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Complex bubble breakup in turbulence has been studied and modeled extensively by employing the pop-
ulation balance equation. This equation hinges on two quantities, i.e. daughter bubble size distribution
and breakup frequency. Since there is no first-principle equation that can be solved to calculate these two
quantities, many phenomenological models based on different physical mechanisms have been proposed.
A large number of possible mechanisms at play leads to models with drastically different, and even con-
tradictory, predictions. In contrast, experimental measurements of these two quantities, including several
previous works and our own results collected in a vertical water tunnel that features a large homoge-
neous and isotropic region, seem to be consistent with one another. To resolve the difference between
models and experiments, rather than following another physical argument, we approach the problem
from a different direction by asking how to constrain a model based on experimental results. The specific
constraints extracted from eight experimental results include: (i) direct measurements of daughter bub-
ble size distribution; (ii) Super-Hinze-scale bubble size spectrum for constraining breakup frequency; (iii)
Sub-Hinze-scale bubble size spectrum for modeling daughter bubble size distribution; (iv) Convergence
time to an equilibrium state. Finally, based on these experimental constraints, a new breakup model that
incorporates a corrected formulation for breakup frequency as well as a simplified function for daughter
bubble distribution is developed to meet all constraints. Although the new model is deliberately not con-
nected to any specific physical arguments for simplification, it appears to be robust and consistent with

all experimental constraints mentioned.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Bubble fragmentation in turbulence eventually determines
bubble size spectrum and the interfacial area concentration
(Kocamustafaogullari and Ishii, 1995), which are crucial to many
multiphase flow applications that involve complex interfacial heat
and mass transfer. This process is often modelled using the pop-
ulation balance equation (for details, see Section 2), which is a
Boltzmann-type equation. Within this equation, there are two im-
portant parameters, one of which is daughter bubble size distri-
bution. As its name suggests, it represents the size distribution of
all daughter bubbles generated from breakup events. Since there
is no first-principle method that can derive the daughter bub-
ble size distribution, many models have been proposed, includ-
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ing statistical and phenomenological models. The statistical mod-
els assume that the size of daughter bubbles is a random variable
following some simple distributions, including normal (Valentas
et al., 1966; Coulaloglou and Tavlarides, 1977), Beta (Hsia and
Tavlarides, 1983), and uniform distribution (Narsimhan et al., 1979;
Prince and Blanch, 1990). More recently, the phenomenological
models (Tsouris and Tavlarides, 1994; Luo and Svendsen, 1996;
Martinez-Bazan et al., 1999b; Lehr et al.,, 2002; Hagesaether et al.,
2002; Wang et al., 2003; Zhao and Ge, 2007; Han et al., 2011) start
to gain popularity because they are usually formulated based on
the process of bubble-eddy collision, which is more physical com-
pared with the statistical methods. However, as we will discuss
in Section 4.1, many of these phenomenological models result in
drastically different daughter bubble size distributions that seem
to be inconsistent with experimental findings.

For experiments, bubble breakup has been studied in
many different flow configurations. Daughter bubble size
distribution was directly measured in turbulent pipe flows
by Hesketh et al. (1991) and turbulent jets by Rodriguez-
Rodriguez et al. (2003) and Vejrazka et al. (2018). In addition
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to daughter bubble size distribution, bubble size spectrum has
also been extracted from plunging breakers in the context of
breaking waves, in which a large volume of gas was entrained as a
wave crest plunging into the water and subsequently fragmented
into smaller bubbles following a particular size spectrum (Deane
and Stokes, 2002; Rojas and Loewen, 2007; Blenkinsopp and
Chaplin, 2010). The evolution of bubble size spectrum has also
been studied by Martinez-Bazan et al. (1999a) in a high-speed
water jet. In these flow environments, bubble breakup was linked
to the turbulence characteristics, which was assumed to be locally
homogeneous and isotropic to invoke the Kolmogorov theory
(Kolmogorov, 1941), even though most experiments were not
conducted in a condition that strictly follows such an assumption.
The objective of this work is to collect bubble breakup statis-
tics in an experimental facility that follows the homogeneous and
isotropic condition in a large area and develop a breakup model
completely relying on the available experimental constraints in-
cluding both ours and other published experimental results. In
Section 2, the population balance equation and some typical phe-
nomenological models for daughter bubble size distribution and
breakup frequency are reviewed. In Section 3, a new facility that
has been designed to study bubble breakup in homogeneous and
isotropic turbulence (HIT) is introduced. Section 4 summarizes
a number of experimental constraints, including direct measure-
ments (Section 4.1), scaling law of bubble size spectrum for large
(Section 4.3) and small (Section 4.4) bubbles, and the convergence
time to reach a dynamic equilibrium (Section 4.5). Finally, based
on all the constraints, a new model is proposed in Section 4.7.
Section 5 summarizes the paper and presents important remarks.

2. Breakup models
2.1. The population balance equation

The time evolution of the number density for bubbles of a cer-
tain size D at a given position x and time t, n(D, %, t), can be statis-
tically described by the population balance equation, which is first
proposed by Williams (1985):
an

§+V.(vn):—%(Rn)+Q'b+Q'c (1)

where v(D, x, t) is the advection velocity of bubbles, R = dD/dt
is the rate of change of bubble size due to mass dissolution, and
Qp and Q. are the rate of change of bubble number density n(D,
x, t) due to breakup and coalescence, respectively. For a system
that has a very low bubble concentration and negligible dissolu-
tion, which is exactly the case for our study, Q. and the dissolu-
tion term d(Rn)/dD can be neglected. By only considering breakup
(Martinez-Bazan et al., 2010), Eq. (1) can be re-written as:

Dn(D) _ 9n(D)
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Batchelor, 1956 where the first term on the right side is the source
term for the bubbles of size D generated by the breakup of all
bubbles of sizes larger than D. m(Dgy) is the number of daughter
bubbles generated from a mother bubble of size Dy; fiD; Dg) is
daughter bubble size distribution (also been referred to as breakup
kernel (Wang et al., 2003)) and g(D) is breakup frequency, which
represents the rate of breakup for a bubble of size D. Note that
f(D; Dg) is a conditional probability density function (PDF) of the
daughter bubble size D when the mother bubble size is Dy. It is
clear that, in Eq. (2), once fiD; Dg) and g(D) are known, n(D) can
be easily integrated numerically given the right initial condition.

fiD; Dy) is then replaced with the non-dimensionalized form,
fp(D*) = Do f(D; Dg), in the rest of the paper, where D* = D/Dy is
the non-dimensionalized daughter bubble diameter. Daughter bub-
ble size distribution can also be expressed as a function of the non-
dimensionalized volume:

fo(D*) =D?fy (V) (3)

where V* =V/V; is the ratio of the volume of daughter bubbles
V to that mother bubbles V. If we assume that two daughter
bubbles are always generated from every breakup event (binary
breakup, m = 2 in Eq. 2) and the volume of bubbles conserves dur-
ing the breakup, daughter bubbles of volume V* and of volume
1—V* should be generated at the same probability. This implies
that fi(V*) should be symmetric about V* = 0.5. It will be shown
later that most breakups follow the binary breakup assumption,
and m is fixed at 2 for the rest of the paper.

2.2. Models for daughter bubble size distribution

Many models for fy,(V*) have been proposed in the past few
decades. These models typically fall into one of the three groups
(Liao and Lucas, 2009) based on the shape of f,(V*): Bell-shape
(e.g. Martinez-Bazan et al., 1999b; Han et al., 2011), U-shape (e.g.
Tsouris and Tavlarides, 1994; Luo and Svendsen, 1996) and M-
shape (e.g. Lehr et al, 2002; Wang et al., 2003; Zhao and Ge,
2007). Some of these models are compiled in Fig. 1(a). It is obvious
that no consensus has been reached among these models, and it is
challenging for simulations to choose which model to implement.

As shown in Fig. 1(a), Bell-shape models have a high probabil-
ity of generating two daughter bubbles with similar or equal size
(V* ~ 0.5, hereafter referred to as equal-size breakup). One such
model is proposed by Martinez-Bazan et al. (1999b) by assuming
that the probability to generate a daughter bubble of a specific size
is proportional to the product of excess stress of the two daughter
bubbles. The excess stress was defined as the difference between
turbulent dynamic pressure around the daughter bubble and cap-
illary pressure of the mother bubble. If the excess stress of either
one of the daughter bubbles is negative, the probability is set as
zero because the turbulent dynamic pressure is not strong enough
to overcome the capillary pressure to break the bubble.

Opposing to the Bell-shape models, U-shape models predict
that most breakup events will preferentially generate two daugh-
ter bubbles with significantly-different sizes: one close to zero
(V* ~ 0) together with the other one close to the mother bubble
size (V* ~ 1) (hereafter referred to as uneven breakup). One typ-
ical example of the U-shape models is proposed by Tsouris and
Tavlarides (1994) based on the surface energy increment, which
is the difference between the total surface energy before and af-
ter breakup 40 7D3[D*2 + (1 —D*3)2/3 — 1], where o is the sur-
face tension coefficient. The surface energy increment reaches its
maximum for an equal-size breakup and minimum for an uneven
breakup. Since it was argued that the probability is inversely pro-
portional to the energy, fy(V*) looks like a U shape.

The last group is M-shape models. As shown in Fig. 1(a), the
M-shape models have three local minima of probability at V* = 0,
0.5 and 1. An example of the M-shape models is the one proposed
by Wang et al. (2003) based on the notion of eddy-bubble collision.
This model considered the probability of bubbles colliding with ed-
dies that can meet the following two conditions: (i) the eddy size
is smaller or equal to the bubble size; (ii) the eddy has either large
kinetic energy to surpass the surface energy increment, or large
dynamic pressure to overcome the capillary pressure of the bub-
ble. Moreover, the collision frequency with eddies was modelled
inspired by the gas kinetic theory, and the PDF of eddy energy was
modeled using an exponential function.
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Fig. 1. (a) Daughter bubble size distribution fy(V*) versus the non-dimensionalized
daughter bubble volume V* for different proposed models.(b) Daughter bubble size
distribution from experiments, including the previous experiments and our ex-
periment (blue circles) as well as the proposed new model (red solid line) in
Section 4.7. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Most of these phenomenological models were proposed based
on the argument that daughter bubble size distribution is related
to excess energy, stress, and the collision process. As a result, the
models also predict that fi(V*) should have a strong dependence
on both Dy and the ensemble-averaged turbulent energy dissipa-
tion rate (e). Similar to the large variation of fy,(V*) among differ-
ent models, the predicted dependences are also inconsistent with
one another even qualitatively; fi(V*) may increase or decrease
as Dy and (€) change. In addition, the predicted dependences
are not supported by the experimental findings, e.g. Rodriguez-
Rodriguez et al. (2003) suggested that the dependence is weak.
Moreover, many models for fy,(V*) were not validated in their orig-
inal paper, whereas some were validated against limited experi-
mental evidence, either by directly comparing with measurements
of fy(V*) or with the measured bubble size spectrum. For the latter,
the calculated bubble size spectrum was obtained by implement-
ing the modeled fi/(V*) in Eq. (2).

The advantage of using physical arguments in models is clear:
(i) it connects to the physical breakup process, (ii) it also predicts
the dependence of fy(V*) on multiple possible parameters. The
downside is equally evident: there are simply too many possible
arguments that are available, and they produced very inconsistent
results. It poses a formidable challenge for simulations as to which
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Fig. 2. (a) Breakup frequency versus bubble diameter D for different models. The
energy dissipation rate used is (€) = 5 m?/s? (b) Comparison of the original breakup
frequency model by Martinez-Bazan et al. (1999a) (blue) and the corrected model
based on Eq. (9) (red) at (¢) =50 m?/s3. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

model to implement. In addition, the methodology adopted works
like a forward problem, assuming f,(V*) based on some breakup
mechanisms and hope that the predicted results agree with experi-
ments. The methodology that we are proposing in this paper is the
opposite. The question that is being asked here is an inverse prob-
lem: what the right features of a correct model for fy(V*) should
be based on experimental constraints. To address this question, we
will summarize some existing experimental results, and use them
to derive a new model of fy(V*).

2.3. Models for breakup frequency

In addition to fy(V*), breakup frequency g(D) is also required
to solve the population balance equation. Some of these mod-
els proposed by Lee et al. (1987), Prince and Blanch (1990),
Tsouris and Tavlarides (1994), Luo and Svendsen (1996),
Martinez-Bazan et al. (1999a), Rodriguez-Rodriguez et al. (2003),
Lehr et al. (2002), Wang et al. (2003) and Zhao and Ge (2007) are
compiled in Fig. 2(a). Similar to f,(V*) shown in Fig. 1(a), a
large variation of the predicted breakup frequency motivated by
different physical mechanisms is observed. One such mechanism
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proposed by Martinez-Bazan et al. (1999a) was based on the
pressure difference:

2((€). D) — KgJﬂ((e)D)Z/; ~120/(pD) @

where B is the Kolmogorov constant of the second-order structure
function. 8 = 8.2 given by Batchelor (1956) was used by Martinez-
Bazan et al. (1999a). But a more recent compilation of the Kol-
mogorov constant (Sreenivasan, 1995; Ni et al, 2013) suggests
that this number is closer to 8 =7.81. The prefactor K; needs
to be determined from experiments, which was suggested to be
0.25 by Martinez-Bazan et al. (1999a). For large bubbles, the dy-
namic pressure, the first term in the square root, dominates, and
Eq. (4) can be simplified as g({€), D) = KgB1/%(e)1/3D~2/3, which
suggests that g for large bubbles is proportional to the reciprocal
of eddy turn-over time, i.e. {¢)~1/3D2/3, On the other limit, when
the mother bubble size becomes smaller than the critical value,
Dy = (120 /(Bp))3/3{€)~2/3, breakup frequency will be set as zero,
consistent with the argument that bubbles smaller than Dy are
simply too strong to be broken. Dy is essentially the Hinze scale
(Hinze, 1955).

Similar to models for fi,(V*), most existing models for breakup
frequency were also proposed based on some physical mecha-
nisms. The inconsistency among these models, both quantitatively
and qualitatively, points out a problem that there are simply too
many possible physical arguments that can lead to drastically dif-
ferent model predictions. In this paper, similar to fi,(V*), we will
take a different approach by constraining the model of g((€), D) us-
ing experimental results and illustrate the key characteristics that
a correct model should encompass.

3. Experimental setup
3.1. V-ONSET vertical water tunnel

Since most models developed for describing bubble breakup
rely on an assumption of HIT, it is important to maintain HIT in a
large area that the statistics can be collected. Flow configurations
adopted include turbulent pipe flow (Hesketh et al., 1991) and tur-
bulent jet (Martinez-Bazan et al., 1999b), neither of which, strictly
speaking, can be claimed to be HIT and both of which exhibit some
strong spatial velocity gradients that could complicate the results.

A new vertical water tunnel, V-ONSET (Vertical Octagonal Non-
corrosive Stirred Energetic Turbulence) (Masuk et al., 2019b), was
constructed to study bubble breakup, as shown in Fig. 3(a). This fa-
cility has several unique features: (i) The mean flow in the tunnel
can be adjusted to keep bubbles in the view area for an extended
period of time which allows us to record more breakup events.
(ii) HIT can be maintained over a large area in the test section
( ~ 10 cm) and is decoupled from the mean flow. (iii) There is an
octagonal test section in the system that allows for six high-speed
cameras imaging deforming and breaking bubbles from views that
cover the entire perimeter of the test section. A typical arrange-
ment of the cameras used in this work is shown in Fig. 3(b).

Turbulence in the test section was generated by 88 water jets
with the highest speed up to 12 m/s. The jet nozzle diameter is
5 mm. These water jets were fired randomly into the test section
to avoid any secondary flows which is key to maintain HIT over
a large region. On average, 12.5% of the jets were fired at a time
(Variano et al., 2004), and the resulting (€) is about 0.52 m?2/s3
around the bubbles. € was calculated from the local velocity gradi-
ent tensor using tracers around bubbles. Note that this level of (€)
may appear to be lower than what has been reported in other pa-
pers for studying bubble breakup. Even in our system, if we move
the view area closer to the jet array, {¢) of 10-1000 m?2/s> can be
reached. But close to the jet array, like in other works using jets,
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Fig. 3. (a) Schematic of the V-ONSET vertical water tunnel. (b) Top view of six cam-
eras with their respective inclination angles to the horizontal plane. (c) Schematic
of the bubble bank located at the bottom of the test section for injecting bubbles.

the spatial gradients of both mean and fluctuation flow velocity are
large. Their contributions to the bubble breakup could be as strong
as, if not stronger than, the turbulence’s, which could potentially
complicate how we interpret the results.

Bubbles in V-ONSET were generated at the bottom of the test
section from a bubble bank that consists of arrays of hypodermic
needles of two different sizes, as shown in Fig. 3(c). Bubbles gen-
erated by these needles range from 1 to 10 mm in diameter. The
bubble bank is located far below the test section to make sure that
bubbles enter the test section with no memory of the injection
mechanism so that all breakup events in the test section can be
ascribed only to bubble-turbulence interaction. In another study,
we analyzed the information of high-concentration of tracer par-
ticles around each bubble, which helps us to quantify the Weber
numbers based on the horizontal slip velocity and velocity gradi-
ent. It has been shown in our case that the mean Weber number
for breaking bubbles is about 20-40, which is much larger than
the Weber number for all bubbles that are close to one. This sug-
gests that the bubble breakup is indeed dominated by turbulence
instead of buoyancy.

3.2. 3D reconstruction of bubble breakup

In most previous works, bubble breakup was identified by using
2D images from one high-speed camera. If a bubble pinches and
breaks within the camera 2D plane, the breakup can be observed
accurately. However, if this process occurs along a direction that is
perpendicular to the 2D plane, which is possible if the flow is truly
isotropic, just one view may not suffice.

Here, to provide the 3D reconstruction of the entire breakup
process, six synchronized high-speed cameras with one megapixel
resolution working at 4000 fps were distributed around the
perimeter of the test section to cover the view volume from dif-
ferent angles. A designated LED panel for each camera provided
diffused light to cast shadows of bubbles onto camera’s imaging
plane, from which the bubble silhouette can be extracted. The bub-
ble shape was reconstructed using a new virtual-camera visual hull
(VC) method (Masuk et al., 2019a) by enforcing the minimal sur-
face energy criteria.

In the classical limited-angle visual hull (VH) method, the 3D
volume of the object is reconstructed by calculating the intersec-
tion of the cone-like volume extruded from the silhouette on each
camera. Although this method has been used extensively in many
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17 ms

Fig. 4. Example of a bubble breakup event, including (a) raw images on one cam-
era, and (b) 3D reconstructed result of the same bubble. The diameter of an equiv-
alent sphere for this bubble is 2.82 mm.

studies (Laurentini, 1994; Matusik et al., 2000; Kutulakos and Seitz,
2000; Mulayim et al., 2003), the VH method tends to overesti-
mate the reconstructed volume if only limited views are provided,
which is the case considering the four-camera configuration used
in a typical 3D volumetric velocity measurements.

To address this problem, two solutions have been put forward.
The first one is simply to acquire more high-speed cameras. Six
high-speed cameras were utilized for this purpose. With these
many cameras, for almost all breakup events, no matter along
which direction the necking process occurs, at least one cam-
era will capture that. The other solution is to enforce a physical
constraint, i.e. minimal surface energy, in 3D reconstruction. The
limited-angle VH method typically results in sharp corners, but
bubbles or droplets do not have very sharp corners due to the
surface tension. To implement this constraint, the initial 3D re-
construction was first performed using the standard VH method.
This geometry was then projected to many directions where ac-
tual cameras were not available, thus the name, virtual camera. Sil-
houettes on virtual cameras were smoothed iteratively to remove
corners with a large curvature, and the smoothed image was in-
tegrated into reconstruction again as a new virtual camera to re-
fine the geometry. The refined volume was re-projected back onto
actual cameras to make sure the refined geometry was not over-
corrected to affect images on actual cameras. Additional details of
validating this method by using standard and experimental geome-
tries can be found in Masuk et al. (2019a).

By applying this method to our experiments, deformation and
breakup of each bubble can be reliably reconstructed. Fig. 4 shows
one typical breakup event imaged by the camera and reconstructed
using VC method. The entire process from the initial weak de-
formation to the final breakup takes about 17 ms, which is 12.1
times of the Kolmogorov time scale (1.4 ms) and 1.5 times of the
natural oscillation period of this bubble (11.3 ms, based on Lamb
mode 2 bubble natural frequency (Lamb, 1932)). In particular, it
can be seen that the daughter bubble size from 2D images ap-
pears to be slightly larger than that in the 3D view because the
daughter bubble was flattened within the camera 2D plane dur-
ing the breakup process. This suggests that, if only one camera
was used, the daughter bubble size cannot be reliably determined.

PDF

Fig. 5. The distribution of the number of daughter bubbles m produced in each
breakup event.

Therefore, in our setup, the 3D reconstruction was performed for
every breakup event, from which daughter bubble size distribution
was extracted.

4. Discussion
4.1. Measurement of daughter bubble size distribution

In V-ONSET, the mean turbulent energy dissipation rate was
maintained at around 0.52 m2/s2. The Reynolds number is defined
as Re = u'L/v, where /' is the fluctuation velocity and L is the in-
tegral length scale. Re in our experiments was kept roughly the
same at 8000 with v’ =0.25 m/s and L = 3.2 cm. To measure the
daughter bubble size distribution, 190 datasets were collected, and
480,329 bubbles were reconstructed and tracked over time. The
majority of these bubbles did not break in the finite residence
time that they spent in the view volume. As a result, 195 breakup
events were identified, which is more than the work conducted by
Hesketh et al. (1991) (used extensively for model validation) but
fewer compared with more recent work by Vejrazka et al. (2018).
Details of these experiments are shown in Table 1. Note that the
number of breakup events in our experiments can be enhanced
significantly if (i) the bubble injection point is very close to the
interrogation window and (ii) the interrogation window is close to
the jet array. But we chose to keep the interrogation volume far
away from both the bubble injection and the jet array to avoid pos-
sible contamination either due to the memory of injection or the
inhomogeneity or anisotropy of the flow. Having a small number
of breakup events is a compromise to ensure that bubbles break
only by intermittent turbulence, not by mean gradients or by bub-
ble injection mechanisms.

Fig. 5 shows the distribution of the number of daughter bubbles
identified after each breakup. Note that this number is sensitive to
the spatial and temporal resolution. The spatial resolution has to
be large enough to resolve even the smallest daughter bubbles, and
the temporal resolution needs to be high to avoid mistreating two
consecutive binary breakups as one ternary breakup. The smallest
bubble size that the current setup can resolve is about 200 pm.
The frame rate used to track bubbles is 4000 fps, and each indi-
vidual breakup event is identified within one frame (0.25 ms). Un-
der this condition, 74.9% of the breakup events are binary (m =2
in Eq. (2)), as shown in Fig. 5. This suggests that the binary bubble
indeed dominates the statistics, and only this subset of the dataset
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Table 1

Parameters of the existing experiments on daughter bubble size distribution; (€) is turbulent energy dissipation
rate, Nj, is the number of breakup events, 1, is the Kolmogorov length scale, and Dy is the mother bubble size.
The definitions of Re are different based on specific flow configurations used, including jet Reynolds number in
Rodriguez-Rodriguez et al. (2003) and Vejrazka et al. (2018); and hydraulic-diameter-based Reynolds number in

Hesketh et al. (1991). In our work, the Reynolds number is defined in Section 4.1.

(€) (m?/s?) N, Re Nk (Hm) Do (mm)
Hesketh et al. (1991) - 56 15 x 10° - 2.7-4.1
Rodriguez-Rodriguez et al. (2003)  12-129 - 3.5 x 103-7 x 104 9.4-17.0 0.7-3.3
Vejrazka et al. (2018) 0.01-300 1100 6 x 10°-2.6 x 10*  7.6-100.0  1.8-5.0
Present work 0.52 195 8 x 10° 37.6-50.0 2.9-7.6

will be used in this paper to constrain daughter bubble size distri-
bution.

The daughter bubble size distribution measured from our ex-
periments is shown in Fig. 1(b) as blue dots. The distribution
seems to follow a W-shape with a large probability close to V* =0
and 1 and a small hump close to V* = 0.5. In addition to our ex-
perimental results, a limited number of experimental results of
fy(V*) have been reported in different flow configurations: hori-
zontal two-phase pipe flows (Hesketh et al., 1991), turbulent jets
(Rodriguez-Rodriguez et al., 2003), and flows driven by a down-
ward jet array (Vejrazka et al., 2018). Details of these experiments
are shown in Table 1 for comparison, and the data of fi(V*) is
shown in Fig. 1(b). Despite the distinct conditions used in different
experiments, all experimental results agree quite well with one an-
other for V* < 0.2 or V* > 0.8. A similar hump near V* = 0.5 corre-
sponding to two equal-size daughter bubbles can also be observed
in works by Hesketh (1987) and Vejrazka et al. (2018).

Models of fy(V*) that were introduced in Section 2 are com-
plied in Fig. 1(a). As one can clearly see, in contrast to the nice
agreement among experimental results, there is no consensus as
to which model to use for bubble breakup. All these models that
have been introduced based on some physical arguments do not
seem to agree with the experimental results, some of which are
closer, such as the U-shaped models. It is our goal of introduc-
ing a model, instead of relying on physical arguments, to focus on
being constrained by experimental results. However, it is not that
straightforward as a W-shaped curve can be fitted with many dif-
ferent functional forms. Therefore, direct measurement alone is not
enough, statistics from other experiments will be sought to provide
additional constraints.

4.2. Bubble size spectrum and scaling

One such additional experimental constraint is the bubble size
spectrum, which quantifies the distribution of bubble size after a
series of breakup events. But evaluating the bubble size spectrum
is sensitive to how bubbles are introduced in turbulence, whether
bubbles are injected once or continuously into the system.

The experimental datasets that can be used include the works
by Deane and Stokes (2002), Rojas and Loewen (2007), and
Blenkinsopp and Chaplin (2010), all of which reported bubble size
spectrum produced during air entrainment and fragmentation in
breaking waves, as shown in Fig. 6(a). As wave plunges back into
the pool, it traps a large cavity of gas, which subsequently breaks
into a swarm of small bubbles by turbulence. The bubble size spec-
trum is therefore produced via the bubble cascade process. Simi-
lar to the Richardson turbulence cascade, large bubbles break into
smaller ones and so on until bubble size drops to the Hinze scale,
where the surface tension becomes too strong for bubbles to be
broken by turbulence. In the work by Deane and Stokes (2002),
the experiment was conducted in a seawater wave plume with
plunging breakers generated by a wave paddle on one side of the
flume. In this experiment, two distinct scaling laws separated by
the Hinze scale were observed, as shown in Fig. 6(a). For super-

Hinze bubbles (D > Dy), the number density exhibited D~10/3,
whereas a different scaling law n(D) « D—3/2 was observed for sub-
Hinze-scale bubbles (D < Dy).

In the dimensional analysis conducted in the same paper, a
quantity called the average rate of air supply was introduced to
represent the normalized volume of gas entrained in water per
unit time, which indicates that large bubbles are continuously in-
troduced into the control volume at a relatively constant rate over
this time period. Once the breakup rate and birth rate of bubbles
at each size become close to each other, the bubble size spectrum
will remain unchanged. This case is referred to as, continuous in-
jection, to suggest that a constant bubble injection at large sizes is
maintained.

Martinez-Bazan et al. (1999a) measured the bubble size spec-
trum by injecting air bubbles using a needle with a diameter of
0.394 mm into a fully-developed turbulent jet. The Reynolds num-
ber based on the exit velocity and equivalent nozzle diameter for
the jet was kept at 51,000. Subjected to strong turbulence, bubbles
break into smaller and smaller sizes as they continuously move
downstream following the mean flow. Since the interrogation win-
dow is moving downstream with bubbles and away from the injec-
tion point, the measured bubble size spectrum, rather than reach-
ing an equilibrium state, keeps shifting towards smaller sizes, as
shown in Fig. 6(b). This entire experiment is essentially the same
as injecting large bubbles only once into a fixed control volume at
the beginning of an experiment and observing the change of bub-
ble size spectrum over time, which is referred to as one-time in-
jection hereafter. The spatial evolution of n(D) as a function of the
distance between the interrogation window to the nozzle exit X is
converted to the temporal evolution as a function of T, where T is
the time for a bubble to travel from the nozzle exit to X following
the mean flow.

Superposing bubble size spectra at different times from the
one-time injection experiments provides a reasonable estimation of
the equilibrium bubble spectrum in the continuous injection case.
The solid red line in Fig. 6(b) shows the result of superposing data
from different X (or equivalently T) together to approximate the
bubble spectrum from continuous injection. Even with only five dif-
ferent T, the superposed spectrum seems to exhibit a similar -10/3
power law for a range of bubble sizes near D =1 mm, which is
consistent with the work by Deane and Stokes (2002). For this par-
ticular experiment, given the limitation of the camera resolution,
the scaling for the sub-Hinze range cannot be measured accurately.

4.3. Super-Hinze-scale bubble spectrum

For super-Hinze-scale bubbles (D > Dy), it seems that experi-
ments conducted in different configurations all suggest the possi-
ble existence of —10/3 scaling law: n(D) o« D=19/3_ It indicates that
this scaling may be universal for bubble breakup in turbulence as
long as bubbles are continuously injected at large sizes. In this sec-
tion, we intend to see if we can use this scaling law to constrain
breakup models.
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Fig. 6. (a) Bubble size spectrum n(D) versus bubble diameter D from wave-breaking
experiments (Deane and Stokes, 2002; Rojas and Loewen, 2007; Blenkinsopp and
Chaplin, 2010). Solid lines show the two scaling laws proposed in the paper by
Deane and Stokes (2002). Note that D is normalized by the corresponding Hinze
scale Dy in each experiment, and n(D) is divided by n(D = 2Dy).(b) The evolu-
tion of bubble size spectrum as a function of the distance between the measure-
ment window to the nozzle exit X normalized by the nozzle diameter D; (Martinez-
Bazan et al., 1999b). The red solid line indicates the superposition of all X and the
black dashed line shows the -10/3 scaling law. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Following the conditions of continuous injection, in the model,
we assume that (i) bubbles with the largest size are continuously
fed into the system at a constant rate; (ii) when a large mother
bubble of size Dy breaks, it generates m identical-sized daughter
bubbles with a diameter of m~1/3D, due to volume conservation.
m can be any number; (iii) The system reaches a dynamic equilib-
rium when the birth rate balances with the breakup rate for bub-
bles of any sizes.; (iv) Bubble breakup frequency follows Eq. (4).
The breakup frequency for both mother bubbles Dy and daughter
bubbles m~1/3Dy (Dg > Dy and m~1/3Dy > Dy) can be expressed
approximately as (6)1/3D62/3 and (e)1/3(m~1/3Dy)~2/3 respectively.

Since all the daughter bubbles of size m~1/3D, are generated
from breakup events of the mother bubbles of size Dy, the birth
rate of the daughter bubbles is: Nlm(6)1/3D52/3, where Nj is the
total number of the mother bubbles. If the number of the daughter
bubbles of diameter m~1/3Dy is denoted as N, the breakup rate

of these daughter bubbles is: N,(e)1/3(m~1/3Dy)~2/3. Finally, the
dynamical equilibrium yields a simple relationship between N; and
Ny:

N1m(e>1/3D62/3 — Ny (€)3(m~13Dg) 23 5)

Rearrange Eq. (5) yields N, = m7/°N;. The total number of
mother and daughter bubbles can also be expressed as N; =
nyd(Dg) and N, = n,d(m~1/3Dgy), where ny; and n, are the num-
ber density of mother bubbles and daughter bubbles, respectively,
d(Dg) and d(m~'/3Dy) are the corresponding bin sizes. By substi-
tuting N; and N, in Eq. N, = m’/°N; with n; and n, the relation-
ship n,(m=1/3Dy) = m'9/%n; (Dy) can be obtained. For the equation
to hold, n(D) ~ D~10/3,

In the discussion above, the power law of super-Hinze-scale
bubbles directly comes from the fact that breakup frequency is
proportional to D~2/3, which seems to suggest that breakup fre-
quency, rather than daughter bubble size distribution, dominates
the bubble size spectrum, at least for super-Hinze-scale bubbles
considered.

This simple analytical model was originally proposed by
Garrett et al. (2000) to explain the scaling law of bubble size
spectrum observed in breaking waves. This model assumes a delta
function in the daughter bubble size distribution, f,(V*). To ac-
count for different models proposed for fi,(V*), we also solved the
population balance equation (Eq. (2)) using two different mod-
els proposed by Martinez-Bazan et al. (1999b) (equal-size breakup,
Bell-shape) and Tsouris and Tavlarides (1994) (uneven breakup, U-
shape). As shown in Fig. 1(a), these two models have a nearly op-
posite prediction of daughter bubble size distribution. Since the
mean flow will only transport bubbles without affecting breakup
processes, the convective term in Eq. (2) was neglected. Eq. (2) is
then integrated in time on a linear grid using the 1%-order forward
Euler method. The grid size and time step were set at AD = 0.1
mm and At =3 x 10~ s respectively considering the numerical
precision and computational cost. The initial condition of n(D) was
set as zero for bubbles of all D. At each time step, a constant num-
ber density was added to the bin of D = 10 mm to maintain a con-
stant injection rate, and (e) is set as 50 m?/s3. The simulation con-
tinued until the scaling of the large bubbles stopped changing.

Fig. 7 shows the time evolution of bubble size spectrum. Af-
ter reaching the dynamical equilibrium, bubble size spectra cal-
culated by implementing two different models exhibit the same
-10/3 power law for super-Hinze-scale bubbles. This observation
confirms the conjecture that the scaling law for super-Hinze-scale
bubbles is determined solely by breakup frequency, rather than
by daughter bubble size distribution. In fact, if we assume that
breakup frequency follows a power law, g(D) ~ DY (the exponent
y depends on a specific model), bubble size spectrum can be writ-
ten as: n(D) ~ D=4-¥ based on Eq. (5). It implies that the equilib-
rium bubble size spectrum, at least for super-Hinze-scale bubbles,
can only be used to constrain models of breakup frequency, not
daughter bubble size distribution.

The observed -10/3 scaling law for super-Hinze-scale bubble
size spectrum from at least four experimental results (Deane and
Stokes, 2002; Rojas and Loewen, 2007; Blenkinsopp and Chaplin,
2010; Martinez-Bazan et al., 1999b) provides a strong experimen-
tal constraint that the breakup frequency should exhibit g « D=2/3
for large bubbles. This result agrees with the model by Martinez-
Bazan et al. (1999b), which will be used for the rest of this paper.

4.4. Sub-Hinze-scale bubble spectrum

The sub-Hinze-scale bubble scaling could also be used to con-
strain the models of daughter bubble size distribution. Here, we in-
vestigate what characteristics of fy(V*) could potentially affect the
scaling for sub-Hinze-scale bubbles.
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As the bubble size drops below the Hinze scale, bubbles will
remain spherical and difficult to break because of the strong sur-
face tension. This argument implies that: (i) Unlike super-Hinze-
scale bubbles, the scaling law observed for sub-Hinze-scale bub-
bles should not be determined by the breakup frequency because
there is no cascade process in this regime; (ii) Most sub-Hinze-
scale bubbles are produced primarily by the breakup of super-
Hinze-scale bubbles.

Moreover, this sub-Hinze scaling should be determined by bub-
bles with size slightly larger than the Hinze scale D 2 Dy rather
than by the extremely large ones D > Dy. First of all, these ex-
tremely large bubbles are rare, orders of magnitude fewer than the
ones close to the Hinze scale, as shown in Fig. 6(a). Even though
they can produce small sub-Hinze-scale bubbles, the number that
can be generated is small. Second, in the previous section, it was
shown that breakup frequency drops as bubble size grows, which
indicates that very large bubbles on average take longer to break
even though they may break in a more violent manner. Since the
number of breakup events per unit time is proportional to the
product of the number of bubbles and breakup frequency, it is rea-
sonable to conclude that most sub-Hinze-scale bubbles are gener-
ated by bubbles slightly larger than the Hinze scale.

Following these arguments, assuming many bubbles with an
identical size Dy all break at once, the resulting sub-Hinze-scale
bubble size spectrum n(D) should be equal to daughter bubble
size distribution fp(D*). As n(D) seems to exhibit a scaling law
for sub-Hinze-scale bubbles, we assume a power law for fp(D*) as
D* — 0, i.e. fp(D*) ~ D** (or equivalent fy (V*) ~ V*@=2)/3 based on
Eq. 3), where « is the exponent that needs to be determined. The
experimental result by Deane and Stokes (2002) has shown that
n(D) ~ D=3/2 for D < Dy, which suggests that the scaling exponent
« for fp(D) should be a negative constant i.e. -3/2.

This relationship of fp(D*) ~D*=3/2 (or equivalent f,(V*) ~
V*=7/6) hinges on an assumption that the entire sub-Hinze-scale
bubble spectrum is contributed by bubbles at one particular
size around the Hinze scale Dy. In practice, a range of super-
Hinze-scale bubbles can all produce sub-Hinze-scale bubbles af-
ter breakups, and this effect is taken into account numerically by
conducting a similar simulation as what has been performed in
Section 4.3. We found that the exponent o has to be corrected to
-2 (or equivalent fy (V*) ~ V*=4/3) to reflect this broadband contri-
bution. The new model can be expressed as:

V*—4/3 4 (1 _ V*)—4/3

V) = —
W e (V45 4 (1= Vo) =403]dv

(6)

In addition to V*=4/3, the other term (1 — V*)~4/3 is introduced to
satisfy the volume-conservation requirement. This term becomes
negligible compared with V*~4/3 as V* approaches zero for very
small daughter bubbles. Therefore, this new model of f,(V*) still
satisfies the power-law relationship in the limit fy (V*) ~ V*~4/3 for
V* — 0 (or equivalent fp(D*) ~ D*=2 for D* — 0).

Vi (Vihax = 1=V, ) is the cutoff close to V* =0 (or V* = 1) to
avoid generating arbitrarily small daughter bubbles, which would
not be physical. Such a cutoff is also necessary for experimental re-
sults shown in Fig. 1(a) because fy(V*) has to drop to zero for very
small V*. In addition, the cutoffs were also introduced in many
other models, such as the ones by Martinez-Bazan et al. (1999b),
Tsouris and Tavlarides (1994), Luo and Svendsen (1996).

This new model in Eq. (6) is then numerically implemented in
the population balance equation following the same procedure as
described in Section 4.3. The time evolution of bubble size spec-
trum is shown in Fig. 8(a). Compared with previous models shown
in Fig. 7(a) and (b), although the proposed new model of f,(V*)
reaches the same -10/3 scaling law for super-Hinze-scale bubbles,

(@) | -
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Fig. 7. Time evolution of bubble size spectrum n(D) versus bubble size D obtained
from numerically solving Eq. 2 with different models for daughter bubble size dis-
tribution: (a) Martinez-Bazan et al. (1999b) and (b) Tsouris and Tavlarides (1994).
The simulation was performed by injecting the largest bubbles of 10 mm in size at
a constant rate in turbulence with (€) = 50 m?/s3.

it shows a distinct negative -3/2 exponent, rather than a positive
exponent in previous models, for the sub-Hinze scaling law range.

Note that the scaling exponent for sub-Hinze-scale bub-
bles reported in different works is not exactly the same.
Deike et al. (2016) summarized several experiments on breaking
waves (Deane and Stokes, 2002; Rojas and Loewen, 2007; Blenk-
insopp and Chaplin, 2010), in which a wide range of scaling ex-
ponents have been reported. More recently, simulations on break-
ing waves (Wang et al., 2016; Chan et al., 2018) and bubbles en-
trained in strong free-surface turbulence (Yu et al., 2020) suggested
that this scaling exponent could range from -3 to -4/3. Although
there is no consensus on the exact value of this exponent, most
prior works suggested that this exponent is likely to be a nega-
tive number. Here, we used the most cited work by Deane and
Stokes (2002) to constrain fi(V*) as V* approaches zero. In addi-
tion, the cutoff used in Eq. (6) does affect the final scaling expo-
nent of sub-Hinze-scale bubbles. The exponent changes from -3/2
to -1.2 as the cutoff increases by an order of magnitude. It sug-
gests that the exponent is not very sensitive to the selected cutoff.
But this weak dependence still indicates that the observed wide
range of scaling exponents reported in experiments could depend
on how small the daughter bubbles can be generated during the
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Fig. 8. Time evolution of bubble size spectrum by implementing (a) Eq. (6) for
daughter bubble size distribution and Eq. (4) for breakup frequency. (b) Eq. (6) for
daughter bubble size distribution and Eq. (9) for corrected breakup frequency after
accounting for the log-normal distribution of €. Other conditions remain the same
as those employed in Fig. 7. Two scaling laws with respective exponent of -3/2 and
-10/3 are shown by two solid lines.

breakup process, which could be affected by the surface tension
and water contamination.

To examine other models in the limit of D* — 0, fp(D*) from
several previous models are shown in Fig. 9 in the logarithmic
scale to emphasize the scaling as D* — 0. Eq. (6) is shown as the
purple solid line, which clearly exhibits a power law with a neg-
ative exponent of -2 as D* — 0. Other models seem to suggest
the opposite. If a power law is fitted to these models for small D*,
the exponent would be positive, which will not help to generate
the sub-Hinze-scale bubble size spectrum with a negative expo-
nent suggested by many experiments.

4.5. Convergence time

As aforementioned in Section 4.3, as the bubble size cascade
process continues for continuous injection, the super-Hinze-scale
bubble size spectrum will eventually converge to the same power
law scaling of D=19/3, regardless of fi(V*), so this scaling law can-
not be used to constrain the model of fy,(V*). However, as shown in
Figs. 7 and 8(a), different choices of models for fi(V*) affect how
long bubble size spectrum reaches the equilibrium state, which is
referred to as convergence time (t.) hereafter. This result could
serve as another constraint to fi(V*) for V* close to 0.5.

fo(D)

10_4 ‘ . . N 1 PR
D*
Fig. 9. Daughter bubble size distribution fp(D*) versus the non-
dimensionalized daughter bubble diameter D* for different proposed models
by Martinez-Bazdn et al. (1999b) (blue), Tsouris and Tavlarides (1994) (red),
Wang et al. (2003) (yellow) and Eq. (6) (purple). The black solid line indicates the

D*~2 scaling law near zero. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

As shown in Fig. 7, 7. for the model by Martinez-
Bazan et al. (1999b) is only half of that by Tsouris and Tavlar-
ides (1994). The two models show the opposite trend with respect
to V*: one peaks at V* = 0.5 (equal-size breakup) and the other
one peaks at V* close to 0 and 1 (uneven breakup). To enable a
smooth transition between these two limits, a mixed model is in-
troduced:

W = 1 —cos(2mV*)

fo [1 = cos(2V+)]dV*
V*_4/3 + (1 _ V*)_4/3
f‘yfmx V=473 4 (1 — V*)-4/3dV

min

+ (1 -w) (7)

where the first term, cosine function, represents a simplified Bell-
shape curve that has a higher probability of equal-size breakup,
and the second term is from Eq. (6) to represent the U-shape
model for uneven breakups. w is the weight parameter that can
be changed smoothly between 0 and 1 to switch between these
two shapes.

The weighted-averaged model was implemented in the popula-
tion balance equation following the procedure in Section 4.3 to ob-
tain the time evolution of bubble size spectrum. The spectra (in the
range of D =2-8 mm) at different times were fitted with power
laws, from which the scaling exponent 8 was extracted and plot-
ted versus time. As shown in Fig. 10(a), as the simulation time 7
increases, the scaling exponents of super-Hinze-scale bubbles from
models with different w all approach the same number close to -
10/3, but it takes longer to reach that asymptotic value for smaller
w. Fig. 10(b) shows 7. versus w. Clearly, 7. for @« =1 (Bell-shape)
is indeed much shorter than the case of w =0 (U-shape), which
is consistent with what has been observed in Fig. 7. This implies
that models with a higher probability of equal-size breakup will
converge faster than those with more uneven breakup events.

T, seems to approach a constant as w increases. To estimate
this limiting value of 7., we assume an extreme case, in which the
daughter bubble size distribution is a delta function at V* = 0.5,
suggesting that every breakup event will result in two identical-
sized daughter bubbles. Performing the same simulation, the short-
est convergence time 7., = 0.14 is obtained, which is shown in
Fig. 10(b) as a dashed line. It can be seen that this value is very
close to the results obtained from the weighted-averaged model
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Fig. 10. (a) Time evolution of the scaling exponent § of bubble size spectrum for
super-Hinze-scale bubbles (D > Dy) for different weight @ used in the mixed model
(Eq. (7)). (b) Convergence time 7. versus w; The dash line indicates the minimum
convergence time T i, = 0.14 by assuming a delta function at V* = 0.5 for daughter
bubble size distribution.

with @ = 1. In the opposite extreme (w — 0), where every breakup
event will result in one daughter bubble with almost the same size
to the mother bubble and the other one with size close to zero, the
convergence time is infinity.

The question arises as to what the physical meaning of this
convergence time is. We conjecture that the scaling law of super-
Hinze-scale bubbles reaches its final converged exponent once
the largest bubble completes the entire cascade process to reach
the Hinze scale. Following this argument, we consider a scenario
that a large bubble with a diameter D; is injected into turbu-
lence at the very beginning. After time T; = 1/g({€), D1), the large
bubble breaks into two daughter bubbles of the same size D, =
(1/2)13D;, each one of which will break subsequently after T, =
1/g({€), Dy). This cascade process continues until all bubbles be-
come equal or smaller than Dy after n iterations. g({€), D;) and
g((€), D,) are the breakup frequency of the mother and daughter
bubbles, respectively, given by Eq. (4). The cascade time scale is
calculated based on Ty + T, +---+ Ty. For D; = 10 mm and (€) =
50 m?/s? (same with the parameters adopted in Section 4.3), the
calculated bubble size cascade time is 0.11 s, which is close to the
numerical solution of 7., = 0.14 s assuming a delta function for
fy(V*). This result confirms our conjecture that, for continuous in-
jection, the super-Hinze scaling converges when the bubble size

cascades from the largest bubbles to bubbles close to the Hinze
scale.

In wave-breaking experiments (Deane and Stokes, 2002; Rojas
and Loewen, 2007; Blenkinsopp and Chaplin, 2010), only the equi-
librium scaling laws were reported; 7. cannot be determined ac-
curately because the entire process finishes within a short period
of time. Therefore, without any experimental results, 7., although
it guides the model development, cannot be used as a constraint.
Nevertheless, T for continuous injection is related to how fast bub-
ble size spectrum changes for experiments with one-time injection
because the equilibrium bubble size distribution for continuous in-
jection is equivalent to the superposition of bubble size spectra at
different times from one-time injection, which will be introduced in
Section 4.7 to constrain a proposed new model.

4.6. Breakup frequency correction

From Sections 4.2 to 4.5, three types of possible experimen-
tal results, including the super- and sub-Hinze scaling laws and
the convergence time, were discussed. Although the implemented
model seems to perform well to predict the limiting scaling ex-
ponents for bubbles much larger or much smaller than Dy, a small
hump near Dy is observed, as shown in Figs. 7 and 8(a). This hump
indicates an accumulation of bubbles at this scale, which was not
observed in experiments (e.g. Fig. 6(a)).

The accumulation of bubbles at the Hinze scale can be as-
cribed to the sharp transition of breakup frequency from super-
Hinze to sub-Hinze-scale bubbles. As shown in Fig. 2(b), the model
proposed by Martinez-Bazan et al. (1999b) shows a peak of the
breakup frequency near Dy but drops abruptly at soon as the bub-
ble diameter falls below Dy. This indicates that bubbles slightly
larger than Dy break frequently and produce a large number of
bubbles near Dy that never break, which leads to the observed ac-
cumulation in bubble size spectrum.

The sharp transition of bubble breakup frequency at the Hinze
scale can be attributed to the fact that the Hinze scale is defined
based on (€) (Hinze, 1955). In turbulence with strong intermit-
tency, the local energy dissipation rate € could be orders of mag-
nitude larger than (e€). Therefore, sub-Hinze-scale bubbles, if en-
countering an eddy with sufficiently large local €, may still break,
and thus its breakup frequency may not be zero. The distribution
of the local energy dissipation rate € can be modelled base on the
Kolmogorov refined theory in 1962 (Kolmogorov, 1962) and multi-
fractal spectrum (Meneveau and Sreenivasan, 1991). In particular,
if we consider the energy dissipation rate € coarse-grained at the
bubble scale D, i.e. €p, it follows a log-normal distribution:

1 1
€p/(€) /27w (A+ wIn (L/D))

(in (ép/(€)) + 3 (A+ ¢ In (1/D))) .
- 2(A+ nin(L/D)) ®)

P(ep/(€)) =

where u ~ 0.25 is the intermittency exponent, L is the inte-
gral length scale of turbulence and D is the coarse-graining scale
over which the local energy dissipation rate is averaged. The offset
A represents a large-scale variability of ¢ when D = L, which de-
pends on specific flow configurations. Although it may seem that
P(ep/{€)) depends on bubble size, in our experiments, the depen-
dence seems to be weak as A > ulIn(L/D). Therefore, for the rest
of the discussion, A + w In(L/D) is assumed to be a constant of 1.2,
and € is replaced with € hereafter for simplicity.

The expression for breakup frequency considering the distribu-
tion of € is then given by

Zeorr((€). D) = /0 " ge. D)P(e/{e))d(e/(e)) (9)
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where gr((€), D) is the corrected breakup frequency. By substi-
tuting Egs. (4) and (8) into Eq. (9), we immediately obtain gcorr((€),
D) for a given mean energy dissipation rate (€). Fig. 2(b) shows
the comparison between the original breakup frequency and the
corrected one with (€) of 50 m2/s2. The corrected breakup fre-
quency shows a smoother transition near Dy. Note that the cor-
rected breakup frequency appears to be lower than the original
one, which implies the prefactor K in Eq. (4) needs to be adjusted
to account for this correction.

The simulation shown in Fig. 8(a) was repeated using Eq. (9).
The results are shown in Fig. 8(b). As expected, the hump near Dy
is smoothed, while the sub- and super-Hinze-scale bubble scaling
remain the same.

4.7. A new model for daughter bubble size distribution

Finally, a new model of daughter bubble size distribution is
proposed to satisfy all the experimental constraints discussed in
the previous sections. Following the weighted-average model in
Eq. (7) and using @ =0.3 and V;, =0.02 as two fitting param-
eters, the modelled daughter bubble size distribution is shown in
Fig. 1(b) to compare with other experiments. The fitted new model
appears to agree with experimental measurements, capturing two
features: (i) increasing breakup probability as V* approaches 0 and
1, and (ii) a small hump near V* = 0.5 observed in our results and
also by Hesketh et al. (1991) and Vejrazka et al. (2018).

The new model will also adopt the formulation of the cor-
rected breakup frequency following Eq. (9) to account for the dis-
tribution of local €. For super-Hinze-scale bubbles, as discussed in
Section 4.3, the converged scaling is determined by breakup fre-
quency, so if the new model is employed to calculate the final
equilibrium bubble size spectrum in a system with continuous in-
jection, the scaling exponent will converge to a number close to
-10/3.

Sub-Hinze-scale bubbles are only sensitive to the second term
in the new model (Eq. (7)) that determines the daughter bubble
size distribution at V* 2 0 or V* < 1. As discussed in Section 4.4,
this formulation should satisfy the criterion to generate a nega-
tive scaling exponent for sub-Hinze-scale bubbles. The first term,
similar to the Bell-shape model, is added to match with the ex-
perimental measurements of fy,(V*); this term is also important for
shortening 7. for continuous injection and accelerate the time evo-
lution of bubble size spectrum for one-time injection based on the
discussion in Section 4.5.

As a final test, the new model is implemented in Eq. (2) to
predict the time (space) evolution of bubble size spectrum with
the experimental data provided by Martinez-Bazan et al. (1999a).
In the simulation, the unsteady term in Eq. (2) was neglected be-
cause the bubble size spectrum does not change over time based
on the experiments. Eq. (2) was then integrated in space on a lin-
ear grid with size AD = 0.025 mm using 1%-order explicit Euler
method with AX =0.15 mm. The convective velocity and turbu-
lent energy dissipation rate along the jet centerline were found
in Martinez-Bazan et al. (1999a) and Martinez-Bazan (1998). The
prefactor Kg in Eq. (4) is set as 0.4 to fit with the experiments.
The simulation results of the time (space) evolution of bubble size
spectrum are shown in Fig. 11 as solid lines, and the symbols rep-
resent the experimental data at different distances X away from
the original injection point normalized by the nozzle diameter D;.
n(D) at X/D; = 16.11 was input into the model as the initial condi-
tion, and Eq. (2) was integrated over time T (or equivalently over
distance X, as discussed in Section 4.2). It is observed that bubble
size spectra obtained by the new model agree well with the exper-
imental data for both small and large bubbles.

Finally, it is important to emphasize that the new model
(Eq. (7)) did not come from any phenomenological arguments,
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Fig. 11. Bubble size spectrum as a function of the distance between the measure-
ment window to the nozzle exit X normalized by the nozzle diameter D;. Blue cir-
cles denote the experimental results by Martinez-Bazan et al. (1999b). The black
solid line show the simulation results obtained by implementing the new model
using Eq. 7 for daughter bubble size distribution and Eq. (9) for breakup frequency.
Data at X/D; = 16.11 was used as the initial condition, so the symbols and the line
in (a) are identical.

which may seem appealing because of their linkages with the un-
derlying physics. But the possible involvements of so many mech-
anisms at play make it impossible to conclusively argue which
physics dominates. Instead of following the same process, in this
work, the simple form of our new model is completely born
from experimental constraints. Moreover, since different aspects of
daughter bubble size distribution could be magnified under differ-
ent statistical lens, providing experimental data on other statistics
in addition to the bubble spectrum in the future could potentially
provide new constraints to the problem.
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5. Conclusion

The population balance equation has served as an important
tool to model bubble breakup and coalescence for gas-liquid two-
phase flows. For breakup, daughter bubble size distribution is an
unknown parameter that cannot be acquired from the first prin-
ciple. As a result, there have been many attempts to model this
distribution from physical phenomenological arguments, such as
eddy-bubble collision. However, there seems to be no consensus as
to what the basic trend of daughter bubble size distribution should
be—it could be Bell-shape, U-shape, or M-shape.

In this paper, the goal is to find a model that satisfies the con-
straints put forward by consistent experimental results, including
our own work and many others from the literature. In this paper,
we first introduced our experimental setup with special attention
paid to designing a system that can provide a large area of ho-
mogeneous and isotropic turbulent flows to study bubble breakup.
This system also features a 3D shape reconstruction system con-
sisting of six cameras to capture the breakup process and to ac-
curately identify bubble sizes. Unlike the inconsistent models, the
measured daughter size distribution agrees well with other previ-
ous experimental measurements (Hesketh et al., 1991; Rodriguez-
Rodriguez et al., 2003; Vejrazka et al., 2018).

Other than the direct measurement, the bubble size spec-
trum obtained by experiments (Deane and Stokes, 2002; Rojas
and Loewen, 2007; Blenkinsopp and Chaplin, 2010; Martinez-Bazan
et al., 1999a) offer other constraints on breakup models, including:
(i) the -10/3 scaling law observed for bubbles larger than the Hinze
scale; this scaling law seems to depend only on breakup frequency
rather than daughter bubble size distribution; (ii) the negative sub-
Hinze-scale bubble scaling (exponent close to -3/2) provides an-
other constraint on the trend of daughter bubble size distribution
for uneven breakup (V* — 0); (iii) the time evolution of bubble
size spectrum, including the converged time in continuous injec-
tion cases (Fig. 7) and a continuous change in one-time-injection
experiments (Fig. 11). Moreover, the breakup frequency model by
Martinez-Bazan et al. (1999a) is corrected by incorporating the dis-
tribution of the turbulent energy dissipation rate.

The proposed framework provides a new way to develop bubble
breakup model. Rather than starting from physical arguments, the
new framework emphasizes on various experimental constraints
and different reported statistics, which magnify different aspects
of breakup models. A new model for daughter bubble size distri-
bution is finally proposed and implemented in the population bal-
ance equation. Despite its simple formulation, the new model sat-
isfies all experimental constraints that have been put forward.
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