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We experimentally investigate the breakup mechanisms and probability of Hinze-scale
bubbles in turbulence. The Hinze scale is defined as the critical bubble size based on the
critical mean Weber number, across which the bubble breakup probability was believed to
have an abrupt transition from being dominated by turbulence stresses to being suppressed
completely by the surface tension. In this work, to quantify the breakup probability of
bubbles with sizes close to the Hinze scale and to examine different breakup mechanisms,
both bubbles and their surrounding tracer particles were simultaneously tracked. From the
experimental results, two Weber numbers, one calculated from the slip velocity between
the two phases and the other acquired from local velocity gradients, are separated and
fitted with models that can be linked back to turbulence characteristics. Moreover, we
also provide an empirical model to link bubble deformation to the two Weber numbers by
extending the relationship obtained from potential flow theory. The proposed relationship
between bubble aspect ratio and the Weber numbers seems to work consistently well for
a range of bubble sizes. Furthermore, the time traces of bubble aspect ratio and the two
Weber numbers are connected using the linear forced oscillator model. Finally, having
access to the distributions of these two Weber numbers provides a unique way to extract
the breakup probability of bubbles with sizes close to the Hinze scale.

Key words: bubble dynamics, breakup/coalescence, multiphase flow

1. Introduction

The process by which finite-sized gas bubbles and liquid droplets break in a
turbulent environment constitutes one of the most fundamental and practically important
phenomena in multiphase flows. Details of how this takes place have significant impact
in various industrial and natural processes, such as chemical reactors (Jakobsen 2014),
bioreactors (Kawase & Moo-Young 1990), air–sea gas transfer (Liss & Merlivat 1986),
drag reduction (Verschoof et al. 2016; Lohse 2018) and two-phase heat transfer (Lu,
Fernandez & Tryggvason 2005; Lu & Tryggvason 2008; Dabiri, Lu & Tryggvason 2013).
Bubbles in strong turbulence can deform, break and coalesce with each other. The
presence of deformation adds to a problem that is already complicated even for the
dispersed two-phase flows with rigid, non-deformable particles (Balachandar & Eaton
2010). Moreover, most works on bubble deformation have been limited to simulations (see
Elghobashi 2019, and references therein) with very few experimental works being able to
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resolve both phases in three dimensions simultaneously. It is thus the main objective of
this paper to overcome this technical challenge and provide new experimental results to
study bubble deformation and breakup in turbulence.
The earliest studies on bubble breakup in turbulence were conducted by Kolmogorov

(1949) and Hinze (1955). In particular, Hinze unified the results of numerous preceding
investigations. In his seminal work, he argued that only two dimensionless numbers are
needed: one is the Weber number We (also used by Kolmogorov 1949) and the other
is the viscosity group, N = μd/

√
ρdσD/2, in which ρd and μd are the density and the

dynamic viscosity of the dispersed phase, respectively. σ is the surface tension, and D
is the bubble diameter. This is the first time that the idea of the critical Weber number
was introduced, and Hinze argued that the critical Weber number must depend only on N
followingWecrit = c(1 + f (N)), where f (N) is a function of N. For bubbles with vanishing
inner viscosity, the critical Weber number should just be a constant c. A critical Weber
number of 0.59 was extrapolated from an earlier experiment conducted by Clay (1940). In
this work, the Weber number is defined based on external stresses τ applied on the bubble
surface We = τD/σ . Here τ is related to the energy dissipation rate (ε) in the form of
τ = C2(εD)2/3 based on the Kolmogorov theory, in which C2 ≈ 2.13 is the Kolmogorov
constant. This formulation should be, strictly speaking, only applied to homogeneous and
isotropic turbulence, yet it has been used in many other flow configurations, including
chemical reactors with impellers and jets based on the assumption of local isotropy.
Hinze’s framework was constructed primarily for liquid droplets. He noted that the

critical Weber number should not be a universal constant; instead, it depends on the
density difference between the two phases. Sevik & Park (1973) extended this framework
to bubbles splitting in turbulence, in which a large density difference between the two
phases was present. A slightly larger critical Weber number of 1.26 was observed. By
assuming bubbles break once they start to resonate with surrounding turbulent eddies, the
critical Weber number can be calculated analytically by equating the natural frequency
of bubbles (Lamb 1932) with the reciprocal of the eddy turnover time. The predicted
value seems to agree with their measured results. Although Wecrit has been studied and
reported in different types of flows, it should be noted that no consensus on Wecrit has
been reached so far. For air bubble breaking in different flow configurations, such as linear
shear flow, turbulent jets and homogeneous isotropic turbulence, a wide range of Wecrit
from 0.59 to 7.8 have been reported to date (Hinze 1955; Sevik & Park 1973; Risso &
Fabre 1998; Martínez-Bazán, Montanes & Lasheras 1999a; Deane & Stokes 2002). Based
on this observation, one can only conclude thatWecrit is roughly of order unity.
Introducing Wecrit also comes with a critical length scale. For a given mean

turbulence energy dissipation rate 〈ε〉 (〈·〉 denotes ensemble average), the critical
bubble size is often referred to as the Hinze scale DH , and it is related to
Wecrit following Wecrit = ρC2(〈ε〉DH)2/3DH/σ . For a given Wecrit, it is important to
introduce the idea of energy-abundant/super-Hinze (We � Wecrit and D � DH) versus
energy-limited/sub-Hinze (We < Wecrit and D < DH) breakups. The former has been
studied much more extensively than the latter for a simple reason: breakup of super-Hinze
bubbles is much faster and more frequent so it is easier to observe in a finite volume
and to collect enough statistics. Breakup of super-Hinze bubbles is typically studied
in several different flow configurations: pipe flow (Hesketh, Etchells & Russell 1991)
and turbulent jets (Sevik & Park 1973; Martínez-Bazán, Montanes & Lasheras 1999b;
Vejražka, Zedníková & Stanovskỳ 2018). In these cases, the energy contained in turbulent
eddies is so abundant that each bubble is almost guaranteed to break: it is only a matter of
time.
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Deformation and breakup of Hinze-scale bubbles 910 A21-3

Breakup frequency is an important parameter in the population balance equation
(Hulburt & Katz 1964; Ramkrishna 2000). However, this framework has one limitation: it
assumes that all bubbles above the Hinze scale will eventually break and no bubbles below
the scale will ever break. This poses an important challenge to numerical simulations to
account for sub-Hinze-scale microbubbles, which are important to air–sea gas exchange
(Deane & Stokes 2002), as well as underwater acoustics as these small bubbles tend to
remain in the waterside for an extended period of time.
The breakup mechanisms that have been proposed and evaluated in the literature

include: (i) persistent stretching by straining flows (parallel flow, plane hyperbolic,
axisymmetric hyperbolic, Couette flow or rotating flow) (Hinze 1955); bubbles tend to
exhibit regular affine deformation in these types of flows (lenticular or cigar-shaped);
(ii) a resonance mechanism that relies on bubble oscillation to siphon energy from the
surrounding turbulence until breakup (Sevik & Park 1973; Hesketh et al. 1991; Risso &
Fabre 1998); it typically assumes that the surrounding eddies retain a similar frequency
with bubbles’ natural frequency; (iii) an inertial mechanism that relies on bubbles suddenly
being exposed to strong flows, which leads to an almost-immediate irregular breakup; this
mechanism has been studied in many contexts in addition to turbulence-induced breakup,
e.g. raindrop fragmentation (Villermaux & Bossa 2009) and bag breakup in crossflows
(Ng, Sankarakrishnan & Sallam 2008). In turbulence, the three mechanisms may all be
present, so applying only one mean Weber number to account for all breakup mechanisms
is questionable.
In addition, as Risso & Fabre (1998) noted, the instantaneous and local Weber number,

We, could be much larger than the mean value 〈We〉. They proposed to use the time trace
of We along each bubble trajectory to evaluate its breakup frequency. However, in their
experiments, such instantaneous Weber number was not directly accessible. As a result,
flow velocity from single-phase turbulence was used as a surrogate. This is a common
practice in the community as the simultaneous measurements of both phases, either in two
or three dimensions, remain challenging.
To resolve deformation and breakup of the Hinze- or sub-Hinze-scale bubbles, in

this paper, we introduce an experiment that provides unique simultaneous measurements
of both bubble deformation and surrounding flows thanks to the recent advancement
of the three-dimensional (3-D) high-concentration particle shadow tracking (Tan et al.
2019) and 3-D virtual-camera visual-hull shape reconstruction (Masuk, Salibindla & Ni
2019a). In § 2, the experimental set-up, i.e. a vertical water tunnel system with a large
section of homogeneous and isotropic turbulence, is introduced. In the same section, the
optical system designed to conduct simultaneous measurements of both the phases is also
discussed. In § 4, based on the new datasets, we discuss how flow decomposition can be
conducted to analyse the relative roles played by different mechanisms. In § 4.5, we finally
estimate the breakup probability of Hinze-scale bubbles in turbulence.

2. Experimental set-up

As shown in figure 1, a facility named V-ONSET was designed to accomplish two
main goals: (i) maintain homogeneous and isotropic turbulence in a large volume to
ensure that bubbles within this volume experience similar turbulence characteristics;
and (ii) bubble deformation should be driven primarily by turbulence rather than by
buoyancy, and bubble sizes remain close to the Hinze scale so that we can investigate
the deformation and breakup of the Hinze-scale and sub-Hinze-scale bubbles. Satisfying
both criteria is challenging. For example, many systems that feature a large region of
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homogeneous and isotropic turbulence tend to have a low energy dissipation rate (Variano,
Bodenschatz & Cowen 2004; Mercado et al. 2012) (〈ε〉 = O(10−5–10−3) m2 s−3), whereas
facilities that use water jets to break super-Hinze-scale bubbles can generate a large energy
dissipation rate 〈ε〉 = O(0.1–103) m2 s−3 at the cost of having strong flow inhomogeneity
and anisotropy (Martínez-Bazán et al. 1999b; Vejražka et al. 2018).
The experimental set-up used for the current study is essentially a vertical water tunnel

capable of generating turbulence with 〈ε〉 roughly at 0.16–0.5 m2 s−3. To extend the
residence time of a Hinze-scale bubble in the interrogation volume, the mean flow in
the tunnel was configured to move downward in a vertically oriented test section. The flow
speed was adjusted to balance the rise velocity of bubbles with diameters at around 3 mm
to increase the residence time of these bubbles in the view area. Combined with 〈ε〉 in this
region, 〈We〉 was roughly at 1.19, indicating that most bubbles in the interrogation volume
are close to the Hinze scale.
Turbulence in the test section was generated using 88 high-speed water jets (with jet

velocity up to 12 m s−1), each of which has a diameter dj of 5 mm, firing coaxially
downward into the test section along with the mean flow. The firing pattern of these
momentum jets was randomised in a way similar to the work by Variano et al. (2004)
in order to ensure that no secondary flow structure would develop in the test section (De
Silva & Fernando 1994; Srdic, Fernando & Montenegro 1996; Variano et al. 2004). On
average, 12.5% of the jets were kept on at a time as this was found to maximise the
turbulence intensity. The test section was set much farther downstream of the jets (about
80dj) to ensure that the jets were well mixed and turbulence becomes homogeneous and
isotropic with very little spatial variation. Additional details concerning this set-up and its
flow characteristics can be found in Masuk et al. (2019b).
Bubbles were generated at the bottom of the test section using two different sizes of

hypodermic needles (small needles with inner diameter (ID) of 160 μm and outer diameter
(OD) of 300 μm; large needles with ID of 260 μm and OD of 500 μm). The range of
bubble diameters in the experiment was 2–7 mm, which was set mostly by turbulence
generated in our tunnel as large bubbles were broken before entering the interrogation
window. Note that the bubble injection was far below the measurement volume to ensure
that bubbles entering the measurement volume already lost any memory of the injection.
Both the bubble dynamics and turbulence statistics were collected by using six

high-speed cameras each with a 1024 × 1024 pixel resolution and 4000 frame per second
(fps) frame rate. The frame rate was selected to ensure that each particle could be imaged
about 10 times within one Kolmogorov timescale τη = 2.5 ms. These cameras were
spatially distributed to cover the entire perimeter of the octagonal test section. Six red LED
panels with wavelength at roughly 630 nm were used to provide diffused backlighting
to cast shadows of both particles and bubbles onto the imaging planes of all six
cameras.

3. Flow characterisation

Before discussing bubble deformation and breakup, single-phase turbulence statistics
in the tunnel needs to be characterised to ensure that the flow is close to homogeneous
and isotropic, and the bubble size is within the inertial range of turbulence. The details of
these statistics can be found in Masuk et al. (2019b). Here, we only show the measured
longitudinal second-order structure function, i.e. DLL in figure 2. It can be seen that our
experiments were able to resolve length scales as small as 2η, with η ≈ 50 μm being the
Kolmogorov length scale η = (ν3/〈ε〉)1/4. Here ν is the kinematic viscosity of water. We
can resolve such a small scale thanks to our in-house high-concentration particle-tracking
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Deformation and breakup of Hinze-scale bubbles 910 A21-5

Converging

section

Jet array

Test section

Bubble bank
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LED panel

High-speed

camera

z

x

FIGURE 1. Schematic of the V-ONSET vertical water tunnel; two insets show the 3-D model
of the jet array used to fire high-speed water jets into the test section and a bubble bank to inject
bubbles, respectively. Additional details concerning this facility can be found in Masuk et al.
(2019b).

system (Tan et al. 2020) that employs the Shake-the-Box method (Schanz, Gesemann &
Schröder 2016).
The structure function should approach two limits: one in the dissipative range (r � η)

and the other in the inertial range (η � r � L). L is the integral scale, which is estimated
based on L ≈ u′3/〈ε〉, where u′ is the fluctuation velocity. The scale separation between
η and L is determined by the Taylor-scale Reynolds number Reλ = √

15u′L/ν, which
is estimated to be around 435. In the dissipative range, the structure function follows
the relationship of DLL = (ε/15ν)r2. In the inertial range, the 2/3 scaling law is based
on the classical Kolmogorov theory. Although how long the inertial range is and if the
Kolmogorov constant C2 is affected by the finite-Reynolds-number effect are subjected to
further investigations (Ni & Xia 2013), using a standard number C2 = 2.13 can provide a
reasonable estimation of ε. The solid line shown in the figure is based on the calculated
〈ε〉 = 0.16 m2 s−3. However, if 〈ε〉 obtained from the inertial range is used to predict
the dissipative range DLL (dashed line), it appears that the dashed line is systematically
lower than the experimental results. In sum, the difference of 〈ε〉 estimated from either
the dissipative or inertial range helps to quantify the experimental uncertainty of the mean
energy dissipation rate: 〈ε〉 = 0.22 ± 0.07 m2 s−3. Moreover, after bubbles getting injected
into the system, bubbles can actively modulate turbulence and increase the local energy
dissipation rate to around 0.52 m2 s−3, which is calculated not from the structure functions
but from the local velocity gradients that will be introduced in § 4.2 and figure 4(b).
The shaded area in figure 2(b) marks the size range of bubbles with respect to the

Kolmogorov scale η. As one can see, bubbles are well within the inertial range of
turbulence, indicating that their deformation and breakup are indeed driven by the velocity
fluctuations that can be estimated by the inertial range scaling.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 W

el
ch

 M
ed

ic
al

 L
ib

ra
ry

, o
n 

31
 Ja

n 
20

21
 a

t 2
0:

57
:4

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.933


910 A21-6 A. U. M. Masuk, A. K. R. Salibindla and R. Ni

100 101 102 103
10–4

10–3

10–2

10–1

(ε/15ν)r2

C2(εr)2/3

r/η

DLL

D

FIGURE 2. The longitudinal structure function DLL as a function of the scale separation r
normalised by the Kolmogorov length scale η. The dashed and solid lines indicate the dissipative
and inertial range scalings based on the Kolmogorov theory, respectively.

4. Results and discussion

4.1. Simultaneous bubble and particle tracking
As shown in figure 3(a), shadows of both bubbles and particles were projected onto the
imaging planes of cameras. It is straightforward to separate their images based on the size
difference. An example of segmented images of a bubble and surrounding tracer particles
is shown in figure 3(b). The bubble silhouette was then input into a recently developed
virtual-camera visual-hull method (Masuk et al. 2019a) for 3-D shape reconstruction.
Averaging surface points on the reconstructed geometry helps to determine the centre
of mass, which was then tracked in three dimensions to obtain a bubble trajectory. This
procedure was repeated for all bubbles to acquire both the kinematics (from tracks) as well
as geometrical information (from 3-D shape reconstruction). On average, there were about
15 bubbles in the interrogation volume at each time instant, and each bubble trajectory
roughly lasts about 0.09 s (360 frames) before exiting.
Separated images for tracer particles were input into our in-house OpenLPT (Tan et al.

2019) to perform the shake-the-box calculation (OpenLPT has already been open-sourced
and is available for the entire community to use @JHU-Ni-Lab on Github). Compared
with bubbles, significantly more particles could be found in the interrogation volume. At
each time instant, there were about 6000 tracer particles with the mean track length of
about 200 frames.
Figure 3(c) shows one example of about 40 tracer trajectories in the vicinity of a

bubble with its 3-D shape reconstructed from silhouettes segmented from figure 3(a).
In this case, trajectories of tracer particles within 4D away from the bubble centre were
included. These tracks could be used to estimate the flow condition around the bubble.
As a high concentration of tracer particles were available around almost every bubble,
this experiment provided access to almost all key physical quantities, the Weber number,
turbulence energy dissipation rate and the full coarse-grained velocity gradients, locally,
instantaneously and along each bubble trajectory. Additional information concerning the
set-up and measurement techniques can be found in works by Masuk et al. (2019a,b) and
Tan et al. (2019).
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Cam 1 Cam 2

Cam 3 Cam 4

Cam 5 Cam 6
6
0
0

5
0
0

4
0
0

3
0
0

2
0
0

u (mm s–1)

1
0
0

0

(a) (b)

(c)

FIGURE 3. (a) Raw images of one highly deformed bubble observed by six high-speed cameras
simultaneously. (b) The outline and silhouette of the same bubble extracted from camera 4.
(c) 3-D tracks of about 40 tracer particles within 4D (D is the volume-equivalent sphere diameter)
from the centre of the bubble that is shown as a 3-D reconstructed geometry.

4.2. Flow velocity and velocity gradient
For a bubble at location x0, its surrounding flow velocity up(x0 + xp) can be measured
at a number of discrete positions x0 + xp where n tracer particles are located (p =
1, 2, . . . , n). These tracer particles are sought within a radius of Ds/2 from the bubble
centre with Ds being the diameter of a spherical search volume. The flow field within this
range can be decomposed into leading terms by applying the Taylor expansion:

upi (x0 + xp) ≈ ui(x0) + Ãij(x0)x
p
j + O

(
xp
j H̃ jik(x0)x

p
k

)
,

Ãij(x0) = ∂upi
∂xpj

and H̃ jik(x0) = ∂2upi
∂xpj ∂x

p
k
,

⎫⎪⎬⎪⎭ (4.1)

where ui = ∑n
p=1 u

p
i (x0 + xp)/n represents the local mean flow estimated by averaging

the velocity of n tracer particles. Here Ãij and H̃ jik indicate the velocity gradient tensor
and the Hessian matrix, respectively, and the tilde denotes coarse graining at the bubble
size. We use xp to denote the separation vector directed from the bubble centre at x0 to
the pth tracer particle location. For small micro-bubbles with sizes in the dissipative range
(D � η), the flow is linear so the velocity Hessian is negligibly small. This higher-order
term grows as a function of bubble size and eventually becomes important for bubbles
with sizes in the inertial range (η � D � L).
Although the velocity gradient around each bubble can be measured accurately (Ni et al.

2015), the velocity Hessian, on the other hand, requires measuring the gradient of the
velocity gradient (three 3 × 3 matrices). Even though it is possible to calculate the velocity
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Hessian given sufficient number of tracer particles, the uncertainty becomes large owing
to the second-order spatial derivative. As a result, we limit only to the first two orders, i.e.
the mean flow velocity ui and the velocity gradient Ãij(x0), to capture the key mechanisms
of deformation.
The velocity gradient tensor Ãij can be uniquely solved if we have four particles around

a bubble. In practice, on average, 30–40 particles were used to perform least-squares fit by
seeking the minimum value of the squared residuals

∑
p[u

p
i − Ãijx

p
j ]

2 (Pumir, Bodenschatz
& Xu 2013; Ni et al. 2015). Although finite-sized bubbles typically come with a large
search radius and abundant nearby tracer particles thanks to our tracking method (Tan
et al. 2020), particles in the vicinity of a bubble are still distributed randomly in space. If
nearby particles stay primarily within a quasi-2-D plane, the estimation of the out-of-plane
velocity gradient will have large uncertainty. Similar to previous studies (Xu, Pumir &
Bodenschatz 2011; Ni et al. 2015), an inertia tensor I = ∑

p x
p
i x

p
j /tr(

∑
p x

p
i x

p
j )was adopted

to evaluate the shape factor of the particle cloud. If particles are uniformly distributed
in three dimensions, three eigenvalues of this inertia tensor (γi) all equal to 1/3. For a
quasi-2-D distribution, the smallest eigenvalue (γ3) will be very close to zero, and the
gradient along that direction cannot be calculated. In practice, events with γ3/γ1 smaller
than 0.15 was therefore removed from the statistics.
Based on Ãij, the coarse-grained rate-of-strain tensor, S̃ij, and rotation tensor, ̃ij, can be

obtained directly: S̃ij = (Ãij + Ãji)/2, ̃ij = (Ãij − Ãji)/2. Figure 4(a) shows the probability
density function (PDF) of two eigenvalues of S̃ij (the largest λ̃1 and the smallest λ̃3) based
on different Ds. The PDFs of |λ̃1| and |λ̃3| overlap for three Ds considered, indicating that
the magnitude of flow stretching and compression near a bubble on average is similar. The
PDF progressively shifts leftward as Ds becomes larger because coarse-graining velocity
gradients at a largerDs works effectively as enlarging a low-pass filter, which will continue
to reduce the gradient as Ds increases. As a result, the calculated velocity gradient using
particles within a search diameter ofDs should always underestimate Ãij at the bubble scale
D becauseDs > D. Fortunately, bothDs andD are in the inertial range, and the eigenvalues
of Ãij can be related to the local energy dissipation rate in the form of C2(ε̃d)2/3 = (λ̃3d)2,
where C2 = 2.13 is the Kolmogorov constant (Batchelor 1953; Sreenivasan 1995; Ni &
Xia 2013) and ε̃ is the coarse-grained energy dissipation rate for a range of length scales
d considered. To check whether the distribution of ε̃ is indeed the same for d varying
between D to Ds, in figure 4(b), the PDFs of the estimated local ε̃ using three different
Ds are shown. Although the distribution of the calculated λ̃3 are sensitive to Ds, once
converted to ε̃, three curves from all three Ds fall right on top of each other, indicating that
the local ε̃ is roughly the same for the range of Ds considered. Therefore, although Ds > D
is needed to include enough tracer particles for calculating velocity gradients, the statistics
reported are insensitive toDs thanks to the universal inertial range scaling in homogeneous
and isotropic turbulence.
The coarse-grained energy dissipation rate can be described by the log-normal

distribution based on the Kolmogorov refined theory in 1962 (Kolmogorov 1962) and
multi-fractal spectrum (Meneveau & Sreenivasan 1991):

P
(

εr

〈ε〉
)

= 1
εr/〈ε〉

1√
2π(A + μ ln(L/r))

exp
[
− (ln(εr/〈ε〉) + 1/2(A + μ ln(L/r)))2

2(A + μ ln(L/r))

]
,

(4.2)

where εr is the coarse-grained energy dissipation rate at a scale r. Here μ ≈ 0.25 is the
intermittency exponent, L = 3.2–6 cm is the integral length scale and A is a parameter
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Equation (4.2)
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FIGURE 4. (a) The distribution of the two eigenvalues (λ̃1 and λ̃3) of the local rate-of-strain
tensor coarse grained at the bubble scale D (|λ̃| is used here because λ̃3 < 0). Three search
diameters ranging from 2–4D to 6–8D are denoted by different colours. (b) The distribution
of the local coarse-grained energy dissipation rate ε̃. The log-normal distribution from (4.2) is
shown as the black solid line.

that needs to be fitted to the experimental data to determine the variance of ε̃ when
r = L, which was found to be around one. Based on the definition, ε̃ measured from our
experiments is equivalent to εr|r=D, which is shown as the black solid line in figure 4. The
nice agreement between the experimental data and the log-normal distribution (4.2) shows
that the measured coarse-grained energy dissipation rate is consistent with the classical
Kolmogorov theory.

4.3. Different types of deformation

4.3.1. Bubble deformation by the velocity gradient Wevg

In turbulence, the difference of dynamic pressure across a bubble acts to push the
bubble interface inward to drive bubble deformation. Based on this argument, λ̃3, which
is associated with the direction that compresses the most, should be the more relevant
eigenvalue of Ãij. Following the argument, the Weber number can be defined as

Wevg = ρ(λ̃3D)2D
σ

∼ C2(ε̃D)2/3

σ
. (4.3)

This Weber number definition is based on the local coarse-grained Ãij and ε̃, which is
different from the mean Weber number defined by Kolmogorov (1949) and Hinze (1955).
Figure 5 shows the distribution of local Wevg based on the measurements of Ãij along
each bubble track. The distribution peaks at around one, suggesting that those bubbles are
indeed Hinze-scale bubbles. All data points on the right-hand side of the peak represent
bubbles deforming under strong velocity gradients. On top of the experimental results,
the model of Wevg based on (4.2) and (4.3) is also shown. Similar to figure 4(b), the
log-normal distribution of the local ε̃ explains the observed shape of the PDF of Wevg,
from which bubble breakup probability can be determined.
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We

FIGURE 5. The distribution of the measured Weber numbers, based on the slip velocity, i.e.
Weslip,x (blue circle) and Weslip,z (black plus), and the velocity gradient, Wevg (red triangle).
Two solid lines represent the modelled Weber number distributions based on the log-normal
distribution of ε̃ ((4.2) and (4.3), red line) and the stretched-exponential fit of the slip velocity
((4.4) and (4.5), blue line), respectively.

4.3.2. Slip-velocity induced deformation Weslip
As Hinze stated in his original seminal work (Hinze 1955), employing the velocity

gradient to evaluate the deformation and breakup of droplets should only be applied if
there is no large density difference between the dispersed phase and the carrier phase.
For bubbles in water, such a large density difference does exist, and it is not surprising
that Wevg may not capture the total stress acted on bubbles by turbulence. For example,
the instantaneous velocity mismatch between the two phases could also lead to significant
dynamic pressure that needs to be evaluated. This effect can be captured by the so-called
slip velocity, uslip = ub − uf . As its name suggests, uslip quantifies the drift of the bubble
velocity ub away from the instantaneous local flow velocity uf .
Here uf represents the continuous-phase fluid velocity at the centre of a bubble if the

bubble was not there. In practice, uf needs to be estimated from the continuous-phase
velocities measured in the vicinity of the bubble. Therefore, we assume uf to be the same
as ui in (4.1), which can be estimated by averaging the tracer velocities around the bubble.
Figure 6(a) shows the PDF of only one horizontal component of uf normalised by its
own standard deviation. uf can be calculated around bubbles of different sizes, which
are shown by different coloured symbols. The solid line indicates the standard normal
distribution, which seems to agree well with the horizontal velocity distribution of bubbles
of all sizes, at least for the range of bubble sizes considered. As the PDFs of bubbles of all
sizes are nearly the same, they can be combined and the results are shown in figure 6(b).
Furthermore, to rule out the possible Ds effect, the same procedure was repeated for
three different Ds = 2–4D to 6–8D. As shown in figure 6(b), no discernible difference
is observed for the flow velocity PDF at three Ds, which suggests that uf is not sensitive to
Ds.
We use ub to denote the bubble velocity with one of its horizontal components along

the x-axis being ub,x . Figure 7(a) shows the distribution of ub,x , normalised by its own
standard deviation, for a wide range of bubble sizes, and the distribution for all bubble
sizes seem to agree with a Gaussian distribution (solid line) very well. The standard
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FIGURE 6. The distribution of the horizontal flow velocity uf ,x (normalised by its own standard
deviation) nearby bubbles of (a) different sizes D and (b) different search diameters Ds. The
black solid lines in (a,b) show the standard normal distribution for reference.
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FIGURE 7. (a) The distribution of the horizontal velocity ub,x of bubbles (normalised by its
own standard deviation) with different diameter D. The black solid line indicates the standard
normal distribution for comparison. (b) The fluctuation of mean flow velocity (solid) and bubble
velocity (dashed lines) along two different directions versus bubble size D.

deviation of ub for both horizontal directions are shown as dashed lines in figure 7(b),
and they exhibit a weak, if at all, dependence on D. Note that, in the other limit for
bubbles rising in a quiescent medium with no turbulence, since the horizontal velocity
is coupled with the size-dependent rise velocity (Ern et al. 2012), 〈u2b,x〉1/2 should depend
on the bubble size. Therefore, the observed nearly constant 〈u2b,x〉1/2 clearly indicates that
the buoyancy effect is negligible in the horizontal directions owing to the background
intense turbulence. Figure 7(b) also displays the standard deviation of uf along two
horizontal directions. In contrast to 〈u2b,x〉1/2 , 〈u2f ,x〉1/2 seems to decrease as D increases
because a finite-sized bubble effectively serves as a filter that reduces the local flow
fluctuations. By extrapolating both 〈u2b,x〉1/2 and 〈u2f ,x〉1/2 to small bubble sizes, 〈u2b,x〉1/2
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and 〈u2f ,x〉1/2 will eventually cross at around 200 mm s−1 for bubble size close to zero,
which gives the right limit as extremely small bubbles should behave similarly to tracers
〈u2b,x〉1/2 ≈ 〈u2f ,x〉1/2.
Although both uf and ub along the horizontal directions appear to follow the Gaussian

distribution, the slip velocity uslip = uf − ub does not. As shown in figure 8(a), for
bubbles of all sizes, the tails of the slip-velocity PDF (uslip,x ) are systematically higher
than that of the Gaussian function (black solid line), indicating that the slip velocity
is more intermittent than the velocity of either phase alone. For the distribution of the
normalised slip velocity, similar to the PDFs of uf ,x and ub,x , no obvious bubble-size
dependence is observed. Note that the PDF of uslip resembles that of the velocity increment
between two points in single-phase turbulence (Kailasnath, Sreenivasan & Stolovitzky
1992; Sreenivasan 1999; Li & Meneveau 2005). The PDF of the velocity increment has
been fitted with a stretched exponential function (Kailasnath et al. 1992), which is adopted
here to describe the observed PDF of the slip velocity.

P(uslip,x) = C exp

[
−Q

(
uslip,x

〈u2slip,x〉1/2
)m]

, (4.4)

Weslip = ρu2slipD

σ
, (4.5)

where C is the normalisation factor, and Q and m are fitting parameters in the stretched
exponential function. For single-phase turbulence, the degree to which the tail of the
PDF is stretched depends on the scale separation. If the velocity separation is close to
the integral length scale, the PDF recovers the Gaussian distribution (m = 2). As the
separation becomes smaller and smaller, the PDF becomes more and more intermittent; at
m = 1, the PDF follows an exponential function. If we take the bubble size 0.03L to 0.12L
as the scale separations to calculate the velocity increment in single-phase turbulence, the
scaling exponent m should vary between 0.8 to 1.05 based on the work by Kailasnath
et al. (1992). In our case, although the slip velocity distribution also follows the stretched
exponential, the PDF preserves its shape for all bubble sizes considered in this work with
no obvious scale dependence, and all symbols in figure 8(a) collapse with one another.
Therefore, the distributions of the normalised slip velocity for different sizes of bubbles
were fitted together with one stretched exponential function and one set of constants, i.e.Q
and m. In particular, m is found to be a constant close to 6/5, which is slightly larger than
the range of m from 0.8 to 1.05 in single-phase turbulence. This observation suggests that
the slip velocity between the two phases is less intermittent compared with the velocity
increment between two points in single-phase turbulence under the same scale separation,
which is not surprising since bubbles are capable of filtering out intermittent small-scale
fluctuations.
Furthermore, the fluctuation slip velocity (〈u2slip〉1/2) increases as a function of bubble

size D, suggesting that larger bubbles with larger inertia tend to deviate further away
from the surrounding fluid velocity. At the same time, the typical velocity scale of an
eddy of the bubble size D also increases with D, following (〈ε〉D)1/3. After assuming
that these two velocity scales are related, the measured 〈u2slip〉1/2 along all three directions
are fitted with γ (〈ε〉D)1/3 by performing the least-square regression to obtain the fitting
coefficient γ , which turns out to be 0.62. The fitted result is shown in figure 8(b) as black
dash-dotted line. It is clear that the fit reproduces the growth of the measured standard
deviation of the slip velocity as a function of D, but the agreement between the fitted
and the measured results is not perfect. Nevertheless, for simplicity and without any other
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FIGURE 8. (a) The distribution of the normalised horizontal slip velocity between the two
phases. Symbols denote bubbles of different sizes and the black solid line indicates the standard
normal distribution. The red solid line shows the stretched exponential (4.4) fit to the data.
(b) The fluctuation slip velocity of all three components versus the bubble diameter D; The black
dash-dotted line indicates the estimation from the second-order structure function. The prefactor
4/9 is chosen to minimise the offset between the solid line and the data.

alternative velocity scales, this fit using the eddy velocity is used to estimate 〈u2slip〉1/2 for
bubbles with size in the inertial range. With this relationship and two coefficients, i.e.
Q = 3/4 and m = 6/5, the distribution of uslip can be estimated from (4.4).
Finally, the distribution of Weslip, calculated based on (4.4) and (4.5), is shown

in figure 5. The blue solid line indicates the predicted Weslip based on the stretched
exponential fit to the horizontal slip velocity uslip,x (4.4). The distribution also peaks at
around We ≈ 1, which is slightly smaller than the most probable value of Wevg. The right
tails of both PDFs (Wevg and Weslip,x ), corresponding to the range of We that is important
for deformation and breakup, are very close to each other. This may suggest that, for bubble
deformation, slip velocity and velocity gradient may be equally important; completely
relying on the velocity gradient may not account for all stresses that bubbles experience in
turbulence.

4.3.3. Buoyancy-induced deformation
Although the turbulence energy dissipation rate has been set as high as possible in our

facility, the buoyancy effect is not negligible. In figure 5, the PDF of Weslip in the vertical
direction based on the z-axis slip velocity, i.e.Weslip,z is also shown. This PDF has a bump
nearWeslip,z ≈ 3–4 because of the buoyancy effect, but both the left and right tails seem to
agree with those ofWeslip,x . This suggests that both the turbulence effect and the buoyancy
effect are present inWeslip,z, but the effect of buoyancy is rather limited to a comparatively
narrower region near the peak of the PDF. Nevertheless, the exact functional form of the
PDF close to the peak is unknown and requires further investigations to understand the
coupling between the local bubble rise velocity and the surrounding turbulence.
Note thatWeslip,z is similar to the Eötvös number, Eo = ρgD2/σ , as the terminal vertical

slip velocity uslip,z driven primarily by buoyancy should be proportional to
√
gD. Note

that this relationship is approximate, as the buoyancy-driven terminal rise velocity is
also sensitive to the bubble geometry, orientation, and the drag coefficient. In intense
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turbulence, these parameters could also be functions of ε. In a recent paper (Salibindla
et al. 2020), the drag coefficient of bubble with different sizes in intense turbulence was
reported, and it follows CD = max(24/Reb(1 + 0.15Re0.687b ),min( f (Eo), f (Eo)/We1/3))
where f (Eo) = 8Eo/3(Eo + 4). Based on this equation, the most probable slip velocity
in the vertical direction can be calculated following u2slip,z = 2Vb(ρ − ρb)g/ρACD, where
Vb is the volume of a bubble. A is the projected area of volume-equivalent spherical bubble
and ρb is the density of bubbles. For the bubble size range considered, Weslip,z calculated
based on CD is about 4, which is consistent with the bump of Weslip,z observed in the
PDF. This agreement confirms that the observed bump in the distribution ofWeslip,z indeed
comes from the buoyancy-induced bubble rise velocity.
All together, it seems that the bump in the distribution of Weslip,z is limited to a

narrow range, and the right tail of Weslip,z seems to be close to that of Weslip,x and
Wevg. This suggests that, at least for our parameters when 〈ε〉 ≈ 0.2–0.5 m2 s−3, the
buoyancy-induced deformation is limited. If we keep increasing 〈ε〉, the buoyancy effect
will become even weaker.

4.4. Bubble aspect ratio versus Weber numbers
So far, we have focused primarily on discussing the distribution of different definitions of
Weber numbers and understanding the connection between these Weber numbers and their
associated turbulence characteristics. In this section, the instantaneous Weber numbers
along bubble trajectories are used to study the mechanisms of bubble deformation and
breakup in turbulence.

4.4.1. Simultaneous measurements of bubble geometry and We
Figure 9 shows two examples of the simultaneous measurements of bubble aspect

ratio (α) and the Weber numbers (Wevg and Weslip). Here α was calculated as α = r1/r3
where the semi-major axis r1 and semi-minor axis r3 are the instantaneous maximum and
minimum radius of a bubble, respectively. These two axes were determined by finding
the maximum and minimum vertex-centre distances from the 3-D-reconstructed bubble
geometry, respectively. As shown in figure 9(a), the reconstruction seems to successfully
capture the oscillation of a bubble that undergoes small-amplitude deformation. For this
particular case, both of the Weber numbers for almost the entire duration are smaller than
five. The time trace of α is not similar to that of eitherWe at first glance. The only evident
correlation is probably at t = 10–20 ms, when a small peak observed in the time trace of
α seems to be driven by a largeWeslip maybe 5 ms earlier. For t = 50–70 ms, despiteWeslip
drops close to zero, α continues to rise thanks to a relatively large value of Wevg during
this period. This indicates that bubbles probably respond to both Weber numbers, likely to
be the maximum instantaneous Weber number, i.e. max(Wevg,Weslip).
The simultaneous measurements also provide a framework to test models for bubble

deformation and breakup. One such a model has been proposed before by Risso & Fabre
(1998) and Lalanne, Masbernat & Risso (2019), which is essentially a forced oscillator
model that connects bubble deformation directly to local We through a linear differential
equation. This model is designed to follow the interaction between a bubble with
surrounding turbulent eddies along its Lagrangian trajectory, exactly how our experiments
were performed. The dimensionless form of the equation is

d2â
dt̂2

+ 2ξ
dâ
dt̂

+ â = K ′We(t), (4.6)
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FIGURE 9. (a,b) Two example time traces of bubble aspect ratio (black circles) and their
corresponding Weber numbers (c,d) during deformation. Each measured Weber number time
trace (Wevg (blue squares) andWeslip (red triangles)) in panels (c) and (d) can be input into (4.6)
to obtain a calculated time trace of α∗, which are shown as the dashed lines of the same colour
in panels (a) and (b). In addition, the solid black line represents the calculated results by using
max(Wevg,Weslip) as an input. (Note that the blue dashed line in (b) is not visible because it
overlaps perfectly with the black line.)

where ξ = 1/2πτd f2 is the damping coefficient, τd = D2/80ν is the damping time scale
(Risso & Fabre 1998) and f2 = √

96σ/ρD3 is the mode 2 natural frequency of bubble
oscillation (Lamb 1932).
We recognise that this model is linear, and the deformation and breakup process of

bubbles in turbulence is nonlinear, especially when bubbles exhibit non-affine deformation
and subsequently break. Linearising this problem relies on two assumptions: (i) the Weber
numbers are not very large (�O(1)); and (ii) bubble deformation is driven primarily by
eddies of the bubble size. For assumption (i), similar to the roles played by the Reynolds
number in laminar–turbulence transition in single-phase pipe flows, the Weber number
here should determine when the process becomes nonlinear. As there is no consensus
on the value of the critical Weber number, we can only argue that the process is linear
or nonlinear if the Weber number is much smaller or much larger than O(1). Note that
if the flow is turbulent or if the flow Reynolds number is large is irrelevant here. For
example, for a small bubble with size smaller than η in turbulence, the bubble only
senses linear flows around itself even though the flow Reynolds number is large, so the
deformation process of this bubble is always linear as long as We � 1. In this work, the
Weber number has a wide distribution. For most Hinze-scale bubbles in our experiments
with the Weber numbers close to one, the linear model should capture some of the key
dynamics. However, for highly deformed bubbles with Weber numbers in the order of
O(10) to O(102), the linear model is not expected to work, but the discrepancy between
the model prediction and measured results may still shed new light on the problem of
bubble deformation and breakup in turbulence. For assumption (ii), the Weber numbers
defined based on flows of the bubble size essentially ignore the contributions from
sub-bubble-scale eddies. Statistically, this assumption probably holds because smaller
eddies tend to be weaker, even though they could occasionally become exceedingly strong
owing to turbulent intermittency. However, it would require further investigations to
understand their contributions.
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FIGURE 10. (a,b) Example time traces of two breakup events. Symbols and lines are the same
as those in figure 9. The bubble breaks at 89.5 ms for (a) and at 56.5 ms for (b).

In (4.6), the amplitude of the instantaneous We(t) is controlled by the prefactor K ′.
Note that We(t) was not available before in other experiments, and it had to be estimated
based on two-point velocity measurements from single-phase turbulence (Risso & Fabre
1998). In this work, in addition to measuring We(t) directly, the method also allows us
to distinguish between Wevg and Weslip. However, because the model did not explicitly
account for individual We, here we apply three different inputs, We(t) = Wevg, We(t) =
Weslip and We(t) = max(Wevg,Weslip), to (4.6) to obtain model predictions, which are
shown in figures 9 and 10 as a blue dashed line, red dashed line and black solid line,
respectively.
Note that â in (4.6) is defined as the ratio of the deformed radius (a = r1 − D/2) to

D, where D is the diameter of an volume-equivalent sphere. It has to be converted into
α∗ = 2(âD + D/2)/D for comparisons with the measured α. However, despite our best
efforts, α /= α∗ because α∗ does not contain information about the minor axis, which has
to be replaced with D/2. Nevertheless, α and α∗ should share the same trend as bubbles
deform.
Indeed, similarities can be observed between α and α∗ in figure 9(a). The magnitude

of α∗ is affected by the prefactor K ′ in (4.6), which is fixed at 0.1 in this work. In
figure 9(a), the model successfully captures roughly four oscillation periods, which
can also be observed in the experimental results. This agreement suggests that the
model can explain the deformation and shape oscillations for some bubbles undergoing
small-amplitude deformation with small Weber numbers. To be more precise, the Weber
numbers, including both Wevg and Weslip, are around 1–3, and the resulting bubble aspect
ratio is about 2, which is considered as small-amplitude linear deformation. Note that this
definition of small-amplitude deformation and small Weber number are completely based
on our observation, and the transition between linear and nonlinear deformation is likely
to be smooth over a large range of Weber numbers without having a clean demarcation.
For figure 9(a), there is a small gap in the time trace with no data at around 100 ms

because, during this time period, the velocity gradient calculation does not meet the
requirement mentioned in § 4.2. In addition, despite the overall agreement, the phase lag of
each period keeps changing in the experimental data, e.g.the second peak is much closer
to the first and further away from the third. This varying phase lag is a feature that cannot
be reproduced from the model.
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Figure 9(b) shows another example to compare α with α∗. A large α observed at 32
ms seems to correlate with an event of large Wevg occurred at 20 ms, whereas a small
bump of α at 60 ms seems to correspond to a sudden increase of Weslip at 50 ms. This
observation is still consistent with the argument that bubble deformation tends to be driven
by both Weber numbers. In this case, the three model-predicted time traces of α∗ differ;
Wevg is systematically larger than Weslip for the entire duration. Nevertheless, for this
case, although the model-predicted time trace still embraces some oscillatory features,
the measured results do not. Over a similar period of time compared with figure 9(a),
only one distinct peak is observed in figure 9(b). This suggests that the linear oscillator
model provided by Risso & Fabre (1998) may capture the dynamics of bubbles undergoing
small-amplitude deformation (α ≈ 1–3) with small We (We � 3), as in figure 9(a), but
not for all bubbles, particularly not for bubbles with large We undergoing large aspect
ratio changes. In addition, sometimes the surrounding flow maintains its strength, and the
bubble is not allowed to oscillate freely. For these cases, the oscillation amplitude becomes
smaller, and the model tends to overpredict the bubble aspect ratio.
As the model provided by Risso & Fabre (1998) is primarily designed to characterise

the breakup process, figure 10 shows two examples of bubbles that eventually break. The
Weber number We for breaking bubbles is clearly much larger: one reaches close to 40
and the other climbs up to almost 20, nearly a factor of 4–8 larger than the cases for
small-amplitude deformation in figure 9(a). In figure 10(a), Weslip dominates, but a local
event at Weslip ≈ 40 did not break the bubble, even though it did successfully deform the
bubble to a large α at around 8. Following a peak ofWeslip at 85 ms, this bubble eventually
broke at t = 90 ms, with the instantaneousWe about 10 and local aspect ratio close to 2.
This example represents many bubbles we observed that do not break at the moment

when α reaches its peak; instead, they split at a later time during the process of
retraction. As a bubble retracts back to a spherical shape, the excess surface energy
stored on the bubble interface is transferred back to the surrounding flows in the form
of turbulent kinetic energy (Dodd & Ferrante 2016). However, this process is unstable
because of the large density difference between the two phases, and it eventually leads to
breakup.
For the first example (figure 10a), Weslip is intermittent with a large variation of

magnitude in a short period of time, which seems to be consistent with the notion of
eddy–bubble collision (Prince & Blanch 1990; Risso & Fabre 1998) that this bubble keeps
encountering different eddies with varying intensity. For the second example shown in
figure 10(b), both Weber numbers slowly increase with time until the bubble breaks. The
aspect ratio does not vary much throughout the entire time trace. For the last 20 ms, the
aspect ratio of this bubble is close to a constant. Rather than the eddy–bubble collision,
the results seem to suggest an alternative mechanism: bubbles entrained in an eddy slowly
get pulled apart by this eddy as it grows in strength over time.
The model predictions are also shown alongside with these two examples of breakup.

In both cases, oscillations clearly observed in α∗ from the model calculation are not
so obvious in experimental results. As explained before, it is not surprising as large
deformation is expected to be highly nonlinear and should deviate from the linear equation
(4.6). In addition, this disagreement also implies that the bubble oscillation may not be
the right mechanism for bubble breakup at large Weber numbers. Bubbles might just be
stretched and deformed by the local strains and slip velocity until the surface tension could
no longer hold it together. Such a mechanism that needs to account for 3-D couplings
between bubbles and surrounding flows is clearly missing in the current model framework.
This calls for future investigations into improving the model for large Weber numbers and
other breakup mechanisms.
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4.4.2. Distribution of bubble aspect ratio
In addition to the response of individual bubbles to different Weber numbers, the

distribution of α could also be connected to that of We to examine whether the bubble
aspect ratio can be solely determined by We in a statistical sense. This relationship
between α and We was first derived by Moore (1965) for bubbles rising in a quiescent
medium:

α = 1 + 9
64We + O(We2), (4.7)

where We was defined to account for the dynamic pressure driven by the rising motion of
bubbles, not by turbulence. In addition, the key assumption in this model is thatWe � 1 so
that the departure from a spherical shape is so small that any high-order terms associated
withWe2 can be ignored.
ForWe ≈ 1 or above, the potential flow theory applied to oblate ellipsoids with fore–aft

symmetry yields

We(α) = 4α−4/3(α3 + α − 2)[α2 sec−1 α − (α2 − 1)1/2]2(α2 − 1)−3. (4.8)

This equation has a maximum aspect ratio of 6 when the Weber number is close to
3.745, above which the symmetric shape is impossible to attain for a bubble. Although
this formulation provides a better framework for our studies of bubbles with 〈We〉 ≈ 1, it
cannot predict the relationship between α and instantaneous We for We > 3.745, which is
about 21.5% of the total events in our experiments.
Figure 11(a) shows the PDF of α for bubble size D = 4.5 mm. The PDF peaks at α =

1.7 and has a long tail that skews towards larger values of α. On top of the experimental
results, the PDF of α calculated from (4.7) usingWe = Wevg as the input is also plotted as
the red dashed line. Although the peak location is slightly different from the experimental
results, the overall trend is close. As the long tail in the PDF of Wevg comes from the
log-normal distribution of ε̃, a large probability of strong deformation α > 2 is likely to
be contributed by intermittent events with a large ε̃. If α versus Wevg follows a linear
relationship, the two PDFs should overlap with each other. To make the red dashed line
closer to the experimental results, we tried to add a second-order correction to (4.7), which
did not provide satisfactory results (not shown here). Finally, after adjusting the parameters
in (4.7), we settle down to a simple new equation

α = 2
5We2/3 + 1.2 (4.9)

to fit the data, which is shown as the red solid line in figure 11(a). This new fit shows
an excellent agreement with the measured PDF of α. Moreover. the solid blue line in
figure 11(a) shows the PDF of α by implementing a different Weber number We = Weslip
in (4.9). Similar trend of α can be seen even with this Weber number. However, compared
with Wevg, the results based on Weslip tend to underpredict α, which is consistent with the
observation in figure 5 that the peak of the PDF ofWeslip is on the left-hand side of the PDF
ofWevg. Nevertheless, the right tail of α can be reproduced by the calculations using both
Weslip and Wevg. This may imply that the dynamic stresses contributed by both velocity
gradients and the slip velocity are equally important, but turbulent velocity gradients seem
to work better and, thus, are more important for mild deformation.
Figure 11(b) compiles the PDFs of α for five different bubble sizes, from 2.5 to 6.5

mm with an interval of 1 mm. The peaks of these PDFs progressively shift rightward
towards larger α as D grows, which is consistent with our intuition that large bubbles
are more deformable and, thus, have a larger α on average. Moreover, the PDF becomes
wider (the right tail of the PDF rises) as D increases, which implies that the probability
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FIGURE 11. The distribution of bubble aspect ratio α for (a) one sizeD = 4.5 mm to test against
differentWe versus α relationship listed in two different equations (4.7) and (4.8) by using either
Weslip (blue) and Wevg (red) and for (b) a range of sizes from 2.5 to 6.5 mm; solid lines are
calculated from (4.9).

of bubbles with α much larger than the mean also increases. To explain this observation,
(4.9) is applied to all these cases with different D, and results are shown as solid lines with
corresponding colours to compare with the PDF of measured α. The modeled PDF of α
agrees with the measured results really well for most bubble sizes except for the largest
bubbles where the buoyancy effect may deform bubbles even further. This agreement
suggests that the observed change of the PDFs of α as a function of D is driven mostly
by the change ofWe, but the relationship between α andWe may not be linear for bubbles
deformed by turbulence.
An alternative method to predict the relationship between α and We is to use the model

provided by (4.6). As discussed before, although the model-predicted time trace of α does
not match with the measured one exactly, for small Weber numbers, the model is still able
to capture some bubble oscillatory deformation, as shown in figure 9(a). Here, we want
to extend the test beyond single time traces. The comparison is shown in figure 12 for
only two sizes of 2.5 and 5.5 mm for simplicity. The model seems to reproduce the overall
trend of the PDF. However, the PDF of α∗ calculated from the model is flatter than that
of the measured α, indicating a much higher probability of strongly deformed bubbles
compared with the measured results. This observation is consistent with the time traces
shown in figure 10 that the linear oscillator model seems to overpredict the number of
large-deformation events.
This observed difference can also be attributed to other possible reasons. For example,

(4.6) is a linear one-dimensional model with both We and α∗ being scalars. In our
experiments, Wevg has an implicit direction that follows the largest compression direction
of the rate-of-strain tensor, and Weslip should be aligned with the slip velocity direction.
Their combined effect to bubble deformation may not follow a simple relationship of
max(Wevg,Weslip). In certain circumstances, they could potentially work against each
other, which is not accounted for in the linear oscillator model.

4.5. Breakup probability
One condition that is implicitly assumed in many breakup models (Martínez-Bazán
et al. 1999b) is that all bubbles will eventually break, just a matter of time, as long as
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FIGURE 12. The distribution of bubble aspect ratio α for two different sizes (D = 2–3 and
D = 5–6 mm) from experiments (circle) and linear forced oscillation model (line, (4.6)).

We > Wecrit. This implies a breakup probability (pb) close to 100%, which should be valid
for largeWe � 1 and D � DH . However, for Hinze-scale or sub-Hinze-scale bubbles with
We � 1 and D � DH , pb could be anywhere from 0 to 100%. This number has not been
reported before from previous experiments as it is challenging to estimate pb given the
limited residence time of bubbles within the view area. The data that has been generated
in this work provides a unique way to evaluate pb indirectly based on two assumptions:
(i) turbulence remains close to homogeneous and isotropic so that the statistics collected
in the entire view area can be compiled together to predict the breakup probability; and
(ii) the local Weber number is the sole parameter that determines the status of bubble
deformation and breakup. Introducing and measuring local We is one step further from
the Hinze’s seminal work, in which the ensemble-averaged 〈We〉 was adopted to quantify
the breakup probability. The limitation of using 〈We〉 is that, based on 〈We〉 being larger
or smaller than the critical Wecrit, pb is close to a step function (pb = 1 if 〈We〉 > Wecrit;
pb = 0 if 〈We〉 < Wecrit). However, in turbulence, local flows could be orders of magnitude
stronger than the mean; bubbles could break in response to the localWe instead of the mean
Weber number. To transfer this intuition to quantitative results, the main objective of this
section is to determine pb by linking local We distribution to bubble breakup probability.
Before estimating pb, we would like to extend the PDF of Wevg and Weslip beyond our

experiments to other turbulent flows with different 〈ε〉 and bubble size D. Based on (4.2)
and (4.4), the distribution of local We for three 〈ε〉 from 0.1 m2 s−3 to 10 m2 s−3 are
shown in figure 13(a). BothWeslip andWevg shift rightward systematically with a seemingly
identical shape. It is important to note that the shape remains the same on the logarithmic
scale, indicating that the distribution actually widens on the linear scale and the standard
deviation of local We increases as 〈ε〉 grows.
From the distribution, we can estimate pb based on

pb(〈We〉) =
∫ +∞

Wecrit

p(We) d(We), (4.10)

where the local We could be either Wevg or Weslip, and 〈We〉 = ∫ +∞
−∞ [We × p(We)] d(We).

Here pb is written as a function of the mean Weber number 〈We〉 to help with other
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P
D

F

pb

(a) (b)

FIGURE 13. (a) The predicted distribution of both Weslip,x and Wevg for different energy
dissipation rates from ε = 0.1 to 10 m2 s−3. (b) Breakup probability pb calculated based on
different mean Weber number 〈We〉. Three sets of lines indicate three different Wecrit from 1 to
4. Within each set, pb based on the total Weber number (cyan), or either Wevg (red) or Weslip
(blue) alone, are shown. The curves from the totalWe were fitted with (4.11) to predict pb for any
mean We and any selectedWecrit.

experiments or simulations that have access only to 〈We〉 from the mean energy dissipation
rate. It can be seen that, as 〈We〉 grows, either due to a larger D or larger ε, the bubble
breakup probability pb will increase.
Figure 13(b) shows pb as a function of 〈We〉. In most previous works assuming that the

breakup probability has a sharp transition at Wecrit, pb would behave like a step function:
pb = 1 for 〈We〉 ≥ Wecrit and pb = 0 for 〈We〉 < Wecrit. Although these two limits still
apply in figure 13(b), the transition is much smoother, spanning over a few orders of
magnitude of 〈We〉. Note that the choice of Wecrit does not affect the shape of the curve.
As shown in figure 13(b), when we change Wecrit from 1 to 4, it just shifts the transitional
〈We〉 towards the new Wecrit without affecting the overall trend.
This framework applies toWevg andWeslip, both of which contribute to bubble breakup.

As the right tail of their respective distribution is very close to each other, an equal
contribution from the two breakup mechanisms was assumed. As the result, the curves
of pb for either We alone approach 0.5 for 〈We〉 much larger than Wecrit to ensure that the
sum of the two pb equals to one. Furthermore, even for the same Wecrit, pb of Weslip (blue
lines) stays mostly above that ofWevg (red lines) until they cross at a location very close to
the plateau near pb = 0.5. This difference can be ascribed to the difference of the PDFs:
compared with Wevg, the PDF of Weslip has a larger probability for small We. This also
suggests that bubbles close to the Hinze scale may be deformed more often by the slip
velocity.
Finally, the total breakup probability pb by summing the contribution from Wevg and

Weslip and using Wecrit = 1 to 4 are shown as three cyan lines in figure 13. These three
lines are fitted with the same switch function:

pb = [1 + (2.8〈We〉/Wecrit)−1.7]−1 (4.11)
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which includesWecrit as the input. The fitted results are shown in figure 13(b) as three black
solid lines. One may not see the cyan lines at all because the fit overlap perfectly with the
calculated results over the entire range of 〈We〉 for threeWecrit considered. Equation (4.11)
provides a method to estimate bubble breakup probability in turbulence, particularly for
bubbles close to the Hinze scale and 〈We〉 ≈ 1.

5. Conclusion

Bubble deformation and breakup in intense turbulence is ubiquitous in many
applications, but details of how this takes place for a bubble close to the Hinze scale remain
elusive because of the lack of data to probe the interaction between finite-sized bubbles and
surrounding turbulence. In this study, both 3-D bubble geometry and nearby 3-D particle
tracks were acquired simultaneously using our in-house virtual camera reconstruction
and particle-tracking algorithm. The experiments were performed in a system that can
reach a high turbulent energy dissipation rate that can significantly deform and even
break bubbles, while maintaining homogeneous and isotropic turbulence throughout the
entire measurement volume. As the 3-D information of both phases is available, this
unique dataset allows us to interrogate the couplings between the two phases, in particular
the key mechanisms that drive bubble deformation and breakup. The flow velocity was
decomposed into two components, the local flow velocity and velocity gradient, both
coarse-grained at the bubble scale. Each component can be used to define its own Weber
number as a way to quantify their relative contributions to bubble deformation.
In this study, in addition to directly measuring the Weber numbers, bubble deformation

is also connected to the log-normal distribution of the local coarse-grained energy
dissipation rate ε̃. The modeled distribution of both ε̃ and Wevg based on turbulence
characteristics agree well with the measured results. Moreover, because of the density
mismatch between the two phases and the finite bubble size effect, the slip velocity
also plays an important role. Based on this observation, a different Weber number is
defined to measure deformation driven by the slip velocity, whose distribution can be fitted
with a stretched exponential function inspired by the distribution of two-point velocity
increments in single-phase turbulence. Based on this function, the distribution of the
slip-velocity-based Weber number can be connected to 〈ε〉 and bubble size.
The distribution of the Weber number was also connected to the reconstructed bubble

geometry. It has been shown that the relationship that was developed for describing
bubbles rising in a quiescent medium does not work well for the turbulent case. A new
nonlinear model was proposed to improve the fit, and it seems to work well for a range
of bubble sizes considered. In addition, the results were tested against a linear forced
oscillator model that was proposed before. Although the model does seem to reproduce
some key features of a few example time traces qualitatively, the distribution of the
predicted aspect ratio does not match with the directly measured results quantitatively.
Finally, the Weber number distribution is generalised for different bubble sizes and

energy dissipation rates in order to evaluate breakup probability, which was estimated
based on the mean energy dissipation rate in many other works. In contrast to what
has been proposed before that the bubble breakup probability experiences a precipitous
drop as bubble size decreases below the Hinze scale, accounting for the distribution of
local Weber number helps to smooth the curve near the Hinze scale. The final calculated
relationship between breakup probability and the mean Weber numbers was fitted with a
simple function that can help future works to estimate bubble breakup probability based
on the mean Weber number.
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