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a b s t r a c t 

Complex bubble breakup in turbulence has been studied and modeled extensively by employing the pop- 

ulation balance equation. This equation hinges on two quantities, i.e. daughter bubble size distribution 

and breakup frequency. Since there is no first-principle equation that can be solved to calculate these two 

quantities, many phenomenological models based on different physical mechanisms have been proposed. 

A large number of possible mechanisms at play leads to models with drastically different, and even con- 

tradictory, predictions. In contrast, experimental measurements of these two quantities, including several 

previous works and our own results collected in a vertical water tunnel that features a large homoge- 

neous and isotropic region, seem to be consistent with one another. To resolve the difference between 

models and experiments, rather than following another physical argument, we approach the problem 

from a different direction by asking how to constrain a model based on experimental results. The specific 

constraints extracted from eight experimental results include: (i) direct measurements of daughter bub- 

ble size distribution; (ii) Super-Hinze-scale bubble size spectrum for constraining breakup frequency; (iii) 

Sub-Hinze-scale bubble size spectrum for modeling daughter bubble size distribution; (iv) Convergence 

time to an equilibrium state. Finally, based on these experimental constraints, a new breakup model that 

incorporates a corrected formulation for breakup frequency as well as a simplified function for daughter 

bubble distribution is developed to meet all constraints. Although the new model is deliberately not con- 

nected to any specific physical arguments for simplification, it appears to be robust and consistent with 

all experimental constraints mentioned. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Bubble fragmentation in turbulence eventually determines

ubble size spectrum and the interfacial area concentration

 Kocamustafaogullari and Ishii, 1995 ), which are crucial to many

ultiphase flow applications that involve complex interfacial heat

nd mass transfer. This process is often modelled using the pop-

lation balance equation (for details, see Section 2 ), which is a

oltzmann-type equation. Within this equation, there are two im-

ortant parameters, one of which is daughter bubble size distri-

ution. As its name suggests, it represents the size distribution of

ll daughter bubbles generated from breakup events. Since there

s no first-principle method that can derive the daughter bub-

le size distribution, many models have been proposed, includ-
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ng statistical and phenomenological models. The statistical mod-

ls assume that the size of daughter bubbles is a random variable

ollowing some simple distributions, including normal ( Valentas

t al., 1966; Coulaloglou and Tavlarides, 1977 ), Beta ( Hsia and

avlarides, 1983 ), and uniform distribution ( Narsimhan et al., 1979;

rince and Blanch, 1990 ). More recently, the phenomenological

odels ( Tsouris and Tavlarides, 1994; Luo and Svendsen, 1996;

artínez-Bazán et al., 1999b; Lehr et al., 2002; Hagesaether et al.,

0 02; Wang et al., 20 03; Zhao and Ge, 2007; Han et al., 2011 ) start

o gain popularity because they are usually formulated based on

he process of bubble-eddy collision, which is more physical com-

ared with the statistical methods. However, as we will discuss

n Section 4.1 , many of these phenomenological models result in

rastically different daughter bubble size distributions that seem

o be inconsistent with experimental findings. 

For experiments, bubble breakup has been studied in

any different flow configurations. Daughter bubble size

istribution was directly measured in turbulent pipe flows

y Hesketh et al. (1991) and turbulent jets by Rodríguez-

odríguez et al. (2003) and Vejražka et al. (2018) . In addition

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103397
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103397&domain=pdf
https://doi.org/10.13039/100000001
mailto:rui.ni@jhu.edu
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to daughter bubble size distribution, bubble size spectrum has

also been extracted from plunging breakers in the context of

breaking waves, in which a large volume of gas was entrained as a

wave crest plunging into the water and subsequently fragmented

into smaller bubbles following a particular size spectrum ( Deane

and Stokes, 2002; Rojas and Loewen, 2007; Blenkinsopp and

Chaplin, 2010 ). The evolution of bubble size spectrum has also

been studied by Martínez-Bazán et al. (1999a) in a high-speed

water jet. In these flow environments, bubble breakup was linked

to the turbulence characteristics, which was assumed to be locally

homogeneous and isotropic to invoke the Kolmogorov theory

( Kolmogorov, 1941 ), even though most experiments were not

conducted in a condition that strictly follows such an assumption. 

The objective of this work is to collect bubble breakup statis-

tics in an experimental facility that follows the homogeneous and

isotropic condition in a large area and develop a breakup model

completely relying on the available experimental constraints in-

cluding both ours and other published experimental results. In

Section 2 , the population balance equation and some typical phe-

nomenological models for daughter bubble size distribution and

breakup frequency are reviewed. In Section 3 , a new facility that

has been designed to study bubble breakup in homogeneous and

isotropic turbulence (HIT) is introduced. Section 4 summarizes

a number of experimental constraints, including direct measure-

ments ( Section 4.1 ), scaling law of bubble size spectrum for large

( Section 4.3 ) and small ( Section 4.4 ) bubbles, and the convergence

time to reach a dynamic equilibrium ( Section 4.5 ). Finally, based

on all the constraints, a new model is proposed in Section 4.7 .

Section 5 summarizes the paper and presents important remarks. 

2. Breakup models 

2.1. The population balance equation 

The time evolution of the number density for bubbles of a cer-

tain size D at a given position x and time t, n ( D , x , t ), can be statis-

tically described by the population balance equation, which is first

proposed by Williams (1985) : 

∂n 

∂t 
+ ∇·( v n ) = − ∂ 

∂D 

(Rn ) + 

˙ Q b + 

˙ Q c (1)

where v ( D , x , t ) is the advection velocity of bubbles, R = d D/d t

is the rate of change of bubble size due to mass dissolution, and
˙ Q b and ˙ Q c are the rate of change of bubble number density n ( D ,

x , t ) due to breakup and coalescence, respectively. For a system

that has a very low bubble concentration and negligible dissolu-

tion, which is exactly the case for our study, ˙ Q c and the dissolu-

tion term ∂ ( Rn )/ ∂ D can be neglected. By only considering breakup

( Martínez-Bazán et al., 2010 ), Eq. (1) can be re-written as: 

Dn (D ) 

Dt 
≡ ∂n (D ) 

∂t 
+ ∇·[ v n (D ) ] 

= 

∫ ∞ 

D 

m (D 0 ) f (D ;D 0 ) g(D 0 ) n (D 0 ) dD 0 

− g(D ) n (D ) (2)

Batchelor, 1956 where the first term on the right side is the source

term for the bubbles of size D generated by the breakup of all

bubbles of sizes larger than D. m ( D 0 ) is the number of daughter

bubbles generated from a mother bubble of size D 0 ; f ( D ; D 0 ) is

daughter bubble size distribution (also been referred to as breakup

kernel ( Wang et al., 2003 )) and g ( D ) is breakup frequency, which

represents the rate of breakup for a bubble of size D . Note that

f ( D ; D 0 ) is a conditional probability density function (PDF) of the

daughter bubble size D when the mother bubble size is D 0 . It is

clear that, in Eq. (2) , once f ( D ; D 0 ) and g ( D ) are known, n ( D ) can

be easily integrated numerically given the right initial condition. 
f ( D ; D 0 ) is then replaced with the non-dimensionalized form,

f D (D 

∗) = D 0 f (D ;D 0 ) , in the rest of the paper, where D 

∗ = D/D 0 is

he non-dimensionalized daughter bubble diameter. Daughter bub-

le size distribution can also be expressed as a function of the non-

imensionalized volume: 

f D (D 

∗) = D 

∗2 f V (V ∗) (3)

here V ∗ = V/V 0 is the ratio of the volume of daughter bubbles

 to that mother bubbles V 0 . If we assume that two daughter

ubbles are always generated from every breakup event (binary

reakup, m = 2 in Eq. 2 ) and the volume of bubbles conserves dur-

ng the breakup, daughter bubbles of volume V ∗ and of volume

 −V ∗ should be generated at the same probability. This implies

hat f V ( V 
∗) should be symmetric about V ∗ = 0 . 5 . It will be shown

ater that most breakups follow the binary breakup assumption,

nd m is fixed at 2 for the rest of the paper. 

.2. Models for daughter bubble size distribution 

Many models for f V ( V 
∗) have been proposed in the past few

ecades. These models typically fall into one of the three groups

 Liao and Lucas, 2009 ) based on the shape of f V ( V 
∗): Bell-shape

e.g. Martínez-Bazán et al., 1999b; Han et al., 2011 ), U-shape (e.g.

souris and Tavlarides, 1994; Luo and Svendsen, 1996 ) and M-

hape (e.g. Lehr et al., 2002; Wang et al., 2003; Zhao and Ge,

007 ). Some of these models are compiled in Fig. 1 (a). It is obvious

hat no consensus has been reached among these models, and it is

hallenging for simulations to choose which model to implement. 

As shown in Fig. 1 (a), Bell-shape models have a high probabil-

ty of generating two daughter bubbles with similar or equal size

 V ∗ ≈ 0.5, hereafter referred to as equal-size breakup). One such

odel is proposed by Martínez-Bazán et al. (1999b) by assuming

hat the probability to generate a daughter bubble of a specific size

s proportional to the product of excess stress of the two daughter

ubbles. The excess stress was defined as the difference between

urbulent dynamic pressure around the daughter bubble and cap-

llary pressure of the mother bubble. If the excess stress of either

ne of the daughter bubbles is negative, the probability is set as

ero because the turbulent dynamic pressure is not strong enough

o overcome the capillary pressure to break the bubble. 

Opposing to the Bell-shape models, U-shape models predict

hat most breakup events will preferentially generate two daugh-

er bubbles with significantly-different sizes: one close to zero

 V ∗ ≈ 0) together with the other one close to the mother bubble

ize ( V ∗ ≈ 1) (hereafter referred to as uneven breakup). One typ-

cal example of the U-shape models is proposed by Tsouris and

avlarides (1994) based on the surface energy increment, which

s the difference between the total surface energy before and af-

er breakup 4 σπD 

2 
0 
[ D 

∗2 + (1 − D 

∗3 ) 2 / 3 − 1] , where σ is the sur-

ace tension coefficient. The surface energy increment reaches its

aximum for an equal-size breakup and minimum for an uneven

reakup. Since it was argued that the probability is inversely pro-

ortional to the energy, f V ( V 
∗) looks like a U shape. 

The last group is M-shape models. As shown in Fig. 1 (a), the

-shape models have three local minima of probability at V ∗ = 0 ,

.5 and 1. An example of the M-shape models is the one proposed

y Wang et al. (2003) based on the notion of eddy-bubble collision.

his model considered the probability of bubbles colliding with ed-

ies that can meet the following two conditions: (i) the eddy size

s smaller or equal to the bubble size; (ii) the eddy has either large

inetic energy to surpass the surface energy increment, or large

ynamic pressure to overcome the capillary pressure of the bub-

le. Moreover, the collision frequency with eddies was modelled

nspired by the gas kinetic theory, and the PDF of eddy energy was

odeled using an exponential function. 
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Fig. 1. (a) Daughter bubble size distribution f V ( V 
∗) versus the non-dimensionalized 

daughter bubble volume V ∗ for different proposed models.(b) Daughter bubble size 

distribution from experiments, including the previous experiments and our ex- 

periment (blue circles) as well as the proposed new model (red solid line) in 

Section 4.7 . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 2. (a) Breakup frequency versus bubble diameter D for different models. The 

energy dissipation rate used is 〈 ε〉 = 5 m 

2 /s 3 (b) Comparison of the original breakup 

frequency model by Martínez-Bazán et al. (1999a) (blue) and the corrected model 

based on Eq. (9) (red) at 〈 ε〉 = 50 m 

2 /s 3 . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Most of these phenomenological models were proposed based

n the argument that daughter bubble size distribution is related

o excess energy, stress, and the collision process. As a result, the

odels also predict that f V ( V 
∗) should have a strong dependence

n both D 0 and the ensemble-averaged turbulent energy dissipa-

ion rate 〈 ε〉 . Similar to the large variation of f V ( V 
∗) among differ-

nt models, the predicted dependences are also inconsistent with

ne another even qualitatively; f V ( V 
∗) may increase or decrease

s D 0 and 〈 ε〉 change. In addition, the predicted dependences
re not supported by the experimental findings, e.g. Rodríguez-

odríguez et al. (2003) suggested that the dependence is weak.

oreover, many models for f V ( V 
∗) were not validated in their orig-

nal paper, whereas some were validated against limited experi-

ental evidence, either by directly comparing with measurements

f f V ( V 
∗) or with the measured bubble size spectrum. For the latter,

he calculated bubble size spectrum was obtained by implement-

ng the modeled f V ( V 
∗) in Eq. (2) . 

The advantage of using physical arguments in models is clear:

i) it connects to the physical breakup process, (ii) it also predicts

he dependence of f V ( V 
∗) on multiple possible parameters. The

ownside is equally evident: there are simply too many possible

rguments that are available, and they produced very inconsistent

esults. It poses a formidable challenge for simulations as to which
odel to implement. In addition, the methodology adopted works

ike a forward problem, assuming f V ( V 
∗) based on some breakup

echanisms and hope that the predicted results agree with experi-

ents. The methodology that we are proposing in this paper is the

pposite. The question that is being asked here is an inverse prob-

em: what the right features of a correct model for f V ( V 
∗) should

e based on experimental constraints. To address this question, we

ill summarize some existing experimental results, and use them

o derive a new model of f V ( V 
∗). 

.3. Models for breakup frequency 

In addition to f V ( V 
∗), breakup frequency g ( D ) is also required

o solve the population balance equation. Some of these mod-

ls proposed by Lee et al. (1987) , Prince and Blanch (1990) ,

souris and Tavlarides (1994) , Luo and Svendsen (1996) ,

artínez-Bazán et al. (1999a) , Rodríguez-Rodríguez et al. (2003) ,

ehr et al. (2002) , Wang et al. (2003) and Zhao and Ge (2007) are

ompiled in Fig. 2 (a). Similar to f V ( V 
∗) shown in Fig. 1 (a), a

arge variation of the predicted breakup frequency motivated by

ifferent physical mechanisms is observed. One such mechanism
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Fig. 3. (a) Schematic of the V-ONSET vertical water tunnel. (b) Top view of six cam- 

eras with their respective inclination angles to the horizontal plane. (c) Schematic 

of the bubble bank located at the bottom of the test section for injecting bubbles. 
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proposed by Martínez-Bazán et al. (1999a) was based on the

pressure difference: 

g(〈 ε〉 , D ) = K g 

√ 

β(〈 ε〉 D ) 2 / 3 − 12 σ/ (ρD ) 

D 

(4)

where β is the Kolmogorov constant of the second-order structure

function. β = 8 . 2 given by Batchelor (1956) was used by Martínez-

Bazán et al. (1999a) . But a more recent compilation of the Kol-

mogorov constant ( Sreenivasan, 1995; Ni et al., 2013 ) suggests

that this number is closer to β = 7 . 81 . The prefactor K g needs

to be determined from experiments, which was suggested to be

0.25 by Martínez-Bazán et al. (1999a) . For large bubbles, the dy-

namic pressure, the first term in the square root, dominates, and

Eq. (4) can be simplified as g(〈 ε〉 , D ) = K g β1 / 2 〈 ε〉 1 / 3 D 

−2 / 3 , which

suggests that g for large bubbles is proportional to the reciprocal

of eddy turn-over time, i.e. 〈 ε〉 −1 / 3 D 

2 / 3 . On the other limit, when

the mother bubble size becomes smaller than the critical value,

D H = (12 σ/ (βρ)) 3 / 5 〈 ε〉 −2 / 5 , breakup frequency will be set as zero,

consistent with the argument that bubbles smaller than D H are

simply too strong to be broken. D H is essentially the Hinze scale

( Hinze, 1955 ). 

Similar to models for f V ( V 
∗), most existing models for breakup

frequency were also proposed based on some physical mecha-

nisms. The inconsistency among these models, both quantitatively

and qualitatively, points out a problem that there are simply too

many possible physical arguments that can lead to drastically dif-

ferent model predictions. In this paper, similar to f V ( V 
∗), we will

take a different approach by constraining the model of g ( 〈 ε〉 , D ) us-

ing experimental results and illustrate the key characteristics that

a correct model should encompass. 

3. Experimental setup 

3.1. V-ONSET vertical water tunnel 

Since most models developed for describing bubble breakup

rely on an assumption of HIT, it is important to maintain HIT in a

large area that the statistics can be collected. Flow configurations

adopted include turbulent pipe flow ( Hesketh et al., 1991 ) and tur-

bulent jet ( Martínez-Bazán et al., 1999b ), neither of which, strictly

speaking, can be claimed to be HIT and both of which exhibit some

strong spatial velocity gradients that could complicate the results. 

A new vertical water tunnel, V-ONSET (Vertical Octagonal Non-

corrosive Stirred Energetic Turbulence) ( Masuk et al., 2019b ), was

constructed to study bubble breakup, as shown in Fig. 3 (a). This fa-

cility has several unique features: (i) The mean flow in the tunnel

can be adjusted to keep bubbles in the view area for an extended

period of time which allows us to record more breakup events.

(ii) HIT can be maintained over a large area in the test section

( ~ 10 cm) and is decoupled from the mean flow. (iii) There is an

octagonal test section in the system that allows for six high-speed

cameras imaging deforming and breaking bubbles from views that

cover the entire perimeter of the test section. A typical arrange-

ment of the cameras used in this work is shown in Fig. 3 (b). 

Turbulence in the test section was generated by 88 water jets

with the highest speed up to 12 m/s. The jet nozzle diameter is

5 mm. These water jets were fired randomly into the test section

to avoid any secondary flows which is key to maintain HIT over

a large region. On average, 12.5% of the jets were fired at a time

( Variano et al., 2004 ), and the resulting 〈 ε〉 is about 0.52 m 

2 /s 3 

around the bubbles. ε was calculated from the local velocity gradi-

ent tensor using tracers around bubbles. Note that this level of 〈 ε〉
may appear to be lower than what has been reported in other pa-

pers for studying bubble breakup. Even in our system, if we move

the view area closer to the jet array, 〈 ε〉 of 10–10 0 0 m 

2 /s 3 can be

reached. But close to the jet array, like in other works using jets,
he spatial gradients of both mean and fluctuation flow velocity are

arge. Their contributions to the bubble breakup could be as strong

s, if not stronger than, the turbulence’s, which could potentially

omplicate how we interpret the results. 

Bubbles in V-ONSET were generated at the bottom of the test

ection from a bubble bank that consists of arrays of hypodermic

eedles of two different sizes, as shown in Fig. 3 (c). Bubbles gen-

rated by these needles range from 1 to 10 mm in diameter. The

ubble bank is located far below the test section to make sure that

ubbles enter the test section with no memory of the injection

echanism so that all breakup events in the test section can be

scribed only to bubble-turbulence interaction. In another study,

e analyzed the information of high-concentration of tracer par-

icles around each bubble, which helps us to quantify the Weber

umbers based on the horizontal slip velocity and velocity gradi-

nt. It has been shown in our case that the mean Weber number

or breaking bubbles is about 20–40, which is much larger than

he Weber number for all bubbles that are close to one. This sug-

ests that the bubble breakup is indeed dominated by turbulence

nstead of buoyancy. 

.2. 3D reconstruction of bubble breakup 

In most previous works, bubble breakup was identified by using

D images from one high-speed camera. If a bubble pinches and

reaks within the camera 2D plane, the breakup can be observed

ccurately. However, if this process occurs along a direction that is

erpendicular to the 2D plane, which is possible if the flow is truly

sotropic, just one view may not suffice. 

Here, to provide the 3D reconstruction of the entire breakup

rocess, six synchronized high-speed cameras with one megapixel

esolution working at 40 0 0 fps were distributed around the

erimeter of the test section to cover the view volume from dif-

erent angles. A designated LED panel for each camera provided

iffused light to cast shadows of bubbles onto camera’s imaging

lane, from which the bubble silhouette can be extracted. The bub-

le shape was reconstructed using a new virtual-camera visual hull

VC) method ( Masuk et al., 2019a ) by enforcing the minimal sur-

ace energy criteria. 

In the classical limited-angle visual hull (VH) method, the 3D

olume of the object is reconstructed by calculating the intersec-

ion of the cone-like volume extruded from the silhouette on each

amera. Although this method has been used extensively in many



Y. Qi, A.U. Mohammad Masuk and R. Ni / International Journal of Multiphase Flow 132 (2020) 103397 5 

Fig. 4. Example of a bubble breakup event, including (a) raw images on one cam- 

era, and (b) 3D reconstructed result of the same bubble. The diameter of an equiv- 

alent sphere for this bubble is 2.82 mm. 
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Fig. 5. The distribution of the number of daughter bubbles m produced in each 

breakup event. 
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tudies ( Laurentini, 1994; Matusik et al., 20 0 0; Kutulakos and Seitz,

0 0 0; Mulayim et al., 2003 ), the VH method tends to overesti-

ate the reconstructed volume if only limited views are provided,

hich is the case considering the four-camera configuration used

n a typical 3D volumetric velocity measurements. 

To address this problem, two solutions have been put forward.

he first one is simply to acquire more high-speed cameras. Six

igh-speed cameras were utilized for this purpose. With these

any cameras, for almost all breakup events, no matter along

hich direction the necking process occurs, at least one cam-

ra will capture that. The other solution is to enforce a physical

onstraint, i.e. minimal surface energy, in 3D reconstruction. The

imited-angle VH method typically results in sharp corners, but

ubbles or droplets do not have very sharp corners due to the

urface tension. To implement this constraint, the initial 3D re-

onstruction was first performed using the standard VH method.

his geometry was then projected to many directions where ac-

ual cameras were not available, thus the name, virtual camera. Sil-

ouettes on virtual cameras were smoothed iteratively to remove

orners with a large curvature, and the smoothed image was in-

egrated into reconstruction again as a new virtual camera to re-

ne the geometry. The refined volume was re-projected back onto

ctual cameras to make sure the refined geometry was not over-

orrected to affect images on actual cameras. Additional details of

alidating this method by using standard and experimental geome-

ries can be found in Masuk et al. (2019a) . 

By applying this method to our experiments, deformation and

reakup of each bubble can be reliably reconstructed. Fig. 4 shows

ne typical breakup event imaged by the camera and reconstructed

sing VC method. The entire process from the initial weak de-

ormation to the final breakup takes about 17 ms, which is 12.1

imes of the Kolmogorov time scale (1.4 ms) and 1.5 times of the

atural oscillation period of this bubble (11.3 ms, based on Lamb

ode 2 bubble natural frequency ( Lamb, 1932 )). In particular, it

an be seen that the daughter bubble size from 2D images ap-

ears to be slightly larger than that in the 3D view because the

aughter bubble was flattened within the camera 2D plane dur-

ng the breakup process. This suggests that, if only one camera

as used, the daughter bubble size cannot be reliably determined.
herefore, in our setup, the 3D reconstruction was performed for

very breakup event, from which daughter bubble size distribution

as extracted. 

. Discussion 

.1. Measurement of daughter bubble size distribution 

In V-ONSET, the mean turbulent energy dissipation rate was

aintained at around 0.52 m 

2 /s 2 . The Reynolds number is defined

s Re = u ′ L/ν, where u ′ is the fluctuation velocity and L is the in-
egral length scale. Re in our experiments was kept roughly the

ame at 80 0 0 with u ′ = 0 . 25 m/s and L = 3 . 2 cm. To measure the

aughter bubble size distribution, 190 datasets were collected, and

80,329 bubbles were reconstructed and tracked over time. The

ajority of these bubbles did not break in the finite residence

ime that they spent in the view volume. As a result, 195 breakup

vents were identified, which is more than the work conducted by

esketh et al. (1991) (used extensively for model validation) but

ewer compared with more recent work by Vejražka et al. (2018) .

etails of these experiments are shown in Table 1 . Note that the

umber of breakup events in our experiments can be enhanced

ignificantly if (i) the bubble injection point is very close to the

nterrogation window and (ii) the interrogation window is close to

he jet array. But we chose to keep the interrogation volume far

way from both the bubble injection and the jet array to avoid pos-

ible contamination either due to the memory of injection or the

nhomogeneity or anisotropy of the flow. Having a small number

f breakup events is a compromise to ensure that bubbles break

nly by intermittent turbulence, not by mean gradients or by bub-

le injection mechanisms. 

Fig. 5 shows the distribution of the number of daughter bubbles

dentified after each breakup. Note that this number is sensitive to

he spatial and temporal resolution. The spatial resolution has to

e large enough to resolve even the smallest daughter bubbles, and

he temporal resolution needs to be high to avoid mistreating two

onsecutive binary breakups as one ternary breakup. The smallest

ubble size that the current setup can resolve is about 200 μm.

he frame rate used to track bubbles is 40 0 0 fps, and each indi-

idual breakup event is identified within one frame (0.25 ms). Un-

er this condition, 74.9% of the breakup events are binary ( m = 2

n Eq. (2) ), as shown in Fig. 5 . This suggests that the binary bubble

ndeed dominates the statistics, and only this subset of the dataset
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Table 1 

Parameters of the existing experiments on daughter bubble size distribution; 〈 ε〉 is turbulent energy dissipation 
rate, N b is the number of breakup events, ηk is the Kolmogorov length scale, and D 0 is the mother bubble size. 

The definitions of Re are different based on specific flow configurations used, including jet Reynolds number in 

Rodríguez-Rodríguez et al. (2003) and Vejražka et al. (2018) ; and hydraulic-diameter-based Reynolds number in 

Hesketh et al. (1991) . In our work, the Reynolds number is defined in Section 4.1 . 

〈 ε〉 (m 

2 /s 2 ) N b Re ηk (μm) D 0 (mm) 

Hesketh et al. (1991) - 56 1.5 × 10 5 - 2.7–4.1 

Rodríguez-Rodríguez et al. (2003) 12–129 - 3.5 × 10 3 –7 × 10 4 9.4–17.0 0.7–3.3 

Vejražka et al. (2018) 0.01–300 1100 6 × 10 3 –2.6 × 10 4 7.6–100.0 1.8–5.0 

Present work 0.52 195 8 × 10 3 37.6–50.0 2.9–7.6 
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will be used in this paper to constrain daughter bubble size distri-

bution. 

The daughter bubble size distribution measured from our ex-

periments is shown in Fig. 1 (b) as blue dots. The distribution

seems to follow a W-shape with a large probability close to V ∗ = 0

and 1 and a small hump close to V ∗ = 0 . 5 . In addition to our ex-

perimental results, a limited number of experimental results of

f V ( V 
∗) have been reported in different flow configurations: hori-

zontal two-phase pipe flows ( Hesketh et al., 1991 ), turbulent jets

( Rodríguez-Rodríguez et al., 2003 ), and flows driven by a down-

ward jet array ( Vejražka et al., 2018 ). Details of these experiments

are shown in Table 1 for comparison, and the data of f V ( V 
∗) is

shown in Fig. 1 (b). Despite the distinct conditions used in different

experiments, all experimental results agree quite well with one an-

other for V ∗ < 0.2 or V ∗ > 0.8. A similar hump near V ∗ = 0 . 5 corre-

sponding to two equal-size daughter bubbles can also be observed

in works by Hesketh (1987) and Vejražka et al. (2018) . 

Models of f V ( V 
∗) that were introduced in Section 2 are com-

plied in Fig. 1 (a). As one can clearly see, in contrast to the nice

agreement among experimental results, there is no consensus as

to which model to use for bubble breakup. All these models that

have been introduced based on some physical arguments do not

seem to agree with the experimental results, some of which are

closer, such as the U-shaped models. It is our goal of introduc-

ing a model, instead of relying on physical arguments, to focus on

being constrained by experimental results. However, it is not that

straightforward as a W-shaped curve can be fitted with many dif-

ferent functional forms. Therefore, direct measurement alone is not

enough, statistics from other experiments will be sought to provide

additional constraints. 

4.2. Bubble size spectrum and scaling 

One such additional experimental constraint is the bubble size

spectrum, which quantifies the distribution of bubble size after a

series of breakup events. But evaluating the bubble size spectrum

is sensitive to how bubbles are introduced in turbulence, whether

bubbles are injected once or continuously into the system. 

The experimental datasets that can be used include the works

by Deane and Stokes (2002) , Rojas and Loewen (2007) , and

Blenkinsopp and Chaplin (2010) , all of which reported bubble size

spectrum produced during air entrainment and fragmentation in

breaking waves, as shown in Fig. 6 (a). As wave plunges back into

the pool, it traps a large cavity of gas, which subsequently breaks

into a swarm of small bubbles by turbulence. The bubble size spec-

trum is therefore produced via the bubble cascade process. Simi-

lar to the Richardson turbulence cascade, large bubbles break into

smaller ones and so on until bubble size drops to the Hinze scale,

where the surface tension becomes too strong for bubbles to be

broken by turbulence. In the work by Deane and Stokes (2002) ,

the experiment was conducted in a seawater wave plume with

plunging breakers generated by a wave paddle on one side of the

flume. In this experiment, two distinct scaling laws separated by

the Hinze scale were observed, as shown in Fig. 6 (a). For super-
inze bubbles ( D > D H ), the number density exhibited D 

−10 / 3 ,

hereas a different scaling law n (D ) ∝ D 

−3 / 2 was observed for sub-

inze-scale bubbles ( D < D H ). 

In the dimensional analysis conducted in the same paper, a

uantity called the average rate of air supply was introduced to

epresent the normalized volume of gas entrained in water per

nit time, which indicates that large bubbles are continuously in-

roduced into the control volume at a relatively constant rate over

his time period. Once the breakup rate and birth rate of bubbles

t each size become close to each other, the bubble size spectrum

ill remain unchanged. This case is referred to as, continuous in-

ection , to suggest that a constant bubble injection at large sizes is

aintained. 

Martínez-Bazán et al. (1999a) measured the bubble size spec-

rum by injecting air bubbles using a needle with a diameter of

.394 mm into a fully-developed turbulent jet. The Reynolds num-

er based on the exit velocity and equivalent nozzle diameter for

he jet was kept at 51,0 0 0. Subjected to strong turbulence, bubbles

reak into smaller and smaller sizes as they continuously move

ownstream following the mean flow. Since the interrogation win-

ow is moving downstream with bubbles and away from the injec-

ion point, the measured bubble size spectrum, rather than reach-

ng an equilibrium state, keeps shifting towards smaller sizes, as

hown in Fig. 6 (b). This entire experiment is essentially the same

s injecting large bubbles only once into a fixed control volume at

he beginning of an experiment and observing the change of bub-

le size spectrum over time, which is referred to as one-time in-

ection hereafter. The spatial evolution of n ( D ) as a function of the

istance between the interrogation window to the nozzle exit X is

onverted to the temporal evolution as a function of T , where T is

he time for a bubble to travel from the nozzle exit to X following

he mean flow. 

Superposing bubble size spectra at different times from the

ne-time injection experiments provides a reasonable estimation of

he equilibrium bubble spectrum in the continuous injection case.

he solid red line in Fig. 6 (b) shows the result of superposing data

rom different X (or equivalently T ) together to approximate the

ubble spectrum from continuous injection . Even with only five dif-

erent T , the superposed spectrum seems to exhibit a similar -10/3

ower law for a range of bubble sizes near D = 1 mm, which is

onsistent with the work by Deane and Stokes (2002) . For this par-

icular experiment, given the limitation of the camera resolution,

he scaling for the sub-Hinze range cannot be measured accurately.

.3. Super-Hinze-scale bubble spectrum 

For super-Hinze-scale bubbles ( D > D H ), it seems that experi-

ents conducted in different configurations all suggest the possi-

le existence of −10 / 3 scaling law: n (D ) ∝ D 

−10 / 3 . It indicates that

his scaling may be universal for bubble breakup in turbulence as

ong as bubbles are continuously injected at large sizes. In this sec-

ion, we intend to see if we can use this scaling law to constrain

reakup models. 
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Fig. 6. (a) Bubble size spectrum n ( D ) versus bubble diameter D from wave-breaking 

experiments ( Deane and Stokes, 2002; Rojas and Loewen, 2007; Blenkinsopp and 

Chaplin, 2010 ). Solid lines show the two scaling laws proposed in the paper by 

Deane and Stokes (2002) . Note that D is normalized by the corresponding Hinze 

scale D H in each experiment, and n ( D ) is divided by n (D = 2 D H ) .(b) The evolu- 

tion of bubble size spectrum as a function of the distance between the measure- 

ment window to the nozzle exit X normalized by the nozzle diameter D J ( Martínez- 

Bazán et al., 1999b ). The red solid line indicates the superposition of all X and the 

black dashed line shows the -10/3 scaling law. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Following the conditions of continuous injection , in the model,

e assume that (i) bubbles with the largest size are continuously

ed into the system at a constant rate; (ii) when a large mother

ubble of size D 0 breaks, it generates m identical-sized daughter

ubbles with a diameter of m 

−1 / 3 D 0 due to volume conservation.

 can be any number; (iii) The system reaches a dynamic equilib-

ium when the birth rate balances with the breakup rate for bub-

les of any sizes.; (iv) Bubble breakup frequency follows Eq. (4) .

he breakup frequency for both mother bubbles D 0 and daughter

ubbles m 

−1 / 3 D 0 ( D 0 > D H and m 

−1 / 3 D 0 > D H ) can be expressed

pproximately as 〈 ε〉 1 / 3 D 

−2 / 3 
0 

and 〈 ε〉 1 / 3 (m 

−1 / 3 D 0 ) 
−2 / 3 respectively.

Since all the daughter bubbles of size m 

−1 / 3 D 0 are generated

rom breakup events of the mother bubbles of size D 0 , the birth

ate of the daughter bubbles is: N 1 m 〈 ε〉 1 / 3 D 

−2 / 3 
0 

, where N 1 is the

otal number of the mother bubbles. If the number of the daughter

ubbles of diameter m 

−1 / 3 D is denoted as N , the breakup rate
0 2 
f these daughter bubbles is: N 2 〈 ε〉 1 / 3 (m 

−1 / 3 D 0 ) 
−2 / 3 . Finally, the

ynamical equilibrium yields a simple relationship between N 1 and

 2 : 

 1 m 〈 ε〉 1 / 3 D 

−2 / 3 
0 

= N 2 〈 ε〉 1 / 3 (m 

−1 / 3 D 0 ) 
−2 / 3 (5)

Rearrange Eq. (5) yields N 2 = m 

7 / 9 N 1 . The total number of

other and daughter bubbles can also be expressed as N 1 =
 1 d(D 0 ) and N 2 = n 2 d(m 

−1 / 3 D 0 ) , where n 1 and n 2 are the num-

er density of mother bubbles and daughter bubbles, respectively,

 ( D 0 ) and d(m 

−1 / 3 D 0 ) are the corresponding bin sizes. By substi-

uting N 1 and N 2 in Eq. N 2 = m 

7 / 9 N 1 with n 1 and n 2 , the relation-

hip n 2 (m 

−1 / 3 D 0 ) = m 

10 / 9 n 1 (D 0 ) can be obtained. For the equation

o hold, n (D ) ∼ D 

−10 / 3 . 

In the discussion above, the power law of super-Hinze-scale

ubbles directly comes from the fact that breakup frequency is

roportional to D 

−2 / 3 , which seems to suggest that breakup fre-

uency, rather than daughter bubble size distribution, dominates

he bubble size spectrum, at least for super-Hinze-scale bubbles

onsidered. 

This simple analytical model was originally proposed by

arrett et al. (20 0 0) to explain the scaling law of bubble size

pectrum observed in breaking waves. This model assumes a delta

unction in the daughter bubble size distribution, f V ( V 
∗). To ac-

ount for different models proposed for f V ( V 
∗), we also solved the

opulation balance equation ( Eq. (2) ) using two different mod-

ls proposed by Martínez-Bazán et al. (1999b) (equal-size breakup,

ell-shape) and Tsouris and Tavlarides (1994) (uneven breakup, U-

hape). As shown in Fig. 1 (a), these two models have a nearly op-

osite prediction of daughter bubble size distribution. Since the

ean flow will only transport bubbles without affecting breakup

rocesses, the convective term in Eq. (2) was neglected. Eq. (2) is

hen integrated in time on a linear grid using the 1 st -order forward

uler method. The grid size and time step were set at 
D = 0 . 1

m and 
t = 3 × 10 −5 s respectively considering the numerical

recision and computational cost. The initial condition of n ( D ) was

et as zero for bubbles of all D . At each time step, a constant num-

er density was added to the bin of D = 10 mm to maintain a con-

tant injection rate, and 〈 ε〉 is set as 50 m 

2 /s 3 . The simulation con-

inued until the scaling of the large bubbles stopped changing. 

Fig. 7 shows the time evolution of bubble size spectrum. Af-

er reaching the dynamical equilibrium, bubble size spectra cal-

ulated by implementing two different models exhibit the same

10/3 power law for super-Hinze-scale bubbles. This observation

onfirms the conjecture that the scaling law for super-Hinze-scale

ubbles is determined solely by breakup frequency, rather than

y daughter bubble size distribution. In fact, if we assume that

reakup frequency follows a power law, g ( D ) ~ D 

γ (the exponent

depends on a specific model), bubble size spectrum can be writ-

en as: n (D ) ∼ D 

−4 −γ based on Eq. (5) . It implies that the equilib-

ium bubble size spectrum, at least for super-Hinze-scale bubbles,

an only be used to constrain models of breakup frequency, not

aughter bubble size distribution. 

The observed -10/3 scaling law for super-Hinze-scale bubble

ize spectrum from at least four experimental results ( Deane and

tokes, 2002; Rojas and Loewen, 2007; Blenkinsopp and Chaplin,

010; Martínez-Bazán et al., 1999b ) provides a strong experimen-

al constraint that the breakup frequency should exhibit g ∝ D 

−2 / 3 

or large bubbles. This result agrees with the model by Martínez-

azán et al. (1999b) , which will be used for the rest of this paper. 

.4. Sub-Hinze-scale bubble spectrum 

The sub-Hinze-scale bubble scaling could also be used to con-

train the models of daughter bubble size distribution. Here, we in-

estigate what characteristics of f V ( V 
∗) could potentially affect the

caling for sub-Hinze-scale bubbles. 
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Fig. 7. Time evolution of bubble size spectrum n ( D ) versus bubble size D obtained 

from numerically solving Eq. 2 with different models for daughter bubble size dis- 

tribution: (a) Martínez-Bazán et al. (1999b) and (b) Tsouris and Tavlarides (1994) . 

The simulation was performed by injecting the largest bubbles of 10 mm in size at 

a constant rate in turbulence with 〈 ε〉 = 50 m 

2 /s 3 . 
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As the bubble size drops below the Hinze scale, bubbles will

remain spherical and difficult to break because of the strong sur-

face tension. This argument implies that: (i) Unlike super-Hinze-

scale bubbles, the scaling law observed for sub-Hinze-scale bub-

bles should not be determined by the breakup frequency because

there is no cascade process in this regime; (ii) Most sub-Hinze-

scale bubbles are produced primarily by the breakup of super-

Hinze-scale bubbles. 

Moreover, this sub-Hinze scaling should be determined by bub-

bles with size slightly larger than the Hinze scale D � D H rather

than by the extremely large ones D � D H . First of all, these ex-

tremely large bubbles are rare, orders of magnitude fewer than the

ones close to the Hinze scale, as shown in Fig. 6 (a). Even though

they can produce small sub-Hinze-scale bubbles, the number that

can be generated is small. Second, in the previous section, it was

shown that breakup frequency drops as bubble size grows, which

indicates that very large bubbles on average take longer to break

even though they may break in a more violent manner. Since the

number of breakup events per unit time is proportional to the

product of the number of bubbles and breakup frequency, it is rea-

sonable to conclude that most sub-Hinze-scale bubbles are gener-

ated by bubbles slightly larger than the Hinze scale. 

Following these arguments, assuming many bubbles with an

identical size D H all break at once, the resulting sub-Hinze-scale

bubble size spectrum n ( D ) should be equal to daughter bubble

size distribution f D ( D 

∗). As n ( D ) seems to exhibit a scaling law

for sub-Hinze-scale bubbles, we assume a power law for f D ( D 

∗) as
D 

∗ → 0, i.e. f D ( D 

∗) ~ D 

∗α (or equivalent f V (V 
∗) ∼ V ∗(α−2) / 3 based on

Eq. 3 ), where α is the exponent that needs to be determined. The

experimental result by Deane and Stokes (2002) has shown that

n (D ) ∼ D 

−3 / 2 for D < D H , which suggests that the scaling exponent

α for f D ( D ) should be a negative constant i.e. -3/2. 

This relationship of f D (D 

∗) ∼ D 

∗−3 / 2 (or equivalent f V (V 
∗) ∼

 

∗−7 / 6 ) hinges on an assumption that the entire sub-Hinze-scale

bubble spectrum is contributed by bubbles at one particular

size around the Hinze scale D H . In practice, a range of super-

Hinze-scale bubbles can all produce sub-Hinze-scale bubbles af-

ter breakups, and this effect is taken into account numerically by

conducting a similar simulation as what has been performed in

Section 4.3 . We found that the exponent α has to be corrected to

-2 (or equivalent f V (V 
∗) ∼ V ∗−4 / 3 ) to reflect this broadband contri-

bution. The new model can be expressed as: 

f V (V 
∗) = 

V ∗−4 / 3 + (1 −V ∗) −4 / 3 ∫ V ∗max 

V ∗
min 

[ V ∗−4 / 3 + (1 −V ∗) −4 / 3 ] dV ∗
(6)

In addition to V ∗−4 / 3 , the other term (1 −V ∗) −4 / 3 is introduced to

satisfy the volume-conservation requirement. This term becomes

negligible compared with V ∗−4 / 3 as V ∗ approaches zero for very

small daughter bubbles. Therefore, this new model of f V ( V 
∗) still

satisfies the power-law relationship in the limit f V (V 
∗) ∼ V ∗−4 / 3 for

V ∗ → 0 (or equivalent f D (D 

∗) ∼ D 

∗−2 for D 

∗ → 0). 

V ∗
min 

( V ∗max = 1 −V ∗
min 

) is the cutoff close to V ∗ = 0 (or V ∗ = 1 ) to

avoid generating arbitrarily small daughter bubbles, which would

not be physical. Such a cutoff is also necessary for experimental re-

sults shown in Fig. 1 (a) because f V ( V 
∗) has to drop to zero for very

small V ∗. In addition, the cutoffs were also introduced in many

other models, such as the ones by Martínez-Bazán et al. (1999b) ,

Tsouris and Tavlarides (1994) , Luo and Svendsen (1996) . 

This new model in Eq. (6) is then numerically implemented in

the population balance equation following the same procedure as

described in Section 4.3 . The time evolution of bubble size spec-

trum is shown in Fig. 8 (a). Compared with previous models shown

in Fig. 7 (a) and (b), although the proposed new model of f V ( V 
∗)

reaches the same -10/3 scaling law for super-Hinze-scale bubbles,
t shows a distinct negative -3/2 exponent, rather than a positive

xponent in previous models, for the sub-Hinze scaling law range. 

Note that the scaling exponent for sub-Hinze-scale bub-

les reported in different works is not exactly the same.

eike et al. (2016) summarized several experiments on breaking

aves ( Deane and Stokes, 2002; Rojas and Loewen, 2007; Blenk-

nsopp and Chaplin, 2010 ), in which a wide range of scaling ex-

onents have been reported. More recently, simulations on break-

ng waves ( Wang et al., 2016; Chan et al., 2018 ) and bubbles en-

rained in strong free-surface turbulence ( Yu et al., 2020 ) suggested

hat this scaling exponent could range from -3 to -4/3. Although

here is no consensus on the exact value of this exponent, most

rior works suggested that this exponent is likely to be a nega-

ive number. Here, we used the most cited work by Deane and

tokes (2002) to constrain f V ( V 
∗) as V ∗ approaches zero. In addi-

ion, the cutoff used in Eq. (6) does affect the final scaling expo-

ent of sub-Hinze-scale bubbles. The exponent changes from -3/2

o -1.2 as the cutoff increases by an order of magnitude. It sug-

ests that the exponent is not very sensitive to the selected cutoff.

ut this weak dependence still indicates that the observed wide

ange of scaling exponents reported in experiments could depend

n how small the daughter bubbles can be generated during the
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Fig. 8. Time evolution of bubble size spectrum by implementing (a) Eq. (6) for 

daughter bubble size distribution and Eq. (4) for breakup frequency. (b) Eq. (6) for 

daughter bubble size distribution and Eq. (9) for corrected breakup frequency after 

accounting for the log-normal distribution of ε. Other conditions remain the same 

as those employed in Fig. 7 . Two scaling laws with respective exponent of -3/2 and 

-10/3 are shown by two solid lines. 
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Fig. 9. Daughter bubble size distribution f D ( D 
∗) versus the non- 

dimensionalized daughter bubble diameter D ∗ for different proposed models 

by Martínez-Bazán et al. (1999b) (blue), Tsouris and Tavlarides (1994) (red), 

Wang et al. (2003) (yellow) and Eq. (6) (purple). The black solid line indicates the 

D ∗−2 scaling law near zero. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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reakup process, which could be affected by the surface tension

nd water contamination. 

To examine other models in the limit of D 

∗ → 0, f D ( D 

∗) from
everal previous models are shown in Fig. 9 in the logarithmic

cale to emphasize the scaling as D 

∗ → 0. Eq. (6) is shown as the

urple solid line, which clearly exhibits a power law with a neg-

tive exponent of -2 as D 

∗ → 0. Other models seem to suggest

he opposite. If a power law is fitted to these models for small D 

∗,
he exponent would be positive, which will not help to generate

he sub-Hinze-scale bubble size spectrum with a negative expo-

ent suggested by many experiments. 

.5. Convergence time 

As aforementioned in Section 4.3 , as the bubble size cascade

rocess continues for continuous injection , the super-Hinze-scale

ubble size spectrum will eventually converge to the same power

aw scaling of D 

−10 / 3 , regardless of f V ( V 
∗), so this scaling law can-

ot be used to constrain the model of f V ( V 
∗). However, as shown in

igs. 7 and 8 (a), different choices of models for f V ( V 
∗) affect how

ong bubble size spectrum reaches the equilibrium state, which is

eferred to as convergence time ( τ c ) hereafter. This result could

erve as another constraint to f ( V ∗) for V ∗ close to 0.5. 
V 
As shown in Fig. 7 , τ c for the model by Martínez-

azán et al. (1999b) is only half of that by Tsouris and Tavlar-

des (1994) . The two models show the opposite trend with respect

o V ∗: one peaks at V ∗ = 0 . 5 (equal-size breakup) and the other

ne peaks at V ∗ close to 0 and 1 (uneven breakup). To enable a

mooth transition between these two limits, a mixed model is in-

roduced: 

f V (V 
∗) = ω 

1 − cos (2 πV ∗) ∫ 1 
0 [ 1 − cos (2 πV ∗) ] dV ∗

+ (1 − ω) 
V ∗−4 / 3 + (1 −V ∗) −4 / 3 ∫ V ∗max 

V ∗
min 

V ∗−4 / 3 + (1 −V ∗) −4 / 3 dV ∗
(7) 

here the first term, cosine function, represents a simplified Bell-

hape curve that has a higher probability of equal-size breakup,

nd the second term is from Eq. (6) to represent the U-shape

odel for uneven breakups. ω is the weight parameter that can

e changed smoothly between 0 and 1 to switch between these

wo shapes. 

The weighted-averaged model was implemented in the popula-

ion balance equation following the procedure in Section 4.3 to ob-

ain the time evolution of bubble size spectrum. The spectra (in the

ange of D = 2 –8 mm) at different times were fitted with power

aws, from which the scaling exponent β was extracted and plot-

ed versus time. As shown in Fig. 10 (a), as the simulation time τ
ncreases, the scaling exponents of super-Hinze-scale bubbles from

odels with different ω all approach the same number close to -

0/3, but it takes longer to reach that asymptotic value for smaller

. Fig. 10 (b) shows τ c versus ω. Clearly, τ c for ω = 1 (Bell-shape)

s indeed much shorter than the case of ω = 0 (U-shape), which

s consistent with what has been observed in Fig. 7 . This implies

hat models with a higher probability of equal-size breakup will

onverge faster than those with more uneven breakup events. 

τ c seems to approach a constant as ω increases. To estimate

his limiting value of τ c , we assume an extreme case, in which the

aughter bubble size distribution is a delta function at V ∗ = 0 . 5 ,

uggesting that every breakup event will result in two identical-

ized daughter bubbles. Performing the same simulation, the short-

st convergence time τc, min = 0 . 14 is obtained, which is shown in

ig. 10 (b) as a dashed line. It can be seen that this value is very

lose to the results obtained from the weighted-averaged model
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Fig. 10. (a) Time evolution of the scaling exponent β of bubble size spectrum for 

super-Hinze-scale bubbles ( D > D H ) for different weight ω used in the mixed model 

( Eq. (7) ). (b) Convergence time τ c versus ω; The dash line indicates the minimum 

convergence time T c,min = 0 . 14 by assuming a delta function at V ∗ = 0 . 5 for daughter 

bubble size distribution. 
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with ω = 1 . In the opposite extreme ( ω → 0), where every breakup

event will result in one daughter bubble with almost the same size

to the mother bubble and the other one with size close to zero, the

convergence time is infinity. 

The question arises as to what the physical meaning of this

convergence time is. We conjecture that the scaling law of super-

Hinze-scale bubbles reaches its final converged exponent once

the largest bubble completes the entire cascade process to reach

the Hinze scale. Following this argument, we consider a scenario

that a large bubble with a diameter D 1 is injected into turbu-

lence at the very beginning. After time T 1 = 1 /g(〈 ε〉 , D 1 ) , the large

bubble breaks into two daughter bubbles of the same size D 2 =
(1 / 2) 1 / 3 D 1 , each one of which will break subsequently after T 2 =
1 /g(〈 ε〉 , D 2 ) . This cascade process continues until all bubbles be-

come equal or smaller than D H after n iterations. g ( 〈 ε〉 , D 1 ) and

g ( 〈 ε〉 , D 2 ) are the breakup frequency of the mother and daughter

bubbles, respectively, given by Eq. (4) . The cascade time scale is

calculated based on T 1 + T 2 + · · · + T n . For D 1 = 10 mm and 〈 ε〉 =
50 m 

2 /s 2 (same with the parameters adopted in Section 4.3 ), the

calculated bubble size cascade time is 0.11 s, which is close to the

numerical solution of τc,min = 0 . 14 s assuming a delta function for

f V ( V 
∗). This result confirms our conjecture that, for continuous in-

jection , the super-Hinze scaling converges when the bubble size
ascades from the largest bubbles to bubbles close to the Hinze

cale. 

In wave-breaking experiments ( Deane and Stokes, 2002; Rojas

nd Loewen, 2007; Blenkinsopp and Chaplin, 2010 ), only the equi-

ibrium scaling laws were reported; τ c cannot be determined ac-

urately because the entire process finishes within a short period

f time. Therefore, without any experimental results, τ c , although

t guides the model development, cannot be used as a constraint.

evertheless, τ c for continuous injection is related to how fast bub-

le size spectrum changes for experiments with one-time injection

ecause the equilibrium bubble size distribution for continuous in-

ection is equivalent to the superposition of bubble size spectra at

ifferent times from one-time injection , which will be introduced in

ection 4.7 to constrain a proposed new model. 

.6. Breakup frequency correction 

From Sections 4.2 to 4.5 , three types of possible experimen-

al results, including the super- and sub-Hinze scaling laws and

he convergence time, were discussed. Although the implemented

odel seems to perform well to predict the limiting scaling ex-

onents for bubbles much larger or much smaller than D H , a small

ump near D H is observed, as shown in Figs. 7 and 8 (a). This hump

ndicates an accumulation of bubbles at this scale, which was not

bserved in experiments (e.g. Fig. 6 (a)). 

The accumulation of bubbles at the Hinze scale can be as-

ribed to the sharp transition of breakup frequency from super-

inze to sub-Hinze-scale bubbles. As shown in Fig. 2 (b), the model

roposed by Martínez-Bazán et al. (1999b) shows a peak of the

reakup frequency near D H but drops abruptly at soon as the bub-

le diameter falls below D H . This indicates that bubbles slightly

arger than D H break frequently and produce a large number of

ubbles near D H that never break, which leads to the observed ac-

umulation in bubble size spectrum. 

The sharp transition of bubble breakup frequency at the Hinze

cale can be attributed to the fact that the Hinze scale is defined

ased on 〈 ε〉 ( Hinze, 1955 ). In turbulence with strong intermit-

ency, the local energy dissipation rate ε could be orders of mag-

itude larger than 〈 ε〉 . Therefore, sub-Hinze-scale bubbles, if en-
ountering an eddy with sufficiently large local ε, may still break,

nd thus its breakup frequency may not be zero. The distribution

f the local energy dissipation rate ε can be modelled base on the

olmogorov refined theory in 1962 ( Kolmogorov, 1962 ) and multi-

ractal spectrum ( Meneveau and Sreenivasan, 1991 ). In particular,

f we consider the energy dissipation rate ε coarse-grained at the

ubble scale D , i.e. εD , it follows a log-normal distribution: 

 (εD / 〈 ε〉 ) = 

1 

εD / 〈 ε〉 
1 √ 

2 π(A + μ ln (L/D ) ) 

· exp 

[ 

−
(
ln (εD / 〈 ε〉 ) + 

1 
2 
(A + μ ln (L/D ) ) 

)2 
2(A + μ ln (L/D ) ) 

] 

(8)

where μ ≈ 0.25 is the intermittency exponent, L is the inte-

ral length scale of turbulence and D is the coarse-graining scale

ver which the local energy dissipation rate is averaged. The offset

 represents a large-scale variability of ε when D = L, which de-

ends on specific flow configurations. Although it may seem that

 ( εD / 〈 ε〉 ) depends on bubble size, in our experiments, the depen-

ence seems to be weak as A � μln ( L / D ). Therefore, for the rest

f the discussion, A + μ ln (L/D ) is assumed to be a constant of 1.2,

nd εD is replaced with ε hereafter for simplicity. 

The expression for breakup frequency considering the distribu-

ion of ε is then given by 

 corr (〈 ε〉 , D ) = 

∫ ∞ 

g(ε, D ) P (ε/ 〈 ε〉 ) d(ε/ 〈 ε〉 ) (9)

0 



Y. Qi, A.U. Mohammad Masuk and R. Ni / International Journal of Multiphase Flow 132 (2020) 103397 11 

w  

t  

D  

t  

c  

q  

r  

o  

t

 

T

i  

r

4

 

p  

t  

E  

e  

F  

a  

f  

1  

a

 

r  

t  

S  

q  

e  

j  

-

 

i  

s  

t  

t  

s  

p  

s  

l  

d

 

p  

t  

I  

c  

o  

e  

m  

l  

i  

p  

T  

s  

r  

t  

n  

t  

d  

s  

i

 

(  

Fig. 11. Bubble size spectrum as a function of the distance between the measure- 

ment window to the nozzle exit X normalized by the nozzle diameter D J . Blue cir- 

cles denote the experimental results by Martínez-Bazán et al. (1999b) . The black 

solid line show the simulation results obtained by implementing the new model 

using Eq. 7 for daughter bubble size distribution and Eq. (9) for breakup frequency. 

Data at X/D J = 16 . 11 was used as the initial condition, so the symbols and the line 

in (a) are identical. 
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here g corr ( 〈 ε〉 , D ) is the corrected breakup frequency. By substi-

uting Eqs. (4) and (8) into Eq. (9) , we immediately obtain g corr ( 〈 ε〉 ,
 ) for a given mean energy dissipation rate 〈 ε〉 . Fig. 2 (b) shows

he comparison between the original breakup frequency and the

orrected one with 〈 ε〉 of 50 m 

2 /s 2 . The corrected breakup fre-

uency shows a smoother transition near D H . Note that the cor-

ected breakup frequency appears to be lower than the original

ne, which implies the prefactor K g in Eq. (4) needs to be adjusted

o account for this correction. 

The simulation shown in Fig. 8 (a) was repeated using Eq. (9) .

he results are shown in Fig. 8 (b). As expected, the hump near D H 

s smoothed, while the sub- and super-Hinze-scale bubble scaling

emain the same. 

.7. A new model for daughter bubble size distribution 

Finally, a new model of daughter bubble size distribution is

roposed to satisfy all the experimental constraints discussed in

he previous sections. Following the weighted-average model in

q. (7) and using ω = 0 . 3 and V ∗
min 

= 0 . 02 as two fitting param-

ters, the modelled daughter bubble size distribution is shown in

ig. 1 (b) to compare with other experiments. The fitted new model

ppears to agree with experimental measurements, capturing two

eatures: (i) increasing breakup probability as V ∗ approaches 0 and

, and (ii) a small hump near V ∗ = 0 . 5 observed in our results and

lso by Hesketh et al. (1991) and Vejražka et al. (2018) . 

The new model will also adopt the formulation of the cor-

ected breakup frequency following Eq. (9) to account for the dis-

ribution of local ε. For super-Hinze-scale bubbles, as discussed in
ection 4.3 , the converged scaling is determined by breakup fre-

uency, so if the new model is employed to calculate the final

quilibrium bubble size spectrum in a system with continuous in-

ection , the scaling exponent will converge to a number close to

10/3. 

Sub-Hinze-scale bubbles are only sensitive to the second term

n the new model ( Eq. (7) ) that determines the daughter bubble

ize distribution at V ∗ � 0 or V ∗ � 1. As discussed in Section 4.4 ,

his formulation should satisfy the criterion to generate a nega-

ive scaling exponent for sub-Hinze-scale bubbles. The first term,

imilar to the Bell-shape model, is added to match with the ex-

erimental measurements of f V ( V 
∗); this term is also important for

hortening τ c for continuous injection and accelerate the time evo-

ution of bubble size spectrum for one-time injection based on the

iscussion in Section 4.5 . 

As a final test, the new model is implemented in Eq. (2) to

redict the time (space) evolution of bubble size spectrum with

he experimental data provided by Martínez-Bazán et al. (1999a) .

n the simulation, the unsteady term in Eq. (2) was neglected be-

ause the bubble size spectrum does not change over time based

n the experiments. Eq. (2) was then integrated in space on a lin-

ar grid with size 
D = 0 . 025 mm using 1 st -order explicit Euler

ethod with 
X = 0 . 15 mm. The convective velocity and turbu-

ent energy dissipation rate along the jet centerline were found

n Martínez-Bazán et al. (1999a) and Martínez-Bazán (1998) . The

refactor K g in Eq. (4) is set as 0.4 to fit with the experiments.

he simulation results of the time (space) evolution of bubble size

pectrum are shown in Fig. 11 as solid lines, and the symbols rep-

esent the experimental data at different distances X away from

he original injection point normalized by the nozzle diameter D J .

 ( D ) at X/D J = 16 . 11 was input into the model as the initial condi-

ion, and Eq. (2) was integrated over time T (or equivalently over

istance X , as discussed in Section 4.2 ). It is observed that bubble

ize spectra obtained by the new model agree well with the exper-

mental data for both small and large bubbles. 

Finally, it is important to emphasize that the new model

 Eq. (7) ) did not come from any phenomenological arguments,
hich may seem appealing because of their linkages with the un-

erlying physics. But the possible involvements of so many mech-

nisms at play make it impossible to conclusively argue which

hysics dominates. Instead of following the same process, in this

ork, the simple form of our new model is completely born

rom experimental constraints. Moreover, since different aspects of

aughter bubble size distribution could be magnified under differ-

nt statistical lens, providing experimental data on other statistics

n addition to the bubble spectrum in the future could potentially

rovide new constraints to the problem. 
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5. Conclusion 

The population balance equation has served as an important

tool to model bubble breakup and coalescence for gas-liquid two-

phase flows. For breakup, daughter bubble size distribution is an

unknown parameter that cannot be acquired from the first prin-

ciple. As a result, there have been many attempts to model this

distribution from physical phenomenological arguments, such as

eddy-bubble collision. However, there seems to be no consensus as

to what the basic trend of daughter bubble size distribution should

be—it could be Bell-shape, U-shape, or M-shape. 

In this paper, the goal is to find a model that satisfies the con-

straints put forward by consistent experimental results, including

our own work and many others from the literature. In this paper,

we first introduced our experimental setup with special attention

paid to designing a system that can provide a large area of ho-

mogeneous and isotropic turbulent flows to study bubble breakup.

This system also features a 3D shape reconstruction system con-

sisting of six cameras to capture the breakup process and to ac-

curately identify bubble sizes. Unlike the inconsistent models, the

measured daughter size distribution agrees well with other previ-

ous experimental measurements ( Hesketh et al., 1991; Rodríguez-

Rodríguez et al., 2003; Vejražka et al., 2018 ). 

Other than the direct measurement, the bubble size spec-

trum obtained by experiments ( Deane and Stokes, 2002; Rojas

and Loewen, 2007; Blenkinsopp and Chaplin, 2010; Martínez-Bazán

et al., 1999a ) offer other constraints on breakup models, including:

(i) the -10/3 scaling law observed for bubbles larger than the Hinze

scale; this scaling law seems to depend only on breakup frequency

rather than daughter bubble size distribution; (ii) the negative sub-

Hinze-scale bubble scaling (exponent close to -3/2) provides an-

other constraint on the trend of daughter bubble size distribution

for uneven breakup ( V ∗ → 0); (iii) the time evolution of bubble

size spectrum, including the converged time in continuous injec-

tion cases ( Fig. 7 ) and a continuous change in one-time-injection

experiments ( Fig. 11 ). Moreover, the breakup frequency model by

Martínez-Bazán et al. (1999a) is corrected by incorporating the dis-

tribution of the turbulent energy dissipation rate. 

The proposed framework provides a new way to develop bubble

breakup model. Rather than starting from physical arguments, the

new framework emphasizes on various experimental constraints

and different reported statistics, which magnify different aspects

of breakup models. A new model for daughter bubble size distri-

bution is finally proposed and implemented in the population bal-

ance equation. Despite its simple formulation, the new model sat-

isfies all experimental constraints that have been put forward. 
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