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ABSTRACT: Techniques to mitigate analysis errors arising from the nonsimultaneity of data collections typically use
advection-correction procedures based on the hypothesis (frozen turbulence) that the analyzed field can be represented as a
pattern of unchanging form in horizontal translation. It is more difficult to advection correct the radial velocity than the
reflectivity because even if the vector velocity field satisfies this hypothesis, its radial component does not—but that
component does satisfy a second-derivative condition. We treat the advection correction of the radial velocity (v,) as a
variational problem in which errors in that second-derivative condition are minimized subject to smoothness constraints on
spatially variable pattern-translation components (U, V). The Euler-Lagrange equations are derived, and an iterative
trajectory-based solution is developed in which U, V, and v, are analyzed together. The analysis code is first verified using
analytical data, and then tested using Atmospheric Imaging Radar (AIR) data from a band of heavy rainfall on 4 September
2018 near El Reno, Oklahoma, and a decaying tornado on 27 May 2015 near Canadian, Texas. In both cases, the analyzed v,
field has smaller root-mean-square errors and larger correlation coefficients than in analyses based on persistence, linear
time interpolation, or advection correction using constant U and V. As some experimentation is needed to obtain appro-
priate parameter values, the procedure is more suitable for non-real-time applications than use in an operational setting. In
particular, the degree of spatial variability in U and V, and the associated errors in the analyzed v, field are strongly
dependent on a smoothness parameter.
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1. Introduction field R (representing, e.g., reflectivity) can be written in the

The Taylor (1938) frozen-turbulence hypothesis is com- functional form

monly used in physical science and engineering studies to infer
the spatial distribution of flow variables from time series of

R=R(x—Ut,y—Vt,z), (1.1)

those variables at fixed locations, study the statistical proper-
ties of turbulence, and mitigate analysis errors arising from the
nonsimultaneity of data collections. According to this hy-
pothesis, small-scale features in the velocity field can be ide-
alized as patterns of unchanging form that are transported by a
larger-scale “wind stream.” The validity of this hypothesis is a
topic of continued interest (Uddin et al. 1997; Burghelea et al.
2005; Dennis and Nickels 2008; Li et al. 2009; Castro et al. 2011;
Higgins et al. 2012; Wilczek et al. 2014; Creutin et al. 2015). Not
surprisingly, the scales of motion bear on the validity of the
hypothesis, and the validity degrades for longer time intervals.

Although Taylor (1938) described frozen turbulence as
transport of small-scale features by a larger-scale wind, we
consider here a broader meaning in which small-scale features
are transported by larger-scale pattern-translation (advection)
fields, without regard for how the translation is related to the
air velocity. We refer to the transported variable as a passive
scalar or a tracer. With attention restricted to horizontal ad-
vection, the frozen-turbulence hypothesis applied to a tracer
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where x, y, and z are Cartesian coordinates, ¢ is time, and U and V
are pattern-translation components. As noted, the latter may
differ from the actual air velocity components (u and v). If U and
V are constant, then the equations that result from taking deriv-
atives of (1.1) with respect to x, y, and ¢, in turn, combine to give

R R R

—+U—+V—=0. (1.2)
at ax dy
Equation (1.2) can be written more succinctly as
DR
—=0 1.3
=0, (13)

where D/Dt is the rate of change following the motion of the
pattern; that is, D/Dt = d/dt + Udldx + Val/dy. The paths of
hypothetical (virtual) particles that move with the pattern-
translation components U and V are the solutions x() and y(¢)
of Dx/Dt = U and Dx/Dt = V. For brevity we refer to such
virtual-particle paths as trajectories, even though they do not
generally represent the paths of actual air parcels.

The pattern-translation components U and V used in a variety
of radar-, hydro-, and mesoscale-meteorological applications
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FIG. 1. A vortex of unchanging form translating past a radar provides a simple example of a radial velocity field
that does not satisfy the frozen-turbulence hypothesis (Dv,/Dt # 0) even though the velocity field does satisfy that
hypothesis (Du/Dt = 0). The same velocity vector that yields an inbound radial component (green, v, < 0) when the
vortex is west of the radar yields an outbound radial component (red, v, > 0) when the vortex is east of the radar.

have been estimated visually (Heymsfield 1978; Carbone 1982;
Hildebrand and Mueller 1985; Austin 1987; Dowell and Bluestein
1997; Wurman et al. 2007), obtained as wind profiles from a nu-
merical weather prediction model (Mittermaier et al. 2004), cal-
culated by cross-correlation analysis (Zawadzki 1973; Bellon and
Zawadzki 1994; Fabry et al. 1994; Liu and Krajewski 1996;
Anagnostou and Krajewski 1999; Gerstner and Heinemann 2008;
Harrison et al. 2009; Nielsen et al. 2014; Thorndahl et al. 2014; Seo
and Krajewski 2015), and derived from the minimization of a cost
function in which (1.1), (1.2), or (1.3) is imposed as a weak con-
straint in a variational framework' (Gal-Chen 1982; Liu et al.
2004; Shapiro et al. 2010a, hereafter SWP10a). SWP10a re-
purposed a single-Doppler velocity retrieval (SDVR) algorithm
similar to the frozen-turbulence-based SDVR algorithms of
Tuttle and Foote (1990), Qiu and Xu (1992), Shapiro et al. (1995),
Zhang and Gal-Chen (1996), Liou (1999, 2007), Lazarus et al.
(2001), Liou and Luo (2001), and especially the variational echo
tracking procedure of Laroche and Zawadzki (1995). In re-
purposing SDVR as advection correction, SDVR ““‘winds” are
interpreted as pattern-translation components rather than air
velocity components. Moreover, while the tracer may be of lim-
ited interest in SDVR (beyond its use in obtaining the “‘winds”), it
is of primary interest in advection correction—it is the variable
being analyzed. SWP10a speculated that, in many cases, a frozen-
turbulence-based SDVR procedure may work better as an
advection-correction procedure than as a wind retrieval.

The advection correction of the Doppler radial velocity
field v, (=t - u, where u is the velocity field, and t is the unit
vector in the direction of increasing radius r) is more chal-
lenging than that of the reflectivity field because even if u
satisfies the frozen turbulence hypothesis (Du/Dt = 0), its
radial component does not (Dv,/Dt # 0). A hypothetical flow
that illustrates this property is shown in Fig. 1. Remarkably,

!'We use the strong- and weak-constraint terminology of Sasaki
(1970). A constraint that is imposed exactly is a strong constraint. A
constraint that is imposed approximately (i.e., in a least squares
error sense) is a weak constraint.
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however, if Du/Dt = 0 with U and V constant, v, satisfies
(Gal-Chen 1982; Matejka 2002)

D*(rv,)
DE 0.

(1.4)

Unlike the expanded form of DR/Dt [which is (1.2)], the
expanded form of (1.4) [see (2.2)] includes second derivatives
with respect to space and time.

Attempts to mitigate analysis errors stemming from the
nonsimultaneity of radar data collections often use advection-
correction procedures in which U and V are treated as constant
throughout the analysis domain or on each subdomain of a
partitioned analysis domain. A notable exception is the SWP10a
procedure, in which (1.3) is applied as a weak constraint along
with smoothness constraints to obtain spatially varying U(x, y)
and V(x, y) fields and an analyzed reflectivity field R(x, y, f)
consistent with those fields and two time levels of input data. In a
companion paper (Shapiro et al. 2010b, hereafter SWP10b),
reflectivity data from a supercell storm were advection corrected
to a time between the two data input times, and compared to
data at that time. The spatially variable procedure produced
analyses with smaller root-mean-square errors and larger cor-
relation coefficients than analyses obtained with any pair of
constant U and V parameters. Additional tests in SWP10b fo-

cused on advection correcting v, using U and V obtained from
(i) the spatially variable reflectivity-based procedure, or (ii) a
range of imposed constant U and V values. Although the
reflectivity-based procedure yielded generally good results, the
errors in v, were slightly larger than the errors obtained using
the best of the constant U and V analyses. SWP10b suggested
that better results might be obtained using a v,-based procedure,
that is, a procedure based on (1.4) instead of (1.3).

In this study we develop a frozen-turbulence-based advec-
tion-correction procedure for the radial velocity field in which
the retrieved pattern translation components are spatially
variable. An important application is to the analysis of non-
simultaneously collected radial velocity data from two or more
radars to common analysis times for use in multiple-Doppler
wind syntheses of squall lines, supercells, tornadoes, and other
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convective phenomena (Clark et al. 1980; Gal-Chen 1982;
Chong et al. 1983; Hildebrand and Mueller 1985; Smull and
Houze 1987; Bousquet et al. 2007; Wurman et al. 2010;
Wienhoff et al. 2018; Oue et al. 2019; and many other studies).
The paper is arranged as follows. In section 2 we introduce the
cost function whose minimization underpins the analysis. The
Euler-Lagrange equations arising from the minimization of this
cost function are derived in sections 3 and 4. The numerical
procedures used to solve the Euler-Lagrange equations are de-
scribed in section 5. In section 6, analytical data are used to verify
that the computer code for the analysis procedure is error-free.
Tests using data gathered by a mobile X-band Doppler radar, the
Atmospheric Imaging Radar (AIR), of a band of heavy con-
vective rainfall near El Reno, Oklahoma, on 4 September 2018,
and a tornadic storm near Canadian, Texas, on 27 May 2015, are
presented in section 7. Conclusions follow in section 8.

2. A cost function for advection correcting radial
velocity data

As in SWP10a,b, we analyze data on a two-dimensional (2D)
Cartesian grid on which gradually varying “large scale” advec-
tion fields U = U(x, y) and V = V(x, y) advect smaller-scale
features in the data. The U and V fields are considered to be in a
steady state. The analysis grid can be embedded on a surface of
constant elevation angle [for data gathered in plan position in-
dicator (PPI) mode] or on a surface of constant height [for data
on constant-altitude PPI (CAPPI) surfaces]. The data on any
analysis surface at any data input time are treated as if they were
gathered instantaneously. A volume of data gathered as a se-
quence of surfaces can be analyzed sequentially, one surface at a
time, with a single time stamp assigned for each surface. Some
recently designed mobile Doppler radars can scan a single ele-
vation angle in just a few seconds (e.g., French et al. 2014; Kurdzo
etal. 2017; Wienhoff et al. 2018). However, operational radars such
as those in the Weather Surveillance Radar-1988 Doppler (WSR-
88D) network can take nearly 20's to scan an elevation angle, even
using a scan strategy designed for severe convective weather
(Brown et al. 2005). In such cases, the peak displacement error on a
PPI due to the assumed simultaneity of the data collection would
be ~200m in a storm translating at a speed of ~10ms™'. The
significance of such an error may vary with the application, but
should be minor if the scales of interest are ~1 km or larger.

Our advection correction (analysis) procedure is based on
(1.4). However, due to errors in the basic frozen turbulence
constraint on which (1.4) is based (Du/Dt = 0), and additional
errors in (1.4) stemming from the nonconstancy of U and V, we
impose (1.4) as a weak constraint. Since r and v, are paired in
(1.4), it is convenient to work with the combined variable,

F=r,. 2.1)

For later use, we note that (1.4) expands out as

DT
—— =T, +2UT,, +2VI, +2UVT, +UT, + VT

Dr? yy

(Y Y N (Y Yy
at ax ay ) * at 0x ay) ?
2.2)
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FIG. 2. Overview of the advection-correction procedure. During
each outer iteration, the U and V fields are used to construct
pattern-translation trajectories. A trajectory (example shown by
red line) is launched forward and backward in time from every grid
point at every analysis (computational) time. Radial velocity data
are interpolated to each trajectory (blue arrows) at each of the
three data input times. Between these times, the radial velocity is
computed along each trajectory using (3.20a) and (3.20b). Since
each trajectory originates from an analysis point at an analysis time,
the radial velocities are now updated at every analysis point at
every analysis time. The updated radial velocity (and updated DI'/Dt
and W) are used to update the coefficients in (5.1) and (5.2), which
are then solved via SOR to update U and V.

where a subscript x, y, or t on I' denotes partial differentiation
(e.g., T = 9°T/0xar). Although aU/at and aV/ot are zero, it is
convenient to retain those terms in (2.2).

The analysis domain is a rectangle with sides of length L,
parallel to the x axis, and L, parallel to the y axis. The lower left
corner of the domain is at the point (xo, yo). The analysis
window extends from an initial time ¢ to an end time ¢; Radial
velocity data are incorporated into the analysis at three data
input times: the initial time ¢, the end time 5, and an inter-
mediate time? ,, (t; < t,, < ty). The radial velocities are ana-
lyzed to all of the analysis (computational) times within the
analysis window (Fig. 2). For notational simplicity, we omit
the limits of integration on all integrals that span the full
analysis domain and analysis window, as in the (upcoming) cost
function.

The analysis procedure determines U(x, y), V(x, y), and
['(x, y, 1) fields that minimize a cost function

Dry? : :
]EJ”[Q(W> +k|VU|" + «|VV]|

which accumulates the squared error in (1.4) and the
squared gradients of U and V over the analysis domain and
analysis window, while assimilating v, observations at the

dxdydt, (2.3)

% At least three time levels of input data were also required in the
v,-based procedure of Gal-Chen (1982), in which a 9%v,/o term
was discretized. As shown in appendix A, minimizing (2.3) with
v, data incorporated at only two time levels yields meaningless
results.
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three data input times. As in SWP10a,b, a = a(x, y, t) is a
binary (0 or 1) data coverage function that satisfies the ad-
vection equation

Do

D 2.4

The solution of (2.4) is a(x, y, ) = const (along trajectories).>
We assign @ = 0 to trajectories that enter or leave the domain
at any time during the analysis window or are in a data void at
any data input time, and @ = 1 to trajectories on which data are
available at all three data input times. Due to the “filling in”
effect of the Cressman filter used to interpolate raw radar data
to the Cartesian analysis grid, the data coverage at a data input
time may be more extensive on the analysis grid than on the
radar grid. However, since a(x, y, f) evolves as the numerical
procedure iterates between evaluating I' on trajectories, and

I

Dr DZSF
D ppdrdydi

DZF

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 78

solving the elliptic equations for U and V (section 5), the form
of a(x, y, t) between data input times is not known until the
procedure has converged. The |VU|* and «|VV|* terms (V is
the horizontal gradient operator, x is a weight function)
confer spatial smoothness on U and V. However, unlike the
smoothness weight (8) in SWP10a,b, « is not constant, but
increases with radius as k = Kr%, where K (which has units of
m?s™*) is constant. The r? factor in k allows the smoothness
terms to keep pace with the radial growth of terms in the
weak-constraint form of frozen turbulence associated with
the factor r in T' = rv, [an * magnification factor for error in
the weak-constraint form of frozen turbulence was noted by
Matejka (2002)].

We minimize (2.3) using standard methods from the calculus
of variations (e.g., Elsgolc 1961; Lanczos 1986). Setting the first
variation of J to zero, and using (2.2) yields

+Jjja———paur +28VT, +2(USV + VSU)T, +2U8UT, +2V8VT |

<68U U aslU
+

S TOUSLTUS OV VT
y

at dx
1%
J

JJI <6U85U
+ K{ ————+
ox ox

Since the variations 6U, 8V, and éI" are arbitrary and inde-
pendent of each other, the integrals in (2.5) involving U, 8V,
and 6I" vanish independently of each other, and we obtain

J’”a DT D*6T

D2 Dg?
n °r
”J br 2T +2VT_ +20UT + 20 +£r, 8U dx dy dt
3 xy xgx Y ax Y

aU adU
=T
dy ay

dxdydt=0, (2.6)

DT asU asU | asU
- V—
J”a DR < +U P )dxdydt
”JK(BU&SU ﬂ—86U>d xdydt =0, 2.7)
dx 0dx ay dy
2
—<2F +2UT _ +2VvT +§F +ﬂl" )8dedydt
vt xy wogy gy Y

DT asV sV 1%
+ +U—+V—
”Ja Dr ( U i \4 )d dydt
5V oV
+“JK<9V8 v )d dy di = 28)
0x ox E)y ay

3 In the numerical solution procedure (section 5), trajectories are
launched forward and backward in time from every analysis point
at every analysis/computational time.
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oV sV
—_—t—
ox dx

oU BSU)FX

%

+<ﬂ+5u_+ U—+6V—y+ V—y)l“)} dx dy dt

aV asV

2.5
oy dy (2:5)

)dddt 0.

The Euler-Lagrange equations arising from (2.6)—(2.8)
(sections 3 and 4) form a coupled set of differential equa-
tions for U, V, and I' that will be solved iteratively
(section 5).

In SWP10a, it was shown that many advection-correction
procedures based on the frozen-turbulence constraint are
subject to solution nonuniqueness associated with temporal
aliasing [e.g., the reflectivity-based procedures in SWP10a,b,
Gal-Chen (1982), Laroche and Zawadzki (1995), and Germann
and Zawadzki (2002)]. A proof similar to that in SWP10a
(not shown), establishes that the v,-based procedure in the
present study is also subject to solution nonuniqueness. If one
suspects that multiple cost function minima are likely (e.g., if
there are wavy features in the data), the prospect of multiple
solutions can be explored by using multiple first guesses for U
and V, as in Shapiro et al. (2015). Use of a low-resolution
“scaling guess,” as in Laroche and Zawadzki (1995) and
Germann and Zawadzki (2002), may also be desirable.

3. Euler-Lagrange equation for I

To facilitate the derivation of the Euler-Lagrange equation
arising from (2.6), we introduce

DT

F=apa

(3.1)

and make repeated use of the identities
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Db D

E——( ) b and (32)
Dc odc U oV

et —<U>+—(V>—(—x+5), (33)

where a, b, and ¢ are generally functions of x, y, and . Using (3.2)
with a = F and b = D8I/ Dt, the integrand in (2.6) becomes

D2F DZSF
“De Dr

_ DéI' DF
"Dt Dt

D%T _ D (

DéT’
D2 Dt

Dr 3.4)
Similarly, applying (3.2) with @ = DF/Dt and b = 8T to the
last term in (3.4) yields

D2F D26F
“De D

2
bDr, D(F—Dar—arg) (3.5)

D2 ' Dt Dt Dt

Applying (3.3) with ¢ = ¢; = FD8I'/Dt — 8T DF/Dt to the
last term in (3.5) yields
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DZF DZEF dc,
=14 +-
“Di2 Dr at (Uc ) (VC )
2
+5FDF 6U+8V DF 8U+ﬂ FDBF.
D2 \ox ay)Dr ax  dy Dt
(3.6)

Applying (3.2) with a = (0U/dx + 9V/dy)F and b = 8T to
the last term in (3.6) yields

DZFD28F ac,
=1+ — +o
“De D at (U ) (VC)
2
+6TI D F+2 6U+6V DF+F2 E-i-ﬂ
D¢? ax Dt Dt\dx dy

au oV
ol (3 757
Applying (3.3) to the last term in (3.7) with ¢ = ¢, =
(aUlax + oVIay)FT yields

(3.7)

D2F DI 9 d d
th D2 - _( (S C2) + a[U(Cl - Cz)] + E[V(Cl - Cz)]
2 2
+8FDF 2 &+av DF+F aU+ﬂ +F E—Fﬂ (3:8)
ax dy) Dt Dt dy dx  dy
=(D/Dt+aUlax+aV[dy)(D/Dt+aUldx+aVIdy)F
Using the definitions of F, ¢y, and ¢, in (3.8), passing DT -0 (3.10a)
a through the D/Dt operator [justified by (2.4)], factoring the De|,_, o A
underbraced term in (3.8) as indicated beneath the brace, and
substituting the resulting form in (2.6) yields and
D oU oV\/D aU aV\DT DT
lal —+—+— | |(=—+—+ dxdydt =
J“ a(Dt ax 8y) (Dt ax 6y> D¢ Y D |,_ 0, (3.10b)

+” DT DST _sp(P LUV DT [fdd
D Di Dt ox  ay)De)f, TP

areaintegral

DT D6T D aU aV\DT]) "™
+ 2o s+ S+ dy dt
”{Ua[Dﬂ Dt (Dt ax ay) Dzz}}x0 Y

east/west boundary integral

DT DéT D oU oV\D2T]) b
+|[{va —or( =+ + dxdt .
JJ{ {th Dt (Dt ax ay> th}}% *

north/south boundary integral

(3.9)

The area integral in (3.9) is evaluated at the initial and end times
of the analysis window, and vanishes independently of the other
integrals. Both terms in the integrand vanish in data voids (a = 0),
and the second term also vanishes where data are available since
8T = 0 there. To ensure that the first term, (D*I'/D#)(DST/Dr),
vanishes where data are available (noting that DST'/Dt does not
have to vanish where 8I" vanishes), we take
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=
which is (1.4) imposed as a strong constraint at the initial and
end times.

The integrand in the east/west boundary integral in (3.9) is
proportional to a and to the boundary-normal velocity com-
ponent (U). Clearly, the integrand is zero on any east/west
boundary point on which U = 0. However, the integrand also
vanishes on any east/west boundary point on which U # 0, since
any trajectory launched at any analysis time from such a point is
entering or leaving the domain (so « = 0). Thus, this boundary
integral is identically zero. Similarly, it can be shown that the
north/south boundary integral is identically zero.

The evaluation of the triple integral in (3.9) depends on the
number n of data input times. The procedure corresponding to
n = 3 is described in detail in this section. In appendix A we show
that an n = 2 procedure yields meaningless results. A procedure
based on arbitrary n (=3) is outlined in appendix B, but its de-
velopment is beyond the scope of this study.

For n = 3,T is known (except in data voids) at each data input
time, so 8" = 0 at times #, t,,,, and # At analysis/computational
times not coinciding with a data input time, 81 is arbitrary and
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the factor multiplying it in the triple integral in (3.9) must
vanish. We thus obtain the Euler-Lagrange equation,
D aU oV\/D  aU 9V\DT
al =+t —+— [ =+ —+— ===
<Dt ax Ay )(Dt ax ay) D 7

(t#t,t,,0r 1), (3.11)
which we consider separately for analysis subwindows 1 (¢; <
t<ty)and2 (t,, <t <t).

Equation (3.11) describes the evolution of I" for virtual particles
moving along pattern-translation trajectories. If data are missing on a
trajectory at any data input time, « = 0 along that trajectory, and
(3.11) is satisfied identically (0 = 0) with no information obtained
about I'. If data are available on a trajectory at all data input times,
then @ = 1 along that trajectory, and we recast (3.11) as the system

DT

DO U oV

=+ |—+— .
v Dr (M 8y)®’ (3.13)
DV oUu oV
—+ | —+—|¥=0. 14
Dt <8x 6y> (314

For each trajectory, we solve (3.12)—(3.14) on subwindows 1
and 2, with subscripts 1 and 2 affixed to the solutions on the
respective subwindows.

Equation (3.14) has the general solution

W, () =AE (1), (3.15a)
W, (1) =A,E, (1), (3.15b)
where A and A, are constants of integration,
s
E (t)=exp —J divU(7)dr'|, (3.16a)
5
1t
E, (1) =exp —J divU(7") dr' |, (3.16b)
rm

and divU is the divergence of the pattern-translation velocity
field U = (U, V),*
aUu oV

divU=—+—

oy (3.17)

Although it should be clear from the context whether a time
integral is evaluated at a fixed point or along a trajectory, we
facilitate the distinction by using the symbol 7 (with primes) to
represent the dummy integration variable in the time integrals
that are evaluated along trajectories, as in (3.16a) and (3.16b).

With ¥ thus determined, (3.13) has the general solution

4Treated as field variables, U, V, and divU are in a steady state.
However, due to their spatial variations, these same variables vary
with time along trajectories. We obtain U, V, and divU along tra-
jectories by interpolating their values from neighboring grid points
to the location of the virtual particle tracing out the trajectory.
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@1(t) = (Alt + Bl)E1 (1), (3.18a)
@2(t) = (Az’ + Bz)Ez(t) s (3.18b)

where B; and B, are constants of integration. Integrating the equa-
tions that result from applying (3.18a) and (3.18b) in (3.12) yields

Dr d !
Decova v @ar o[ B, o

Ji, 4,

DT d !
Dmcor)| #E @i+ 5[ B i, G1ow)

I3 1

where C; and C, are constants of integration. Integrating
(3.19a) and (3.19b) yields the general solution

®)=Ct+D +A M)+ BN/(), (3.20a)

I,()=Ct+D,+A,M,(t) + B,N,(1), (3.20b)
where D and D, are constants of integration, and My, M,, Ny,
and N, are defined by

t 7 t
M ()= J J " E (") dr" dr' = J. T(t—7)E(7)d7", (3.21a)
tl

tL ,l

t o7 t

M,() = J J " E, (") d7" d7’ :J 7 (t—7)E,(7')dr, (3.21b)
[/" [/H [/ll
e t

N, (1) = J J E,(+")dr" dv’ = J (- E()dl,  (322a)
LY 1
t o7 t

N,(n)= J J E (") dr" dr' = [ (t—T)E,(7)dr. (3.22b)
0t Je,

m® 'm m

In arriving at (3.21a), (3.21b) and (3.22a), (3.22b), Cauchy’s
formula for repeated integration (Herrmann 2011) was used to
express the double integrals as single integrals.

We now show how the conditions of the problem yield eight
linear algebraic equations for eight unknowns—the eight in-
tegration constants in (3.20a) and (3.20b). Input data applied at
the initial time in (3.20a) yield

Cit.+D, =T(,). (3.23)

Input data applied in (3.20a) and (3.20b) at the intermediate
time® yield

Cit,+D +A M/ )+ BN/ )=T() (3.24)
and
Gt +D,=T(). (325)
Input data applied in (3.20b) at the end time yield
Gyt + D, + AzMz(tf) + BzNz(tf) = F(tf). (3.26)

5To ensure continuity of I" at time ¢,,, the input data are used
twice: for Iy at the end of subwindow 1, and for I'; at the beginning
of subwindow 2.
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Applying (3.20a) in (3.10a) yields

At +B =0, (3.27)
while applying (3.20b) in (3.10b) yields
Ayt + B, =0. (3.28)

We have already accounted for continuity of I' at time z,,
(see footnote 5). Setting DI'y/Dt|,_, from (3.19a) equal to
DT,/Dt,_, from (3.19b), yields a continuity condition for
DI'/Dt as

(3.29)

Im [VH
C, +A1J TE (7)dr’ + BIJ E (r)dr' =C,.
tl tl
Setting O4(%,,) from (3.18a) equal to O,(z,,) from (3.18b),
and noting from (3.16b) that E5(¢,,) = 1, we obtain a continuity
condition for D?T'/D#? [which is ©, see (3.12)] as
(At +B)E(t,)=At

b, +B,. (3.30)
The eight equations [(3.23)-(3.30)] are solved by first re-

writing (3.23), (3.25), (3.27), and (3.28) as

D =T(t)—Ct, (3.31)

D,=T()—Cy,, (3.32)

B, =—-At, (333)
a = (tf —t,) [(zm - ti)r(tf) -
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(3.34)

B

L=~ Ay

Applying (3.31) and (3.33) in (3.24) [with M,(z,,) and
Ny(t,,) obtained from (3.21a) and (3.22a), respectively]
leads to

A M ' )—I(,
= _ltj (& = 1), ~ E, () de' + L) 1),
m it m i

(3.35)

Similarly, applying (3.32) and (3.34) in (3.26) [with My(t;)
and N,(ty) obtained from (3.21b) and (3.22b), respectively]
leads to

C,= t/_fztm J:f (i, ~ 7V E,()dr + Lf; ,) — trm(l’”). (3.36)
Applying (3.33) in (3.29) yields
C,=C, + AIJIW (' = t)E, (<) dr'. (3.37)
i
Applying (3.33) and (3.34) in (3.30) yields
A=A, (’m__ ’f) E). (3.38)
=1,

Eliminating Cy, C,, and A, in (3.35)—(3.38) yields A, as

(1, = 1)T(1,) + (5, — tm)F(t’.)]

1

One then gets C; from (3.35), C, from (3.37), A, from (3.38),
Dy, D,, By, and B, from (3.31)—-(3.34), respectively, and I" from
(3.20a) and (3.20b).

i

JJJ{O(@(ZF{+2VF +our +2Yr 4
X Xy XX ax X 9x V¥

) —%(a@l"x)—

xo+L,

+ ” [(@@T )sU] jf dedy + ” Kame + K‘Z—Z)au}

Xo

- L, 7 .
(tf—tm)zjl (7' —t)’E () d7’+(tm—tl.)2E1(tm)J/ (1, — 7V Ey (') d7’

(3.39)

m

4. Euler-Lagrange equations for U and V

When the second and third triple integrals in (2.7) (the in-
tegrals in which derivatives of U appear) are integrated by
parts, (2.7) becomes

2 @0r vy— 2 (aer vy —i(Kﬂ>—i<Ky>}8dedydt
ox * ay * ax\ ox ay\ dy

oU YotLy
dydt + ”Ka(arxv + KE)BU} dxdt=0, (4.1)

Yo

area integral east/west boundary integral

where O was defined in (3.12). Since §U is arbitrary (U is not
known) and the right-hand side of (4.1) is zero, the integrals
in (4.1) must vanish individually. The area integral (eval-
uated at the initial and end times, t; and #;) vanishes in data
voids (a = 0 there), and also where « = 1 since (3.10a) and
(3.10b) (which are conditions on ©) then apply. The first
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north/south boundary integral

term in both east-west and north-south boundary integrals
vanishes since either « or the boundary-normal velocity
component is zero on the boundary (see discussion in
section 3). To ensure that the second term in the bound-
ary integrals vanishes, we impose the zero-normal gradient
conditions:
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U
E—O at x=x, and x=x,+L, (4.2a)
aU
8—:0 at y=y, and y=y,+L . (4.2b)
y

Equation (4.1) now becomes
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””a@(ZF,+2V1‘ +2U0T +—a r +—avl“,>
) Xi xy xx ox * ox Y

_ 3( 3U) i(KaU) ~ 2 (@®T) - = (a8, V)

ax\ Jx ay W

- %(a@)I‘XV)} SU dx dy di = 0. (4.3)

Using the product rule to expand the last three terms in (4.3)
yields

J“{a@)(ZI‘ +2VF +2UF +&F +ﬂr)_i(,<ﬂ)
ax Y ax ax

ay\ ay
(Ll
ot ax

=Da/Dt=0

With many terms canceling, and its underbraced term van-
ishing because of (2.4), (4.4) becomes

JJJ{a@(F +VF +UF +ﬂ1" aVl")
y o9y ¥

—al D_@_i(’(&> - 8( aU)}Sdedydr—O
*' Dt ox\  ox ay\ ady

(4.5)

Equation (4.5) can be rewritten as

Il
) (g o

or, in terms of the DI'/Dt, ¥, and O functions introduced

in section 3,
r «p) - i(,ﬂ)
x ax Jax

J DT
Il { (‘%—E‘
—i(K&ﬂsdeddeo
ay ady

Equation (4.7) yields the Euler-Lagrange equation for U as
the elliptic equation

d DI’ (D aU 6V>
=+

O———al | =—+—
ax Dt \Dr ox ay

(4.6)

4.7

dx dx dy dy

2 2
M+6U 1 6K6U+6K6U _ l/KJ @iD—F—F\Ifdt
X2  9y? =1, x Dt

(4.8)

Similarly, (2.8) generates the elliptic equation

®Second derivative terms in U and V which appear in the ex-
pansion of ¥ must be taken into account in the classification of
(4.8) and (4.9) (appendix C).
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_i<K&) —a@{l"xt + Ul“xx + VFX +FX((1—U+Q)}

x  dy

) Or —al <8® U2—®+ Vi(;?)}Sdedydz=0. (4.4)
2 2 ol
8V+8 V+1 8K6V+6K6V 1/k Jf @iD—r—F\Ifdt
ax2  9y*  k\9x dx dy dy =1, dy Dt
(4.9)
subject to the boundary conditions
Z‘; 0 at x=x, and x=x,+L, (4.10a)
% =0 at y=y, and y=y,+L. (4.10b)

The integrals in (4.8) and (4.9) are evaluated at fixed loca-
tions, not along trajectories.

5. Numerical procedures

As in SWP10a,b, our solution technique is doubly itera-
tive. The computer code iterates between updates of the
analysis variable (in this case I') and updates of U and V, and
also solves for U and V iteratively, using successive over-
relaxation (SOR). We refer to the iterations between up-
dates of I' and U, V as outer iterations, and the SOR
iterations as inner iterations. Within this framework, the
treatment of the right-hand sides of (4.8) and (4.9) poses a
dilemma. The simplest approach would be to replace I,
DT'/Dt, ¥, and O on the right-hand sides of (4.8) and (4.9) at
the (N + 1)th outer iteration level by their solutions from
the Nth iteration level. However, as shown in appendix D,
the resulting equations would, in general, have no solution.
On the other hand, fully expanding DI'/Dt, ¥, and O into
forms that explicitly display the U, V fields [using (3.12) for
0, (3.13) for ¥, and using D/Dt = d/at + Udlax + Valay],
would produce over 100 terms, each of which would need to
be integrated. A more tractable approach would be to expand
the right-hand sides of (4.8) and (4.9) using (3.12) in the form
0 = (d/at + Ualax + Valay)DI'/Dt, but not expanding DI'/Dt
or 'V, obtaining
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2 2
FU U 1okoU 1okdU_pyvev,  (51)
ax2 9y kox dx kdy dy
2 2
% ‘27‘2’ LokdV 10V _ L cuvgv,  (52)
y-  KkKJx dx Kk Jy dy
where
Uk (7 9 DT\ (o DT
Lt [ aKax Dt) (az Dt) F"\P} dt, (5:32)
_ 1k [* (o DT
_ tj “(ax Dt) , (5.3b)
1k a DT\ [ o DT
L J a(ax Dt) (ay Dt) at, (5:3¢)
1/k J DI\ /o DT
E - W|dr 5.3d
tj aKayDt>(ath> y } ’ (5:3d)
1k (4 d DI'
= J “(ay Dt) (5.3¢)

As shown in appendix D, the solution of (5.1) and (5.2)
subject to the Neumann conditions (4.2a), (4.2b) and (4.10a),
(4.10b) for any outer iteration level (with I', DI'/Dt, and ¥
known from the previous iteration) is unique. This sim-
plifies the implementation of the SOR solver. However, this
uniqueness result only pertains to the solution of (5.1) and (5.2)
at any one outer iteration level. As discussed in section 2,
uniqueness of the overall converged solution for U, V, and I’
cannot be ensured.

The analysis procedure is schematized in Fig. 2. During
the (N + 1)th outer iteration, a fourth-order Runge-Kutta
method (Press et al. 1992) is used to construct the pattern-
translation trajectories x(¢), y(¢t) from the U, V fields at the
Nth iteration.” Trajectories are launched forward and
backward in time from every analysis point at every analysis
time. At each data input time, v, data (really I') and divU
are bilinearly interpolated to each trajectory. If data are
missing on a trajectory at any data input time, we set @ = 0 for
that trajectory. On trajectories for which data are available
at all data input times (« = 1), we calculate I" from (3.20a)
and (3.20b), DI'/Dt from (3.19a) and (3.19b), and ¥ from
(3.152a) and (3.15b). Since a trajectory passes through each
analysis point at each analysis time, this calculation also
updates I', DI'/Dt, and ¥ at all analysis points at all analysis
times. The updated variables are used to update the coeffi-
cientsin (5.1) and (5.2). These equations are solved for U and
V subject to boundary conditions (4.2a), (4.2b) and (4.10a),
(4.10b) using SOR with an overrelaxation coefficient set to
1.95. If the maximum change in U or V from the Nth to (N +
1)th outer iteration levels is less than a prescribed tolerance
(TolOUT = 0.001 ms™ ), the procedure is deemed to have
converged; otherwise, the procedure returns to the trajectory

" Unless stated otherwise, the first guesses for U and V in our
experiments (i.e., at the first iteration) are Oms ™!
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calculation step. If the procedure fails to converge, the
nonconvergence can be manifested as U, V values that os-
cillate (cycle) around unchanged values, or as continued
growth of U, V to unrealistically large values, with concom-
itant development of large data voids as virtual particles
quickly leave the domain. In the former case, if the oscilla-
tion is of sufficiently small amplitude, the procedure can still
provide good estimates of the radial velocity field.

Preliminary tests (not shown) with the AIR and the
analytical datasets showed that a few ad hoc amendments
could improve the basic procedure. For small enough
values of K,* a numerical instability prevented conver-
gence of the overall procedure. Fortunately, for some of
those cases, the instability could be prevented by setting U,
V,and divU at the end of the (N + 1)th outer iteration level
equal to a blend of U, V, and divU from the previous it-
eration and the corresponding solutions from the current
iteration; that is,

V= (1 - wet)fY + wet N

where f is an unblended field, and wgt is an underrelaxation
parameter (we set wgt = 0.025). This device allowed us to
extend the lower range of K in our tests, but came at the cost
of much slower SOR convergence for large K. Indeed, in
preliminary uniform translation tests, the convergence
rates in runs with relatively large K were so slow that the
solver stopped iterating prematurely; the solution had
“converged” even though the U and V fields fell well short
of their true values. To mitigate this problem, we set the
convergence tolerance (TolSOR) to a value much smaller
than one might expect to be necessary, Tol[SOR = 5 X
10_8ms_1, and allowed the SOR module up to 107 itera-
tions to converge (though in most tests, convergence was
achieved with far fewer iterations). Unless stated other-
wise, these modifications/configurations were applied in
all of the tests in sections 6 and 7. Additionally, in the real
data tests (section 7), DI'/Dt was smoothed using a nine-
point filter prior to its use in (5.3a)—(5.3e). In most of these
tests, this filter had little impact on the accuracy of the an-
alyzed v, field, with differences in root-mean-square error
(RMSE) between filtered and nonfiltered runs on the order of
0.01ms~'. However, the filter did slightly reduce the number
of outer iterations required for convergence (typically by about
10%-20%) and, in a few cases, promoted convergence of an
otherwise nonconverging analysis.

Although we have not developed a procedure to estimate
appropriate values for K, an amplitude principle for K can be
inferred from (2.3): if, for a dataset with radial velocity field
v(x, y, 1), a smoothness constant K; has been identified for

(5.4)

8We refer to “large” or “small” values of K in a relative sense,
that is, with respect to a given dataset. A value of K large enough to
produce nearly constant U and V in one dataset may be too small to
produce nearly constant U and V in another dataset, even if the two
datasets have the same spatial and temporal resolution (as in the
two AIR datasets considered in section 7).
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FIG. 3. Velocity vectors in the analytical data tests at the initial time (¢ = 05s). (a) An array of vortices is in uniform
translation with U = 5ms~'and V = 15ms ™. (b) The array of vortices is itself rotating as a solid-body vortex. This
solid-body vortex has angular velocity Q = 3 X 10#s™!, and is centered on a virtual radar at the lower-left corner of
the domain (x = 0km, y = 0 km). The velocity field is constructed from (6.3) and (6.4) for (a), and (6.7)—(6.9) for (b).

which the retrieved U and V fields are deemed physically
reasonable, then for a dataset with radial velocity field v,»(x,
v, t) having the same pattern as v,; throughout the analysis
window but an amplitude & times that of v,; (v,» = ev,q), the
same U and V can be obtained using the smoothness con-
stant K, = £2K;. Although the all-other-things-being-equal
conditions for the validity of this principle can never be met
in practice, the idea that larger values of K should be applied
to datasets with larger radial velocity amplitudes may
be useful.

6. Analytical data tests

The computer code for the procedure is verified using an-
alytical data from an inviscid version of Taylor’s array of
counterrotating vortices (Rosenhead 1963, p. 139). The ve-
locity field is 2D, and the vertical velocity component is zero.
In the steady state, the Cartesian velocity components are
given by

u(x,y) =AF(x)G(y), v(x,y)=AHX)I(y),

where A is the amplitude, the functions F(x), G(y), H(x), and
I(y) are defined by

(6.1)

F(x) = —cos(kx),
1(y) = cos(ly),

where k and / are wavenumbers that control the size of the
vortices in the array.

We conduct two types of tests. First, we suppose that the
array translates with constant U and V. The velocity compo-
nents then satisfy

G(y)=sin(ly), H(x)=sin(kx),

(6.2)
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u(x,y,t) = U+ AF[x*()]G[ y*(1)],

v(x,y, 1) =V + AH[x*(0)|I[ y*(1)], (6.3)
where x* and y* are the shifted coordinates,
x*¥(t)y=x—Ut, y*(@t)y=y—Vt. (6.4)

A virtual radar at the origin of the coordinate system (at the
ground, z = 0) scanning the 0° elevation angle (the surface z =
0) samples the radial velocity field as

v = fu(x, y.1) + };)v(x, v,1), (6.5)
where u and v are given by (6.3) and (6.4). Since U and V are
constant, and the velocity components in (6.3) satisfy the
frozen-turbulence constraint Du/Dt = 0 exactly, the corre-
sponding radial-velocity component v, should satisfy (1.4) ex-
actly. Moreover, since U and V are constant, VU = VV = 0
everywhere. Thus, if the code is error free, it should yield the
correct U, V, and I fields, apart from numerical discretization
and integration errors: the analyzed fields yield a value of zero
for the cost function (2.3) (which is clearly a minimum), and
satisfy boundary conditions (4.2a), (4.2b) and (4.10a), (4.10b).
Moreover, the same (correct) results should be obtained for
any value of K.

In a second test, we consider the rotation of the vortex
array by a solid body vortex centered on the radar. In this
case, the radial component of the pattern translation
V., [=(xU + yV)/r, i.e., the right-hand side of (6.5) with u
replaced by U, and v replaced by V] is zero, the azimuthal
component Vy [=(xV — yU)/r] varies linearly with radius
[Vo = Qr, where Qs the (constant) angular velocity], U and
V vary spatially as
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FIG. 4. (left) Exact analytical and (right) retrieved (top) U and (bottom) V pattern-translation fields from a test in

which an array of vortices rotates as a solid body (see Fig. 3b). The smoothing parameter is K = 0.0002 m’s

U=-Qy, V=Q0x, (6.6)

and the Cartesian velocity components satisfy

u(x,y,0) = =Qy + AF[x*(0)]Gy*(1)],

v(x,y,1) = Qx + AH[x*(0)|I[y*(1)], 6.7)

where

x*(t) = rcos(6 — Q) = r cosf cos{t + rsinf sinQ¢

= x cos{)t + y sinQz, (6.8)

y*(t) = rsin(0 — Qt) = rsinf cosQt — r cosf sin{ds

=y cosQt — xsinQ). (6.9)

The radial velocities are obtained from (6.5), with u and
v given by (6.7)-(6.9).
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It can be shown that «# and v in the uniform translation test
[i.e., given by (6.3) and (6.4) with constant U and V] satisfy the
inviscid equations of motion exactly, but the # and v fields in the
solid body vortex test [i.e., given by (6.7)-(6.9) with U and V
satisfying (6.6)] do not. However, since the analyses are not
constrained by the dynamical underpinnings of the flow (other
than the assumption that the frozen-turbulence hypothesis is at
least qualitatively valid), the failure of (6.7)-(6.9) to satisfy the
equations of motion should not preclude their use in our tests. Of
more concern, however, is that U, V fields satisfying (6.6) cannot
satisfy all of the zero-normal gradient conditions (4.2a), (4.2b)
and (4.10a), (4.10b). Thus, it will not be possible to retrieve U
and V exactly in the solid body vortex test case. However, as we
will see, we can retrieve U and V fields in good agreement with
(6.6) away from computational boundaries.

In both sets of tests, we take A = 20ms™ !, k = [ = 2m/A, and
A = 10km. The analysis domain is a square with sides of length
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FIG. 5. The AIR v, in (left) a convective rainband on 4 Sep 2018 and (right) a decaying tornado and its parent
storm on 27 May 2015 at the three data input times: (top) initial time ¢;, (middle) intermediate time ¢,,, and (bottom)

end time ;. The AIR is at x = Okm, y = Okm.

30km, and a gridpoint spacing of Ax = Ay =250m (121 X 121
points). The computational time step is Ar = 4s. The analysis
window is 6 min, with data supplied at 3 min intervals. In the
uniform translation tests, data are generated from (6.3) and
(6.4) with U = 5ms™" and V = 15ms™". In the solid body
vortex tests, data are generated using (6.7)—(6.9) with 2 = 3 X
10™*s~ L. The velocity fields for these cases are shown in Fig. 3.

The U, V fields retrieved in the uniform translation tests
were nearly constant and nearly equal to their true values for a
range of values of the smoothness parameter. In tests run with
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K =0.5,1,5,10,50,100 m?>s™*, the maximum error in U or V at
any location was ~0.5% of the true values, and the maximum
error in v, at any location or time was %0.12ms_1, about
0.34% of the true peak value of v, (=35ms™1).

We also ran a uniform translation test to explore the possi-
bility of solution nonuniqueness. Following SWP10a and
Shapiro et al. (2015), we note that if a tracer varies with
wavelength A in the y direction, and Uy and Ve are the true
pattern-translation components, there are an infinite number
of solutions U = Ujrye, V = Ve + MA/T (M is an integer,
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TABLE 1. Experiments using AIR data from a band of heavy
convective rainfall on 4 Sep 2018. Radial velocity data from the 5.5°
elevation angle are supplied at ~2 min intervals (¢; = 2202:53 UTC,
ty, = 2204:58 UTC, t; = 2207:03 UTC). The analyzed radial velocity
is compared to the AIR radial velocity at ¢, = 2203:55 UTC. An
asterisk indicates a “‘K threshold” experiment in which the procedure
did not converge but subsequently increasing K by 0.001 m*s™* did
yield convergence. The Best Constant U, V run is the Specified
Constant U, V run with the lowest RMSE (see Fig. 6).

Experiment RMSE (ms™ 1) CcC
Forward Persistence 1.237 0.941
Backward Persistence 1.090 0.955
Linear Time Interpolation 0.844 0.972
Best Constant U, V run 0.521 0.985
Large-K run (K = 1.0m?s %) 0.544 0.982
K=01m?s* 0.544 0.982
K=001m?s™* 0.542 0.982
K = 0.005m?s™* 0.543 0.983
K =0.002m?s™* 0.505 0.987
K = 0.001m*s™* 0.501% 0.988*

T is data input time interval) that satisfy the analysis constraints
exactly. Associated with the first spurious modes M = *1
(with T = 1805, A = 10km, Viye = 15ms™!) are the aliased
solutions V ~ —40.56ms ™ 'and V ~ 70.56 ms .. To retrieve the
—40.56ms ™! aliased solution, we left the first guess for U at
0ms~ !, but changed the first guess for Vto —50ms ™', In a test
with K = 1 m*s™*, the procedure converged with good precision
to the aliased solution: U was nearly constant throughout the
domain and close to its true value of 5ms ™! (497 < U< 5.00ms™ 1),
while V was nearly constant and close to the —40.56ms™"
aliased solution (—40.45 < V < —40.42ms™ ).

Results from a solid body vortex test in which K =
0.0002 m*s~* are shown in Fig. 4. As anticipated, the retrieved
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U, V fields are in qualitatively good agreement with the exact
U, V fields in the interior of the domain, with larger errors—on
the order of 1ms™~'—in the vicinity of boundaries on which
the true normal gradients are inconsistent with zero-normal
gradient conditions (southern/northern boundaries for U,
western/eastern boundaries for V). Despite ~1ms™! peak
errors in U and V, the peak error in v, at any point or time was
only ~0.15ms ™!, or ~0.75% of the true peak value of v, which
was ~20ms~'. An additional experiment confirmed the am-
plitude principle for K described in section 5: doubling the
amplitude of the radial velocity (taking A = 40ms~"') while
increasing K by a factor of 4 (taking K = 0.0008 m*s~*) pro-
duced results that differed imperceptibly from those in the
above experiment.

7. Tests using AIR data

The AIR is a mobile rapid-scan X-band phased array radar,
designed, maintained, and operated by the Advanced Radar
Research Center (ARRC) at the University of Oklahoma
(Isom et al. 2013; Kurdzo et al. 2017; Mahre et al. 2018; Griffin
et al. 2019). We conducted advection-correction tests using
AIR data of heavy convective rainfall in a band of thunder-
storms during the afternoon of 4 September 2018 near El Reno,
Oklahoma, and of a decaying EF-2 rated tornado and its parent
storm on 27 May 2015 near Canadian, Texas.

Radial velocity data were supplied to the analysis procedure
at three data input times, with data at a fourth time level, a
verification time ¢, within analysis subwindow 1 (#; < t, < t,,,)
used to assess the analysis performance. As the analysis
(computational) time step Az in our AIR tests was only 4 s, the
sequence of analysis times within the analysis window was
guaranteed to include an analysis time that closely matched the
verification time (differing by no more than 2s). Results are
quantified using the RMSE,

U [m/s]

FIG. 6. (left) RMSE and (right) CC at the verification time f, = 2203:55 UTC 4 Sep 2018 from the Specified
Constant U, V experiments. The Best Constant U, V run yields RMSE =~ 0.521 m s !'and CC ~ 0.985. The red dot
marks results from the Large-K run (K = 1m?s™ %), where U~ 0.8ms ', V =~ 102ms .
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FIG. 7. (top left) Analyzed v,, (top right) AIR v,, and (bottom) error in analyzed v, (analyzed v, minus AIR v,) at
the verification time ¢, = 2203:55 UTC 4 Sep 2018 from the advection correction experiment in which K =
0.002m?s™*. The AIR is at x = Okm, y = Okm.

N ) velocity field is treated as stationary—no attempt is made to
RMSE = I_JE(X Yy, 7.1 account for advection.
] ) 2) Backward Persistence: This run is similar to the Forward
and the correlation coefficient (CC), Persistence run, but with the v, field analyzed at the
o verification time f, taken as the v, field observed at the
CC= XY XY . (72) intermediate time f,. Again, there is no advection-
VXZ-X2VY2 -T2 correction step.
3) Li Time Int lation: Th field i lyzed b
Here, X and Y are the analyzed and observed v, fields, ) .1near .1me n e.rpo aton c v ? . .1s ana yze y
; . . . . linearly interpolating v, data from the initial and interme-
respectively, at the verification time, the summations are . . . . . R .
. . . diate times to the verification time. There is no advection-
over the P analysis points on which both analyzed and .
observed v, fields are available, and an overbar denotes correction step.
" ’ 4) Specified Constant U, V: The v, field is advection

an average over those P points; that is, for a variable
. = (1/P)Z¢.

To put the analysis results in context, we also ran a suite of
control experiments:

corrected, but with U, V imposed as specified constants
(U and V varied in 1ms~" increments from —15 to
15ms™ ') rather than derived from (5.1) and (5.2). Of
these 317 = 961 experiments, the one yielding the

1) Forward Persistence: The v, field analyzed at the verifica-
tion time t, is the v, field observed at the initial time ¢, The
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smallest RMSE is referred to as the Best Constant U, V
experiment.
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FIG. 8. Pattern-translation components (left) U and (right) V from a 4 Sep 2018 experiment in
which K = 0.002m”s™*.

5) Large K: The v, field at the verification time is obtained
from the full advection correction procedure, but with the
smoothness constant K set to a value so large that the
retrieved U, V fields are nearly constant. This run mimics
the v,-based Gal-Chen (1982) procedure.

In both the 4 September 2018 and 27 May 2015 deployments,
the AIR was steered mechanically in azimuth, while transmitting a
fan beam 20° wide in elevation and 1° wide in azimuth. For each
pulse, data received by the AIR’s multielement antenna array
were postprocessed using digital beamforming (Kurdzo et al.
2014). For both cases, the temporal resolution of the data was 10s.
The scan mode employed pulse compression with a 5.25-us pulse,
yielding a native range resolution of 37.5m (Kurdzo et al. 2014,
2017). AIR data were oversampled to 30 m in range and 0.5° res-
olution in both azimuth and elevation (factor-of-2 oversampling).
Radial velocities from 27 May 2015 were dealiased using Solo 11
software (Oye et al. 1995), with questionable values removed
manually. A ground-clutter filter (Siggia and Passarelli 2004; Cho
and Chornoboy 2005) was applied to the 4 September 2018 data.
No dealiasing was needed for the 4 September 2018 case, and no
ground-clutter filter was needed for the 27 May 2015 case. More
details about the 27 May 2015 dataset can be found in Griffin
et al. (2019).

AIR data were interpolated to a 2D Cartesian analysis grid
on a constant elevation angle surface with a uniform grid
spacing (Ax = Ay = 250 m) using a Cressman filter (Cressman
1959) with 400m radius of influence. Experiments with
4 September data were conducted on the 5.5° elevation sur-
face because that surface had the most extensive data cov-
erage. Experiments with 27 May data were conducted on the
4° elevation surface because that level was within a layer of
good data coverage, tornado strength decreased with height
above that surface, and tornado size decreased (albeit slightly)
beneath that surface. We report on experiments for which data

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 01/31/21 09:09 PM UTC

are input at ~2min intervals, and the verification time is
halfway between the initial and intermediate data input times.
The radial velocity fields at the three data input times are
shown for both cases in Fig. 5. The tornado appears in the
27 May data as a dipole-like feature in the radial velocity field
centered on a point near x = —5km, y = 3 km. It is strongest at
the initial time. Even away from the tornado, the winds in the
27 May case are generally stronger and more variable than in
the 4 September case.

For each dataset, we determined a threshold value of K
at and beneath which the procedure did not converge,

TABLE 2. Experiments using AIR data from a decaying tornado
and its parent storm on 27 May 2015. Radial velocity data from
the 4.0° elevation angle are supplied at ~2min intervals (4 =
2203:52 UTC, t,,, = 2206:01 UTC, ¢, = 2207:59 UTC). The analyzed
radial velocity is compared to the AIR radial velocity at ¢, = 2204:
56 UTC. An asterisk indicates a “K threshold” experiment in
which the procedure did not converge but subsequently increasing
K by 0.001 m*s™* did yield convergence. The Best Constant U, V
run is the Specified Constant U, V run with the lowest RMSE
(see Fig. 9).

Experiment RMSE (ms™ 1) CcC
Forward Persistence 2.889 0.861
Backward Persistence 2.729 0.859
Linear Time Interpolation 1.789 0.941
Best Constant U, V run 1.696 0.948
Large-K run (K = 10.0m?s™%) 1.797 0.942
K=10m?s* 1.774 0.944
K=01m?s* 1.652 0.951
K=001m?s™* 1.450 0.961
K = 0.005m?s™* 1.428 0.962
K =0.003m?s™* 1.414 0.964
K = 0.002m?s™* 1.405* 0.964*
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FI1G. 9. (left) RMSE and (right) CC at the verification time ¢, = 2204:56 UTC 27 May 2015 from the Specified
Constant U, V runs. The Best Constant U, V run yields RMSE =~ 1.696 m s™!and CC =~ 0.948. The red dot marks
results from the Large-K run (K = 10m?>s™#), where U~ —32ms !}, V~57ms .

but subsequently increasing K by 0.001 m?s™* did yield con-
vergence. The nonconvergence in these threshold experiments
was associated with a small-amplitude “cycling” of U, V iter-
ates around unchanging values, with only slight changes to v,
from one iteration level to the next.

Statistics from tests with the 4 September data are summa-
rized in Table 1. The best of the advection-correction experi-
ments had lower RMSE and higher CC than any of the non-
advection-correction experiments, with the RMSE in the two
persistence experiments being more than twice as large as the
RMSE in any of the advection-correction experiments. The
RMSE generally decreased with decreasing K, and was lowest
in the K threshold run (K = 0.001 m?s~*). Statistics from the
Specified Constant U, V runs and a Large-K run are shown in
Fig. 6. The RMSE in the Large-K run was similar to but
somewhat larger than in the Best Constant U, V experiment,
while the RMSE in the runs with the smaller values of K were
less than the RMSE in the Best Constant U, V runs. The ana-
lyzed v,, AIR v,, and error-in-v, fields in the K = 0.002 m2s™
run are presented in Fig. 7. The corresponding U, V fields are
shown in Fig. 8. The dominant northward translation evident in
Fig. 8 is consistent with the motion seen in animations of the
reflectivity field and our perception of cloud motions during
the field deployment. The error-in-v, field (lower panel of
Fig. 7) appears to contain both amplitude and phase errors.
A peak error of almost 3.7ms ™' is found near the point
x=—1.0km,y = —2.5km, in a lobe of relatively weak radial
velocities.

Results from the 27 May case are summarized in Table 2. As
in the tests with 4 September data, the best of the 27 May
advection-correction experiments had lower RMSE and higher
CC than any of the non-advection-correction experiments.
Again, the RMSE decreased with decreasing K, and was lowest
in the K threshold run (K = 0.002m”s ™). Statistics from the
Specified Constant U, V runs and the Large-K run are shown in
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Fig. 9. As in the 4 September case, errors in the Large-K run
were similar to but somewhat larger than in the Best Constant
U, V run, while the RMSE in the runs with the smaller values
of K were less than the RMSE in the Best Constant U, V run.
The analyzed v,, AIR v,, and error-in-v, fields in the K =
0.005 m?s~* run are shown in Fig. 10. The corresponding U, V
fields are shown in Fig. 11. Although the errors in v, tend to be
somewhat larger near the tornado than in many other loca-
tions, the largest error (~8.7ms™ ") is far from the tornado,
near a point (x = —17.5km, y = 4.5km) on the northern flank
of a lobe of negative radial velocities (blue blob). At this lo-
cation, the AIR v, is negative, with a magnitude of a few
meters per second, while the analyzed v, is positive and of
similar magnitude. This error might be a phase error en-
hanced by evolution effects not properly accounted for by the
procedure (size of blue blob is too small in the analysis).

Tables 1 and 2 show that the value of K used in the 27 May
Large-K runis 10 times larger than in the 4 September Large-K
run. We settled on these K values because they produced
similar (small) spatial changes to U and V in both datasets, with
peak domain-wide variations of ~0.05 ms~'. Additionally, the
threshold for K at and beneath which the procedure did not
converge was about twice as large in the 27 May case than in
the 4 September case. Despite their failure to converge, these
threshold tests produced the lowest RMSE and largest CC for
both datasets. The relatively larger values of K in the Large-K
and threshold runs in the 27 May case compared to the
4 September case are qualitatively consistent with the ampli-
tude principle for K discussed in section 5. In additional tests in
which K was beneath its threshold value and further decreased,
the amplitude of the U, V-iteration cycle increased, and the
procedure eventually became unstable.

The analytical and real data tests described herein were
obtained with parameter settings that had not been optimized
for computational efficiency. Additional tests using AIR data
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FIG. 10. (top left) Analyzed v,, (top right) AIR v,, and (bottom) error in analyzed v, (analyzed v, minus AIR v,) at
the verification time £, = 2204:56 UTC 27 May 2015 from the advection correction experiment in which K =

0.005m?s™*. The AIR is at x = Okm, y = Okm.

(not shown) showed that a significant speedup could be
achieved simply by increasing the tolerance (TolOUT) for
convergence of U and V in the outer loop. However, to prevent
the procedure from converging prematurely in that loop—which
could substantially increase analysis errors—the blending pa-
rameter wgt in (5.4) should be increased in tandem with the
increase in TolOUT. When the original 27 May analysis using
K = 0.005m*s* was rerun with TolOUT increased a hun-
dredfold to 0.1 ms~! and wgt increased tenfold to 0.25, the
execution time decreased from 112 to 3 min. Similarly, when
the original 4 September analysis using K = 0.002m?s* was
rerun using these same increased parameters, the execution
time decreased from 87 to Smin. In both sped-up runs, the
increase in RMSE (ARMSE) over the RMSE in the corre-
sponding original run was negligible (ARMSE ~ 0.007 ms ™"
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for the 27 May analysis and ~0.002ms ™" for the 4 September
analysis). Similar speedups were achieved by setting TolOUT
to 0.1 ms™! without changing wgt, but at the expense of a much
larger ARMSE (ARMSE ~ 0.174m s~ for the 27 May analysis
and ~0.324 ms ™! for the 4 September analysis).

8. Conclusions

A procedure to advection correct (analyze) the Doppler radial
velocity field using spatially variable pattern-translation compo-
nents (U and V) is developed, with encouraging results obtained
in proof-of-concept tests using data from the Atmospheric
Imaging Radar (AIR). The advection-correction procedure is
based on the minimization of a cost function that accumulates
errors in a second-derivative frozen-turbulence constraint on the
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FIG. 11. Pattern-translation components (left) U and (right) V from a 27 May 2015 experiment in which
K =0.005m>s™".

radial velocity field, while penalizing spatial gradientsin U and V.
The radial velocity field and associated U, V fields are analyzed
together as the iterative solution of the Euler-Lagrange equa-
tions arising from the minimization of the cost function. Radial
velocities from three data input times are incorporated into the
analysis. As in many advection-correction techniques that use the
reflectivity field as a tracer, the new radial-velocity-based tech-
nique may be subject to solution nonuniqueness associated with
temporal aliasing. Solution nonuniqueness was demonstrated in
an analytical test in which the first guesses for U and V were set
close to values associated with a spurious solution, but did not
appear to be an issue in the AIR data tests.

After performing verification tests using analytical data, we
conducted experiments using AIR data from a convective
rainband on 4 September 2018 and a decaying tornado and its
parent storm on 27 May 2015. In these AIR data tests, the
procedure yielded radial velocities with lower RMSE and
higher CC than radial velocities analyzed in any of the control
runs (Forward Persistence, Backward Persistence, Linear
Time Interpolation, Specified Constant U, V, and Large K).

The procedure is sensitive to the value of a smoothness pa-
rameter (K). In AIR data tests spanning three orders of mag-
nitude of K, the best results were obtained with relatively small
values of K, though for values not much smaller than these, the
procedure became unstable. For relatively large K, the re-
trieved U, V fields were nearly constant, and the errors in the
analyzed radial velocity field were similar to (though slightly
worse than) those from the Best Constant U, V experiment. As
the procedure lacks an objective method to determine appro-
priate values of K, we recommend that such values be explored
on a case-by-case basis, using trial and error, perhaps guided by
visual estimates of physically reasonable U, V fields from ani-
mations of the data.
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The stability and execution time of the procedure are
sensitive to computational parameters such as the conver-
gence thresholds (tolerances) for U and V on the inner and
outer iteration loops and an underrelaxation (blending)
parameter used to weight the updated and previous iterates
on the outer loop. Experimentation may also help deter-
mine appropriate values of these parameters on a case-by-
case basis.

The primary utility of the new procedure is to the anal-
ysis of nonsimultaneously collected radial velocity data
from two or more radars to common analysis times for use
in multiple-Doppler wind syntheses of severe convective
phenomena. Since some experimentation is required to
establish appropriate smoothing and computational pa-
rameter values or to explore the threat of solution non-
uniqueness, the procedure is currently more suitable for
non-real-time research applications than use in an opera-
tional analysis or data assimilation setting. Future work
will focus on determining procedures to estimate some of
these parameters objectively.
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APPENDIX A

Analysis Using Two Time Levels of Data

If v, data are only available at two data input times, then
(3.11) and the equivalent system (3.12)—(3.14) apply through-
out the analysis window, and (3.18a) and (3.18b) are replaced
by the single equation @ = (At + B;)E (7). In view of (3.10a),
(3.10b), and (3.12), A, = By = 0, so D*T'/D#* is identically zero.
Equations (3.12) and (3.13) then show that ® and V¥ are
identically zero, and (4.8) and (4.9) reduce to Laplace’s equa-
tions for U and V, the solutions of which [subject to the zero-
normal-gradient conditions (4.2a), (4.2b) and (4.10a), (4.10b)]
are arbitrary constants, with no links to the v, field. Such an
analysis has no practical value.

APPENDIX B

Analysis Using an Arbitrary Number of Time Levels
of Data

To incorporate data from an arbitrary number » of input
times, the analysis window should include n — 2 intermediate
data input times and n — 1 analysis subwindows. The solution
of (3.11) [analog of (3.20a) and (3.20b)] then contains 4(n — 1)
integration constants, which satisfy 4(n — 1) linear algebraic
equations: 1 equation from imposing data at the initial time, 1
equation from imposing data at the end time, 2(n — 2) equa-
tions from imposing data at the intermediate data input times
(as in the n = 3 case, data at each intermediate data input time
are used twice), 2 equations from (3.10a), (3.10b), and 2(n — 2)
equations expressing continuity of DI'/Dt and D*T/D¢* at the
intermediate data input times. The integration constants can
thus be obtained by solving 4(n — 1) linear algebraic equations.
U and V then follow as solutions of (4.8) and (4.9) subject to
boundary conditions (4.2a), (4.2b) and (4.10a), (4.10b).

APPENDIX C

Classification of (4.8) and (4.9) for U and V

The classification of (4.8) and (4.9) is complicated by the
presence of ¥ in the integrals on the right-hand sides of
those equations. The first term in the definition (3.13) of ¥ is
DO/Dtwhich, in view of (3.12),is D°I'/D¢>. The expansion of
that term, facilitated by (2.2), generates second derivative
terms in U and V. The classification of (4.8) is based only on
the second derivative terms in U. These terms collect to-
gether as
U

ay?’

2 2
A—a (2J+ZB U
0x axay

(C.1)

where
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A=1+yU?, B=yUV, C=1+vyV?, (C2)

and

1,
gL [’a(rx)2 dr.

—t),

; (C3)

The second-order quasi-linear operator (C.1) is classified
using the same procedure as for linear operators (Garabedian
1998). Since «, @, ty — t;, and (T',)? are nonnegative, (C.3) shows
that y is nonnegative. Equations (C.2) then show that A, C, and
AC — B? are strictly positive for all U and V, so (C.1) is an
elliptic operator. Similarly, it can be shown that the operator
analogous to (C.1) arising from (4.9) is elliptic.

APPENDIX D

Comment on the Forcing Terms in (4.8) and (4.9)

The simplest treatment of the right-hand sides of (4.8) and
(4.9) within the (outer) iterative framework would be to ex-
press them in terms of variables from the previous iteration
level. We would then consider (4.8) as the Poisson-like
equation,

V.- (kVUN) =N, (D.1)

where

1 (4 o (DI\"
N = VeV —(—) -rYe" D.2
Q If—tiLa {(9 6x<Dz) * dt, (D2)

and a superscript denotes the iteration level. Integrating (D.1)
over the analysis domain, and applying the divergence theorem
to the left-hand side yields

) oo

where the left-hand side of (D.3) is a boundary integral, and
dldn is a normal derivative. In view of (4.2a) and (4.2b), the
boundary integral is zero, and (D.3) yields the compatibility
condition,

(D.3)

JJQN dxdy = 0. (D4)

As there are no restrictions on Q" that would make its in-
tegral vanish, (D.4) will generally be violated, and no solution
for UN*! exists.

Next, consider an iterative framework in which (4.8) and
(4.9) are written as (5.1) and (5.2), respectively, with U, V
treated as valid at the (N + 1)thiteration level, and a, b, c, e, g
as valid at the Nth iteration level (superscripts omitted). In
this framework, integration of (5.1) and (5.2) yields compat-
ibility conditions that are not generally violated. We do not
examine solution existence further, but use the energy
method (Gustafson 1987) to show that if a solution exists, it is
unique. We denote by Uy, V; the real variables satisfying (5.1),
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(5.2) with boundary conditions (4.2a), (4.2b), (4.10a), (4.10b), and
explore whether a second set of real variables, U,, V>, can satisfy
the same equations and boundary conditions (these subscripts are
not related to the subscripts 1 and 2 used in section 3 to denote
analysis subwindows). Subtracting the forms of (5.1), (5.2) applied
to Uy, V, from those applied to U,, V, shows that the difference

functions U, = U, — Uy, V, =V, — V) satisfy
#*U, #U, 1oxdU, 1axdU,
d =B S py eV, (DS)
ax ay? Kax dx  kdy dy
?v, VvV, 1lokdV, loxdV,
2{’ 44 By “E Ay gV, (D6)
ax 9y?  kox ax  Kkdy ay

Subtracting the form of (4.2a) and (4.2b) applied to U, from
that applied to U,, and subtracting the form of (4.10a) and
(4.10b) applied to V; from that applied to V, yields

au, av,

=0, —<%=0 on boundaries.

D
on on (D7)

[/ (v ) (v oty o

From (5.3b), (5.3c), and (5.3¢e), we see that (D.10) is equiv-
alent to ¢* = bg or, since b and g are nonnegative,

bg=0, (D.11a)
and
—/bg=0. (D.11b)

Next, write the sum of the last three terms in (D.9) in the
alternative forms,

bU3 +2c¢U,V, +gVi=(VbU,+/gV,) +2(c — /bg)U,V,,
(D.12)

and

bU? +2cU,V, +gVi=(VbU, —\/gV,)’ +2(c+ /bg)U,V
(D.13)

The first (squared) terms on the right-hand sides of (D.12)
and (D.13) are nonnegative. If U,V,; = 0, then (D.11a) shows
that the last term of (D.13) is nonnegative, while if U,V,; = 0,
(D.11b) shows that the last term of (D.12) is nonnegative. In
either case,

bU} +2cU,V,+gVi=0, (D.14)

and the integrand in (D.9) is nonnegative.

If VU, [VV4%, or bU3 + 2cU,4V, + gV are positive any-
where then, in view of (D.14), (D.9) would be violated. Thus,
|VU,|? and |VV,|* must vanish [so U,, V, are constants, and
(D.7) is satisfied], and
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Adding kU, X (D.5) to kV,; X (D.6), and rearranging the
result produces

V- (kUU,+kV,VV)=«(VU,| + |VV [ +bU3

+2cU,V, +gV3). (D.8)

When (D.8) is integrated over the analysis domain, the left-
hand side vanishes [application of the divergence theorem
yields a boundary integral that vanishes because of (D.7)],
leaving

”K(\vud\z +|VV, [} +bU3 +2cU,V, +gV2)dxdy = 0.
(D.9)

To show that the integrand in (D.9) is nonnegative
[clearly its first two terms are nonnegative], apply Schwarz’s
inequality (Rudin 1976) to \/ad/dxDT'/Dt and \/ad/dyDT'/Dt,
obtaining

(D.10)

bU; +2cU,V,+gVi=0. (D.15)

As the discriminant ¢ — bg in the quadratic formula solution
of (D.15) for U, as a function of V, is negative (> < bg), Uy is
imaginary if V, is real. However, since U, and V, should be
real, we must have U, = V,; = 0 (U, = Uy, V, = V}), and the

solution is unique.
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