One way delay (ms)

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Verus

Vivace
PCC

PBEBBR

Copa
Sprout

CUBIC

Figure 18: Achieved delay and
throughput with controlled
competing traffic.

Figure 19: Average throughput and delay of every received packet in a flow. PBE-CC’s rate
increase and decrease is more responsive, thus grabbing capacity faster and keeping delay
constant, respectively. In contrast, BBR suffers delay fluctuations.

3060120240480
Oneway delay (ms)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

bi
t/s

)

BBRVerus

CUBIC

PBE

Vivace

PCC
Sprout

Copa

(a) The first connection.

3060120240480
Oneway delay (ms)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

bi
t/s

)

PBE
CUBIC

Verus

Sprout

BBR Copa
PCC

Vivace

(b) The second connection.

Figure 20: The oneway delay and throughput achieved by
eight congestion control algorithms for two concurrent con-
nections between one device and two remote servers.

experiment using different congestion control algorithms.
We plot each algorithm’s throughput and delay in Figure 18,

from which, we see that only PBE-CC can simultaneously achieve
high throughput and low latency. The average throughput of PBE-
CC is 57 Mbit/s, comparable with CUBIC at 58 Mbit/s, and Verus
at 56 Mbit/s, but slightly smaller than BBR at 62 Mbit/s. But the
average and 95th percentile delay of PBE-CC is 61 ms and 71 ms,
much smaller than BBR at 147 ms and 227 ms, CUBIC at 252 ms and
416 ms, and Verus at 263 ms and 403 ms. To further demonstrate
PBE-CC’s and BBR’s reactions to competing traffic, we also plot the
throughput (averaged over every 200 millisecond interval) and the
delay of all received packets, in Figure 19, where the shaded areas
represent the time periods when the concurrent competing traffic
generated by the MIX3 is present. We see that PBE-CC accurately
tracks the entrance of the competitor and lowers its sending rate
promptly, resulting in nearly no packet queuing. PBE-CC immedi-
ately grabs the idle bandwidth when the competing traffic finishes
its flow, maximizing the achieved throughput. In contrast, BBR
cannot timely detects the decreasing capacity caused by competing
traffic, resulting significantly enlarged delay.

6.3.4 Single device multiple connections. In this section, we eval-
uate how PBE-CC performs in the scenario where one device si-
multaneously starts multiple connections with different remote
servers. Specifically, we let the MIX3 start two concurrent flows
with two AWS servers, each running for 40 seconds. We repeat the
experiments using different congestion control algorithms, and plot
each algorithm’s throughput and delay in Figure 20. We see that
PBE-CC achieves high throughput and low delay for both flows.
The average throughput is 26 Mbit/s and 28 Mbit/s, and the median

delay is 48 ms and 56 ms, for the first and second flow, respectively.
Furthermore, PBE-CC fairly allocates the estimated capacity for
two flows so these two flows have similar throughput, while other
algorithms may result in unbalanced throughput for multiple flows,
e.g., BBR achieves 10 Mbit/s and 35 Mbit/s for the first and second
connection, respectively. We note that even though PBE-CC may
achieve a smaller throughput for a single connection compared to
other algorithms, e.g., the first connection comparing with BBR,
PBE-CC provides better fairness across connections.

6.4 Fairness
In this section, we evaluate the fairness of PBE-CC, focusing on the
case where the bottleneck is the cellular wireless link.
Methodology.Without knowing the base station’s resource allo-
cation algorithm and fairness policy, simulation-based experiments
cannot predict real-world cellular network behavior. We therefore,
evaluate PBE-CC’s fairness directly in a cellular deployment. To
eliminate the impact of background traffic, we conduct our experi-
ment at night when the cell is idle. We use the three phones as three
competing users, each setting up a connection with a AWS server.
The S8, Redmi 8 and MIX3 starts its flow at zero, 10, and 20 sec-
onds, and ends at 60, 50, and 40 seconds, respectively. These three
phones share the same primary cell but have different secondary
and tertiary cells (if configured), so the primary cell at 1.94 GHz is
the shared bottleneck of three connections. We record the allocated
PRBs to each user by the primary cell, when three connections are
running concurrently. Three connections get identical allocated
primary cell PRBs if they achieve a fair-share.

6.4.1 Multi-user fairness. We investigate the fairness between mul-
tiple PBE-CC flows with similar propagation delays. We setup three
AWS servers in the US and start three current connections via three
mobile phones, plotting the allocated bandwidth by the primary
cell to the three phones in Figure 21(a). We see that the PBE-CC
flows quickly converge to the fair-share of the bottleneck band-
width. Jain’s fairness index [24] is 99.97 and 98.73% with two and
three concurrent flows (100% is ideal), respectively. Since we cannot
prevent all associated users from using the cellular network, we
observe light background traffic generated by a unknown user, in
this experiment. The PBE-CC flow also reacts quickly, fairly sharing
the bandwidth with background users.

6.4.2 RTT fairness. We investigate whether PBE-CC can guarantee
a fair-share of wireless link capacity between multiple flows with

11

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Yaxiong Xie, Fan Yi, Kyle Jamieson

0 10 20 30 40 50 60
Time (s)

0
20
40
60
80

100

R
es

ou
rc

e
bl

oc
ks Samsung S8

Redmi 8
S8

Background user's
traffic

(a) Three PBE-CC flows with
similar RTTs.

0 10 20 30 40 50 60
Time (s)

0
20
40
60
80

100

R
es

ou
rc

e
bl

oc
ks RTT 52 ms

RTT 297 ms
RTT 64 ms

(b) Three PBE-CC flows with
significant RTT differences.

0 10 20 30 40 50 60
Time (s)

0
20
40
60
80

100

R
es

ou
rc

e
bl

oc
ks PBE flow 1

BBR flow
PBE flow 2

(c) Two PBE-CC flows coexist
with one BBR flow.

0 10 20 30 40 50 60
Time (s)

0
20
40
60
80

100

R
es

ou
rc

e
bl

oc
ks PBE flow 1

CUBIC flow
PBE flow 2

(d) Two PBE-CC flows coexist
with one CUBIC flow.

Figure 21: The allocated PRBs (averaged over 50 subframes) by the primary cell to three mobile phones, when these three
mobile phones starts three PBE-CC flows with three AWS servers in US (a); three PBE-CC flows with two AWS servers in US
and one AWS server in Singapore (b); two PBE-CC flows with one BBR flow (c); two PBE-CC flows with one CUBIC flow (d).

significant differences in propagation delay. We use three mobile
phones to build concurrent connections with three AWS servers:
one in Singapore (average RTT of 297 ms) and two in the US (aver-
age RTTs of 52 ms and 64 ms). We plot the the primary cell allocated
PRBs for these connections in Figure 21(b). We see that the all three
PBE-CC flows with significant propagation delay differences obtain
similar allocated bandwidths. Jain’s fairness indices are 99.74% and
99.45% with two and three concurrent flows, respectively.

6.4.3 TCP friendliness. A common requirement from new conges-
tion control schemes is the capability of fairly sharing the available
bandwidth with existing congestion control algorithms like BBR
and CUBIC.We investigate the performance of PBE-CC in two cases:
two PBE-CC flows coexisting with one BBR flow, and two PBE-CC
flows coexisting with one CUBIC flow. Figures 21(c) and 21(d) depict
allocated PRBs for three connections in these cases, showing that
PBE-CC shares bottleneck bandwidth equally with both CUBIC
and BBR flows. Jain’s fairness index is 99.96% and 98.52% with two
and three concurrent flows in Figure 21(c), and 99.95% and 98.34%
with two and three flows in Figure 21(d). The base station fairness
policy prevents one user from grabbing all the bandwidth. Though
CUBIC and BBR may aggressively increase their sending rate, the
base station limits the total bandwidth they can obtain and forces
them to share with other concurrent flows.

7 DISCUSSION

Power consumption. In the connected state, a mobile device must
keep its radio on and decodes the control channel to check whether
the base station has data for it or not in each subframe. Therefore,
PBE-CC does not turn the radio of mobile device on for any extra
time than necessary currently and thus introduces no additional
power costs. The small computational overhead PBE-CC introduces
is that the mobile device may need to decode control messages that
are not transmitted to it. But, the number of extra control messages
inside each subframe the device needs to decode is very small, since
our experimental results shows that there are less than 4 control
messages inside more than 95% subframes. Furthermore, the control
messages are very short (less than 70 bits), so that decoding one
message only involves small extra computational overhead.
Packet buffering. PBE-CC works at or very close to the Kleinrock
TCP operating point [26, 27], which minimizes buffering, minimiz-
ing the delay. In practice, it could be beneficial to buffer some bytes

in the base station, which slightly increases delay but helps to im-
mediately utilize increases in connection throughput, before the
sender modulates its sending rate (congestion control has at least a
round trip time delay). In the future, we plan to extend PBE-CC to
enable the sender/app to adaptively adjust the buffering inside the
network, trading off increased delay for increased throughput.
Fairness policy. Currently, PBE-CC fairly shares idle bandwidth
among all active users in the connection start state. In the future,
PBE-CC can be modified to incorporate other fairness policies, e.g.,
active users with lower physical data rate grab larger bandwidth.
PBE-CC’s control algorithm adapts to an arbitrary fairness policy,
achieving equilibrium in the steady state.
Misreported congestion feedback. PBE-CC relies on the mobile
user to report the estimated capacity back to the server so it is
possible that a malicious user may report a data rate higher than
the network can support, triggering overwhelming number of data
being injected into the network, causing catastrophic impact. In
future work, PBE-CC can be extended to detect such malicious
users via implementing a server side BBR-like throughput esti-
mator, which estimates the currently achieved throughput purely
with timestamps of packets being sent and acknowledged, without
any involvement of the mobile user. By comparing the achieved
throughput and capacity reported by the user, PBE-CC identifies
any user who consistently reports a rate higher than the achievable
throughput as a malicious user.

8 CONCLUSION
PBE-CC is the first end-to-end congestion control algorithm to
seamlessly integrate mobile client-side wireless physical layer ca-
pacity measurement into its design, which is crucial for the multi-
cell design of 4G and 5G wireless networks. Our rigorous per-
formance evaluation featuring multi-locations, mobility, varying
background traffic levels, and varying RTTs shows that PBE-CC
outperforms many leading congestion control algorithms in both
latency and throughput. PBE-CC is also immediately deployable,
with modifications required solely to content servers and mobile
clients. This work does not raise any ethical issues.

ACKNOWLEDGEMENTS
We thank the anonymous SIGCOMM reviewers and our shepherd
for their valuable feedback that has improved the quality of this
paper. This work was supported by NSF grant CNS-1617161.

12

Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] 3GPP. 5G specifications. [3gpp.org].
[2] 3GPP. LTE Release 10. [3gpp.org].
[3] 3GPP. TS36.212: Evolved Universal Terrestrial Radio Access

(E-UTRA); Multiplexing and channel coding.
[4] 3GPP. TS36.213: Evolved Universal Terrestrial Radio Access

(E-UTRA); Physical layer procedures.
[5] T. Anderson, A. Collins, A. Krishnamurthy, J. Zahorjan. PCP:

Efficient endpoint congestion control. USENIX NSDI, 2006.
[6] V. Arun, H. Balakrishnan. Copa: Practical delay-based

congestion control for the internet. USENIX NSDI, 2018.
[7] A. Balasingam, M. Bansal, R. Misra, K. Nagaraj, R. Tandra,

S. Katti, A. Schulman. Detecting if LTE is the bottleneck with
bursttracker. ACM MobiCom, 2019.

[8] L. S. Brakmo, S. W. O’Malley, L. L. Peterson. TCP vegas: New
techniques for congestion detection and avoidance. ACM
SIGCOMM, 1994.

[9] N. Bui, J. Widmer. OWL: A reliable online watcher for LTE
control channel measurements. ACM AllThingsCellular, 2016.

[10] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacobson.
BBR: Congestion-based congestion control. ACM Queue,
14(5), 2016.

[11] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, M. Schapira. PCC:
Re-architecting congestion control for consistent high
performance. USENIX NSDI, 2015.

[12] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey,
M. Schapira. PCC Vivace: Online-learning congestion control.
USENIX NSDI, 2018.

[13] Ettus. USRP B210. [ettus.com].
[14] Ettus. USRP X310. [ettus.com].
[15] S. Floyd, T. Henderson. RFC2582: The NewReno modification

to TCP’s fast recovery algorithm. RFC Editor, 1999.
[16] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton,

P. Serrano, C. Cano, D. J. Leith. srsLTE: An open-source
platform for LTE evolution and experimentation. ACM
WiNTECH, 2016.

[17] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh,
H. Balakrishnan. ABC: A simple explicit congestion control
protocol for wireless networks. USENIX NSDI, 2019.

[18] P. Goyal, M. Alizadeh, H. Balakrishnan. Rethinking
congestion control for cellular networks. ACM HotNets, 2017.

[19] S. Ha, I. Rhee, L. Xu. CUBIC: A new tcp-friendly high-speed
tcp variant. SIGOPS Oper. Syst. Rev., 42(5), 2008.

[20] M. Hock, R. Bless, M. Zitterbart. Experimental evaluation of
BBR congestion control. IEEE ICNP, 2017.

[21] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen,
O. Spatscheck. An in-depth study of LTE: Effect of network
protocol and application behavior on performance. ACM
SIGCOMM, 2013.

[22] IETF. IETF Mobile Throughput Guidance (MTG) . [ietf.org].
[23] V. Jacobson. Congestion avoidance and control. ACM

SIGCOMM, 1988.
[24] R. Jain. The art of computer systems performance analysis:

techniques for experimental design, measurement, simulation,
and modeling. John Wiley & Sons, 1990.

[25] D. Katabi, M. Handley, C. Rohrs. Congestion control for high

bandwidth-delay product networks. ACM SIGCOMM, 2002.
[26] L. Klein-rock. Power and deterministic rules of thumb for

probabilistic problems in computer communications. IEEE
ICC, 1979.

[27] L. Kleinrock. On flow control in computer networks. IEEE
ICC, 1978.

[28] S. Kumar, E. Hamed, D. Katabi, L. Erran Li. LTE radio
analytics made easy and accessible. ACM SIGCOMM, 2014.

[29] H. Lee, J. Flinn, B. Tonshal. RAVEN: Improving interactive
latency for the connected car. ACM MobiCom, 2018.

[30] W. K. Leong, Z. Wang, B. Leong. TCP congestion control
beyond bandwidth-delay product for mobile cellular
networks. ACM CoNEXT, 2017.

[31] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, T. Wang. Mobileinsight:
Extracting and analyzing cellular network information on
smartphones. ACM MobiCom, 2016.

[32] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, A. Terzis.
CQIC: Revisiting cross-layer congestion control for cellular
networks. ACM HotMobile, 2015.

[33] S. Ma, J. Jiang, W. Wang, B. Li. Fairness of congestion-based
congestion control: Experimental evaluation and analysis.
arXiv:1706.09115, 2017.

[34] J. Padhye, V. Firoiu, D. Towsley, J. Kurose. Modeling tcp
throughput: A simple model and its empirical validation.
ACM SIGCOMM, 1988.

[35] S. Park, J. Lee, J. Kim, J. Lee, S. Ha, K. Lee. ExLL: An
extremely low-latency congestion control for mobile cellular
networks. ACM CoNEXT, 2018.

[36] Qualcomm qxdm tool. qualcomm.com.
[37] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer,

G. Carle. Towards a deeper understanding of TCP BBR
congestion control. IEEE IFIP Networking, 2018.

[38] A. Sivaraman, K. Winstein, P. Thaker, H. Balakrishnan. An
experimental study of the learnability of congestion control.
ACM SIGCOMM, 2014.

[39] K. Tan, J. Song, Q. Zhang, M. Sridharan. A compound TCP
approach for high-speed and long distance networks. IEEE
INFOCOM, 2006.

[40] R. Ware, M. K. Mukerjee, S. Seshan, J. Sherry. Modeling
BBR’s interactions with loss-based congestion control. ACM
IMC, 2019.

[41] D. X. Wei, C. Jin, S. H. Low, S. Hegde. FAST TCP: Motivation,
architecture, algorithms, performance. IEEE/ACM
Transactions on Networking, 2006.

[42] K. Winstein, H. Balakrishnan. TCP Ex Machina:
Computer-generated congestion control. ACM SIGCOMM,
2013.

[43] K. Winstein, A. Sivaraman, H. Balakrishnan. Stochastic
forecasts achieve high throughput and low delay over cellular
networks. USENIX NSDI, 2013.

[44] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley. Design,
implementation and evaluation of congestion control for
Multipath TCP. USENIX NSDI, 2011.

[45] X. Xie, X. Zhang, S. Kumar, L. E. Li. piStream: Physical layer
informed adaptive video streaming over LTE. ACM MobiCom,
2015.

[46] X. Xie, X. Zhang, S. Zhu. Accelerating mobile web loading
i

https://www.3gpp.org/release-15
https://www.3gpp.org/specifications/releases/70-release-10
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/x310-kit/
https://tools.ietf.org/html/draft-flinck-mobile-throughput-guidance-04
https://www.qualcomm.com/documents/qxdm-professional-qualcomm-extensible-diagnostic-monitor

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Yaxiong Xie, Fan Yi, Kyle Jamieson

using cellular link information. ACM MobiSys, 2017.
[47] Q. Xu, S. Mehrotra, Z. Mao, J. Li. PROTEUS: Network

performance forecast for real-time, interactive mobile
applications. ACM MobiSys, 2013.

[48] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis,

K. Winstein. Pantheon: The training ground for internet
congestion-control research. USENIX ATC, 2018.

[49] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, C. Görg. Adaptive
congestion control for unpredictable cellular networks. ACM
SIGCOMM, 2015.

ii

	Abstract
	1 Introduction
	2 Related Work
	3 LTE/5G New Radio Primer
	4 Design
	4.1 Connection Start: Linear Rate Increase
	4.2 Steady State: Congestion Avoidance
	4.3 Fairness and TCP-friendliness

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Micro-benchmark: Cell Status
	6.3 End-to-end Delay and Throughput
	6.4 Fairness

	7 Discussion
	8 Conclusion
	References

