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Abstract—Consider the following communication scenario. An
encoder observes a stochastic process and causally decides when
and what to transmit about it, under a constraint on bits
transmitted per second. A decoder uses the received codewords
to causally estimate the process in real time. The encoder and
the decoder are synchronized in time. We aim to find the optimal
encoding and decoding policies that minimize the end-to-end
estimation mean-square error under the rate constraint. For
a class of continuous Markov processes satisfying regularity
conditions, we show that the optimal encoding policy transmits
a 1-bit codeword once the process innovation passes one of
two thresholds. The optimal decoder noiselessly recovers the
last sample from the 1-bit codewords and codeword-generating
time stamps, and uses it as the running estimate of the current
process, until the next codeword arrives. In particular, we show
the optimal causal code for the Ornstein-Uhlenbeck process and
calculate its distortion-rate function.

Index Terms—Causal lossy source coding, sequential estima-
tion, event-triggered sampling, zero-delay coding.

I. INTRODUCTION

A. System model and problem setup

Consider the system in Fig. 1. A source outputs a real-
valued continuous-time stochastic process {Xt}Tt=0, with state
space (R,BR), where BR is the Borel σ-algebra on R.

encoder channel decoder
Xt (Ui, τi) (Ui, τi) X̂t

Fig. 1: System Model. Sampling time τi and codeword Ui are
chosen by the encoder’s sampling and compressing policies,
respectively.

An encoder tracks the input process {Xt}Tt=0 and causally
decides to transmit codewords about it at a sequence of
stopping times

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN ≤ T (1)

that are decided by a causal sampling policy. Thus, the total
number of time stamps N can be random. The time horizon
T can either be finite or infinite. At time τi, the encoder
generates a codeword Ui according to a causal compressing
policy, based on the process stopped at τi, {Xt}τit=0. Then, the
codeword Ui is passed to the decoder without delay through
a noiseless channel. At time t, t ∈ [τi, τi+1), the decoder
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estimates the input process Xt, yielding X̂t, based on all the
received codewords and the codeword-generating time stamps,
i.e. (Uj , τj), j = 1, 2, . . . , i. Note that the encoder and the
decoder can leverage timing information for free due to the
clock synchronization and the zero-delay channel.

The communication between the encoder and the decoder
is subject to a constraint on the long-term average rate,
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`(Ui)

]
≤ R (bits per sec) (T <∞), (2a)

lim sup
T→∞

1
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`(Ui)

]
≤ R, (bits per sec) (T =∞),

(2b)

where ` : Z+ → Z+ denotes the length of its argument in bits,
`(x) = blog2(x)c + 1 for x > 0, `(0) = 1. The distortion is
measured by the long-term average mean-square error (MSE),
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(Xt − X̂t)
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]
≤ d, (T <∞), (3a)

lim sup
T→∞
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T
E
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0

(Xt − X̂t)
2dt

]
≤ d. (T =∞). (3b)

We aim to find the encoding and decoding policies that achieve
the optimal tradeoff between the communication rate (2) and
the MSE (3).

B. The class of processes

Let {Ft}Tt=0 be the filtration generated by {Xt}Tt=0. For τ
an almost surely finite stopping time of {Ft}Tt=0, past until τ
is defined as

Fτ , {A ∈ {Ft}Tt=0 : {τ ≤ t} ∩A ∈ Ft, ∀t ∈ [0, T ]}. (4)

Throughout, we assume that {Xt}Tt=0 satisfies:
(i) (Strong Markov property) {Xt}Tt=0 satisfies the strong

Markov property: Xt+τ is independent of Fτ given Xτ ,
for all almost surely finite stopping times τ ∈ [0, T ] and
all t ∈ [0, T − τ ].

(ii) (Continuous paths) {Xt}Tt=0 has continuous paths: Xt is
almost surely continuous in t.

(iii) (Mean-square residual error properties) For all stopping
times τ ∈ [0, T ] and all t ∈ [τ, T ], the mean-square
residual error of {Xt}Tt=0, Yt = Xt − E[Xt|Xτ , τ ]
satisfies:

(iii-a) Yt is independent of Fτ ; Yt is independent of
{Ys}rs=τ given Yr, for all r ∈ [τ, t].



(iii-b) Yt is continuous in t, and can be expressed as

Yt = q(t, s)Ys +R(t, s, τ), (5)

where s ∈ [τ, t], q(t, s) is a deterministic function of
(t, s), and R(t, s, τ) is a random variable that may depend
on (t, s, τ) and that has an even and quasi-concave pdf.
Furthermore, q(t, t) = 1, R(t, t, τ) = 0, for all t ≥ τ .

We assume that the initial state X0 = 0 at time τ0 = 0,
and that it is known both at the encoder and the decoder.
The class of stochastic processes satisfying (i)-(iii) includes
linear diffusion processes such as the Wiener process and the
Ornstein-Uhlenbeck (OU) process, as well as the Lévy process
with even and quasi-concave increments and continuous paths.
These processes are widely used in financial mathematics and
physics. The parameters q(t, s) and R(t, s, τ) in (5) for the
above three processes are specified in Table I. Note that in

Processes q(t, s) R(t, s, τ)
Wiener 1 Wt−s

OU et−s σ√
2θ
e−θ(t−s)We2θ(t−s)−1

Lévy 1 Xt−s

TABLE I: q(t, s) and R(t, s, τ) in (5) for the Wiener process,
the OU process and the Lévy process with zero-mean incre-
ments. Here, {Wt}t≥0 denotes the Wiener process.

all three cases in Table I, the function q(t, s) and the random
variable R(t, s, τ) only depend on the time difference t − s,
but in general they may not be time-homogeneous.

C. Context

In wireless sensor networks and network control systems of
the Internet of Things, nodes are spatially dispersed, commu-
nication between nodes is a limited resource, and delays are
undesirable. We study the fundamental limits of the commu-
nication scenario in which the transmitting node (the encoder)
observes a stochastic process, and wants to communicate it in
real-time to the receiving node (the decoder).

Related work includes [1]-[10], where it is assumed that
the encoder transmits real-valued samples of the input process
and that the communication is subject to a sampling frequency
constraint or a transmission cost. The causal sampling and
estimation policies that achieve the optimal tradeoff between
the sampling frequency and the distortion have been studied
for the following discrete-time processes: the i.i.d process [1];
the Gauss-Markov process [2]; the partially observed Gauss-
Markov process [3]; and, the first-order autoregressive Markov
process Xt+1 = aXt + Vt driven by an i.i.d. process {Vt}
with unimodal and even distribution [4][5]. The first-order au-
toregressive Markov process considered in [4][5] represents a
discrete-time counterpart of the continuous-time process in (5)
with q(t, s) = at−s, R(t, s, τ) = Xt − at−sXs. Chakravorty
and Mahajan [4] showed that a threshold sampling policy with
two constant thresholds and an innovation-based filter jointly
minimize a discounted cost function consisting of the MSE
and a transmission cost in the infinite time horizon. Molin and
Hirche [5] proposed an iterative algorithm to find the sampling

policy that achieves the minimum of a cost function consisting
of a linear combination of the MSE and the transmission
cost in the finite time horizon, and showed that the algorithm
converges to a two-threshold policy.

The optimal sampling policies for some continuous-time
processes have also been studied: the finite time-horizon
Wiener and OU processes [7]; the infinite time-horizon mul-
tidimensional Wiener process [8]; the infinite-time horizon
Wiener process [9]; and, the OU processes [10] with channel
delay. The optimal causal sampling policies for the Wiener
and the OU processes determined in [7]-[10] are threshold
sampling policies, whose two thresholds are obtained by
solving optimal stopping time problems via Snell’s envelope.
The proofs in [7]-[10] rely on a conjecture about the form
of the MMSE decoding policy, implying that the causal
sampling policies in [7]-[10] are optimal with respect to the
conjectured decoding policy, rather than the optimal decoding
policy. Namely, Rabi et al. [7] conjectured that the MMSE
decoding policy under the optimal sampling policy is equal
to the MMSE decoding policy under deterministic (process-
independent) sampling policies without proof. Nar and Başar
[8] arrived at the MMSE decoding policy for the Wiener
process by referring to the results in [6], where the stochas-
tic processes considered in [6] are in discrete-time and the
increments of the discrete-time process are assumed to have
finite support. Yet, the Wiener process is a continuous-time
process with Gaussian increments having infinite support. Sun
et al. [9] and Ornee and Sun [10] assumed that the decoding
policy ignores the implied knowledge when no samples are
received at the decoder, neglecting the possible influence of
the sampling policy on the decoding policy.

Although the works [1]-[10] did not consider quantization
effects, in digital communication systems, real-valued numbers
are quantized into bits before transmission. Quantized event-
triggered control schemes have been studied for the following
systems: discrete-time linear systems with noise [11] and
without noise [12]; continuous-time linear time-invariant (LTI)
systems without noise [13][14] and with bounded noise [15]-
[17]; partially-observed continuous-time LTI systems without
noise [18][19] and with bounded noise [20]. The quantized
event-triggered control schemes in [11]-[20] are designed
to stabilize the systems. The optimality of the proposed
schemes was not considered in [11]-[20]. In our previous work
[21], we introduced an information-theoretic framework for
studying jointly optimal sampling and quantization policies
by considering a long-term average bitrate constraint. We
showed that the optimal event-triggered sampling policy for
the Wiener process remains a two-threshold policy even under
a bitrate constraint, while the optimal deterministic (process-
independent) sampling policy is uniform.

D. Contribution

In the paper, we leverage the information-theoretic frame-
work of our prior work [21], introduced in the context of the
Wiener process, to study the jointly optimal sampling and
quantization policies for the wider class of continuous-time



processes introduced in Section I-B. We prove that the optimal
sampling policy is a two-threshold policy whether or not quan-
tization is taken into account. We show that the optimal causal
compressor is a sign-of-innovation compressor that generates
1-bit codewords representing the sign of the process innovation
since the last sample. This surprisingly simple structure is a
consequence of both the real-time distortion constraint (3),
which penalizes coding delays, and the symmetry of the in-
novation distribution (iii), which ensures the optimality of the
two-threshold sampling policy. Compared to the previous work
on sampling of continuous-time processes [7]-[10], our results
apply to a wider class of processes, namely, the processes
satisfying (i)-(iii) in Section I-B. Furthermore, we confirm the
validity of the conjecture on the MMSE decoding policy in
[7][9][10]. To do so, we use a set of tools that differs from
that in [7]-[10]: where [7]-[10] use Snell’s envelope to find
the optimal sampling policy under the conjecture on the form
of the MMSE decoding policy, we apply majorization theory
and real induction to find the jointly optimal sampling and
decoding policies. Finally, we show that the optimal causal
code for the Ornstein-Uhlenbeck process generates a 1-bit
codeword once the process innovation crosses one of the two
thresholds, and calculate its distortion-rate function.

E. Notation

For a possibly infinite sequence x = {x1, x2, . . . }, we
write xi = {x1, x2, . . . , xi} to denote the vector of its first
i elements.

II. CAUSAL FREQUENCY-CONSTRAINED SAMPLING

Before we show the optimal causal code in Section III, we
formulate the causal frequency-constrained sampling problem
and find the optimal tradeoff between the sampling frequency
and the MSE. In Theorem 1 in Section II-B below, we
find the form of the optimal sampling policy. We will show
in Theorem 3 in Section III-B that when coupled with an
appropriate compressing policy, the optimal causal sampling
policy in Theorem 1 attains the optimal tradeoff between the
communication rate and the MSE.

A. Causal frequency-constrained code

Allowing the encoder to transmit real-valued samples Ui =
Xτi instead of the Z+-valued codewords Ui, and replacing
the bitrate constraint (2) by the average sampling frequency
constraint

E[N ]

T
≤ F (samples per sec), (T <∞), (6a)

lim sup
T→∞

E[N ]

T
≤ F (samples per sec), (T =∞), (6b)

where N is the total number of stopping times in (1), we
obtain the problem of causal frequency-constrained sampling.
Next, we formally define the causal sampling and decoding
policies.

Definition 1 ((F, d, T ) causal frequency-constrained code).
A time horizon-T causal frequency-constrained code for the

stochastic process {Xt}Tt=0 is a pair of causal sampling and
decoding policies, characterized next.

1. The causal sampling policy, characterized by the BR-
valued process {πt}Tt=0 adapted to {Ft}Tt=0, decides the
stopping times (1)

τi+1 = inf{t ≥ τi, Xt /∈ πt}, (7)

at which samples are generated.
2. Given a causal sampling policy, the real-valued samples
{Xτj}ij=1 and sampling time stamps τ i, the MMSE
decoding policy is

X̄t = E[Xt|{Xτj}ij=1, τ
i, t < τi+1], t ∈ [τi, τi+1). (8)

In an (F, d, T ) code, the average sampling frequency must
satisfy (6), while the MSE must satisfy

1

T
E

[∫ T

0

(Xt − X̄t)
2

]
≤ d, (T <∞) (9a)

lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̄t)
2

]
≤ d, (T =∞). (9b)

Allowing more freedom in designing the decoding policy
will not lead to a lower MSE, since (8) is the MMSE estimator.
Note that we cannot immediately simplify the expectation
in (8) using the strong Markov property of {Xt}Tt=0 ((i)
in Section I-B) at this point, since the expectation is also
conditioned on t < τi+1. We will show in Corollary 1.1 below
that under the optimal causal sampling policy, (8) can indeed
be simplified to (14).

In this work, we focus on the causal sampling policies
satisfying the following natural assumptions.
(iv) The sampling interval between any two consecutive stop-

ping times, τi+1 − τi, satisfies

E[τi+1 − τi] <∞, i = 0, 1, . . . , (10)

and the MSE within each interval satisfies

E
[∫ τi+1

τi

(Xt − X̄t)
2dt

]
<∞, i = 0, 1, . . . (11)

(v) For all i = 0, 1, . . . , the conditional pdf fτi+1|τi exists,
and the process πt is almost surely continuous in t on
each of the intervals [τi, τi+1).

Note that (10) holds trivially if T < ∞. Sun et al. [9] and
Ornee and Sun [10] also assumed (10) in their analyses of
the infinite time horizon problems for the Wiener [9] and the
OU [10] processes. We use (11) to obtain a simplified form
of the distortion-frequency tradeoff for time-homogeneous
processes (see (16) below). Furthermore, (11) allows us to
prove (see (15) below) that the optimal sampling intervals
τi+1 − τi form an i.i.d. process. In contrast, the sampling
intervals of the causal sampling policy are assumed to form a
regenerative process in [9][10]. We use (v) to show that the
optimal sampling policy is a symmetric threshold sampling
policy in the frequency-constrained setting, and this sampling



policy remains optimal in the rate-constrained setting (see the
discussion right before Theorem 3 below).

To quantify the tradeoffs between the sampling frequency
(6) and the MSE (9), we introduce the distortion-frequency
function.

Definition 2 (Distortion-frequency function (DFF)). The DFF
for causal frequency-constrained sampling of the process
{Xt}Tt=0 is the minimum MSE achievable by causal frequency-
constrained codes,

D(F ) , inf{d : ∃ (F, d, T ) causal

frequency-constrained code satisfying (iv), (v)}.
(12)

In the causal frequency-constrained sampling scenario, we
say a causal sampling policy optimal if, when succeeded by
the MMSE decoding policy (8), it forms an (F, d, T ) code
with d = D(F ).

B. Optimal causal sampling policy

In Theorem 1 below, we show that the optimal sampling
policy is a two-threshold policy that is symmetric with respect
to the expected value of the process given the last sample and
the last sampling time, henceforth referred to as a symmetric
threshold policy. In Theorem 2, we show a simplified form of
the policy for time-homogeneous processes.

Theorem 1. The optimal causal sampling policy in either
finite or infinite time horizon for a class of continuous Markov
processes satisfying assumptions (i)-(iii) in Section I-B is a
symmetric threshold sampling policy of the form

τi+1 = inf{t ≥ τi :Xt − E[Xt|Xτi , τi]

/∈ (−a(t, τi, i), a(t, τi, i))},
(13)

where the threshold a is a non-negative deterministic function
of (t, τi, i).

Proof. [22, Appendix A].

Theorem 1 shows that the optimal sampling policy is found
within a much smaller set of sampling policies than that
allowed in Definition 2: each set of πt is an interval symmetric
about E[Xt|Xτi , τi] that depends on {Xt}Tt=0 only through the
last sampling time and the number of samples taken until t.
Using the form of the sampling policy (13), we show that the
MMSE decoding policy (8) simplifies as follows.

Corollary 1.1. In the setting of Theorem 1, under the optimal
sampling policy (13), the MMSE decoding policy reduces to

X̄t = E[Xt|Xτi , τi], t ∈ [τi, τi+1). (14)

Proof. [22, Appendix B].

Note that the expectation in (14) can be calculated at the
decoder even without the knowledge of the sampling policy,
whereas the expectation in (8) depends on the sampling policy
at the encoder through the conditioning on the event that the
next sample has not been taken yet, i.e. t < τi+1. Corollary 1.1

confirms the conjecture in [7][9][10] on the form of the MMSE
decoding policy.

Corollary 1.2. In the setting of Theorem 1, the optimal
sampling policy satisfies (6) with equality.

Proof. [22, Appendix C].

Corollary 1.2 indicates that the inequality in the sampling
frequency constraint (6) can be simplified to an equality.

Definition 3 (time-homogeneous process). The process
{Xt}Tt=0 is called time-homogeneous, if for any stopping
time τ ∈ [0, T ] and any constant s ∈ [0, T − τ ], Xs+τ −
E[Xs+τ |Xτ ] follows a distribution that only depends on s.

Theorem 2. In the infinite time horizon, the optimal causal
sampling policy for time-homogeneous continuous Markov
processes satisfying assumptions (i)-(iii) in Section I-B is a
symmetric threshold sampling policy of the form

τi+1 = inf{t ≥ τi :Xt − E[Xt|Xτi , τi]

/∈ (−a′(t− τi), a′(t− τi))},
(15)

where the threshold a′ is a non-negative deterministic function
of t − τi. The optimal thresholds of (15) are the solution to
the following optimization problem,

D(F ) = min
{a′(t)}t≥0 :

E[τ1]= 1
F

E
[∫ τ1

0
(Xt − E[Xt]

2)dt
]

E[τ1]
. (16)

Proof. [22, Appendix D].

Theorem 2 shows that the optimal sampling policy in
Theorem 1 can be further simplified for time-homogeneous
processes in the infinite time horizon. In particular, the sam-
pling intervals τi+1−τi, i = 0, 1, 2, . . . under (15) are i.i.d. As
a consequence of time homogeneity, thresholds in (15) only
depend on the elapsed time from the last sampling time. In
contrast, the thresholds in (13) depend on the last sampling
time as well.

III. CAUSAL RATE-CONSTRAINED SAMPLING

In this section, we formally introduce the causal rate-
constrained sampling problem, and leverage Theorem 1 in
Section II-B to find the causal code that achieves the optimal
tradeoff between the communication rate and the MSE.

A. Causal rate-constrained code

We formally define encoding and decoding policies, and
define a distortion-rate function (DRF) to describe the tradeoffs
between (2) and (3).

Definition 4 ((R, d, T ) causal rate-constrained codes). A time
horizon-T causal rate-constrained code for the stochastic
process {Xt}Tt=0 is a pair of encoding and decoding policies.
The encoding policy consists of a causal sampling policy and
a causal compressing policy.

1. The causal sampling policy, defined in Definition 1-1.,
decides the stopping times (1) at which codewords are
generated.



2. The causal compressing policy, characterized by the Z+-
valued process {ft}Tt=0 adapted to {Ft}Tt=0, decides the
codeword to transmit at time τi,

Ui = fτi . (17)

Given an encoding policy, the MMSE decoding policy uses
the received codewords and codeword-generating time stamps
to estimate the process,

X̂t = E[Xt|U i, τ i, t < τi+1], t ∈ [τi, τi+1). (18)

In an (R, d, T ) code, the lengths of the codewords must satisfy
the average communication rate constraint R bits per sec in
(2), while the MSE must satisfy (3).

Allowing more freedom in designing the decoding policy
will not lead to a lower MSE, because (18) is the MMSE
estimator.

Definition 5 (Distortion-rate function (DRF)). The DRF for
causal rate-constrained sampling of the process {Xt}Tt=0 is
the minimum MSE achievable by causal rate-R codes:

D(R) , inf{d : ∃ (R, d, T ) causal

rate-constrained code satisfying (iv), (v)}.
(19)

We call a causal (R, d, T ) code optimal if d = D(R).

B. Optimal causal codes

We proceed to show that the sampling policies in Theo-
rem 1 remain optimal in the scenario of the rate-constrained
sampling. Towards that end, we introduce a class of causal
codes, namely, the sign-of-innovation (SOI) codes. We prove
that an SOI code is the optimal code as long as the process
satisfies the assumptions (i)-(iii) in Section I-B.

Definition 6 (A Sign-of-innovation (SOI) code). The SOI code
for a continuous-path process {Xt}Tt=0 consists of an encoding
and a decoding policy. Given a symmetric threshold sampling
policy in (13) that satisfies (v), at each stopping time τi, i =
1, 2, . . . , the SOI encoding policy generates a 1-bit codeword

Ui =

{
1 if Xτi − E[Xτi |Xτi−1 , τi−1] = a(τi, τi−1, i− 1)

0 if Xτi − E[Xτi |Xτi−1 , τi−1] = −a(τi, τi−1, i− 1).
(20)

At time τi, the MMSE decoding policy noiselessly recovers
Xτi , i = 1, 2, . . . via the received codewords U i,

Xτi = (2Ui−1)a(τi, τi−1, i−1) +E[Xτi |Xτi−1
, τi−1], (21)

and uses (14) as the estimate of Xt until Ui+1 arrives.

Note that under (v), the continuous-path process is guar-
anteed to hit one of the boundaries of the symmetric set (13)
with equality, implying that the 1-bit codeword in (20) together
with the recovered samples {Xτj}i−1j=1 suffices to recover
Xτi , i = 1, 2, . . . noiselessly at the decoder. We conjecture that
the continuity of the optimal threshold a(t, τi, i) in (v) holds
for the processes with continuous paths ((ii) in Section I-B).
Note that for the Wiener and the OU processes, a(t, τi, i) is a
constant, and (v) is satisfied trivially.

Theorem 3. For a process {Xt}Tt=0 satisfying assumptions
(i)-(iii) in Section I-B, the SOI code, whose stopping times are
decided by the optimal symmetric threshold sampling policy
(13) of {Xt}Tt=0 with average sampling frequency (6) F = R,
is the optimal causal code.

Proof. [22, Appendix E].

Theorem 3 illuminates the working principle of the optimal
causal code for the stochastic processes considered in Sec-
tion I-B: The encoder transmits a 1-bit codeword representing
the sign of the process innovation as soon as the innovation
crosses one of the two symmetric thresholds. To achieve
the DRF (19), the optimal causal code uses the minimum
compression rate (1 bit per codeword) in exchange for the
maximum average sampling frequency R.

Theorem 3 shows that the optimal codeword-generating
times are the sampling times of the optimal causal sampling
policy that satisfies piecewise continuity (v). Furthermore, the
optimal decoding policy only depends on the thresholds of the
sampling policy and the sampling time stamps. Thus, finding
the optimal causal code is simplified to finding the optimal
causal sampling policy.

C. Rate-constrained sampling of the OU process

Using Theorem 3 and (16), we can easily find the optimal
causal code and its corresponding DRF for the OU process by
finding the thresholds of the optimal causal sampling policy.
The OU process is the solution to the following SDE:

dXt = θ(µ−Xt)dt+ σdWt, (22)

where µ, θ, σ are positive constants, and Wt is the Wiener pro-
cess. The OU process satisfies the conditions in Section I-B.
Under the assumption (iv) in Section II-A and the assumption
that the sampling intervals form a regenerative process, Ornee
and Sun [10] found the optimal sampling policy for the OU
process in the infinite horizon by forming an optimal stopping
problem. They solved the optimal stopping problem via the
Snell’s envelope which requires solving an SDE. We provide
an easier method to find the optimal sampling policy for the
OU process in [22, Appendix F]. We also show via Theorem 3
that the policy remains optimal when bitrate constraints are
present. Define R1(v2) , v2

σ2 2F2

(
1, 1; 3

2 , 2; θ
σ2 v

2
)
, R2(v2) ,

− v
2

2θ + σ2

2θR1(v2), where 2F2 is a generalized hypergeometric
function.

Proposition 1. For causal coding of the Ornstein-Uhlenbeck
process, the optimal causal sampling policy is the symmetric
threshold sampling policy given by

τi+1 = inf

{
t ≥ τi : |Xt − E[Xt|Xτi , τi]| ≥

√
R−11

(
1

R

)}
,

(23)
The DRF under the corresponding SOI code is given by

D(R) = R ·R2

(
R−11

(
1

R

))
. (24)

Proof. [22, Appendix F].
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